• Nie Znaleziono Wyników

Studies on overcrowding in organic molecules

N/A
N/A
Protected

Academic year: 2021

Share "Studies on overcrowding in organic molecules"

Copied!
92
0
0

Pełen tekst

(1)

STUDIES ON OVERCROWDING

IN ORGANIC MOLECULES

B. van de Graaf

(2)

le^^/g^

STUDIES ON OVERCROWDING

IN ORGANIC MOLECULES

Proefschrift ter verkrijging van

de graad van doctor in de

technische wetenschappen

aan de Technische Hogeschool Delft,

op gezag van de rector magnificus

prof. ir. L. Huisman,

voor een commissie aangewezen

door het college van dekanen

te verdedigen op

woensdag 14 juni 1978

te 16.00 uur door

Bastiaan van de Graaf

scheikundig ingenieur

geboren te Rotterdam

Delft University Press / 1978

(3)

Dit proefschrift is goedgekeurd door de promotor PROF. DR. IR. B. M. WEPSTER

(4)

Voor Els

(5)

Drawings: J.M. Dijksman

(6)

CONTENTS Page

1 INTRODUCTION

1.1 Scope 1

1.2 Synopsis • 2

References 2

2 NITRATION OF 1,2-DI-tert-BUTYLBENZENE

2.1 Introduction 5

2.2 Results and discussion 6

2.3 Experimental part , 10

References and notes - 15

3 BEHAVIOUR OF 1,2-DI-tert-BUTYLBENZENE AND SOME

DERIVATIVES UPON ELECTRON IMPACT

3.1 Introduction 17

3.2 Results and discussion 17

3.3 Experimental part 25

References and notes 25

4 HYDROGENATION OF 1,2-DI-tert-BUTYLBENZENE ON

PLATINUM AND RHODIUM CATALYSTS. SYNTHESIS OF

ais-AND trans-l,2-DI-tert-BUTYLCYCL0HEXANE

4.1 Introduction 29

4.2 Results and discussion 30

4.3 Experimental part 36

References and notes 39

(7)

Page

5 CONFORMATIONAL ANALYSIS OF

ais-

AND

trans-l,2-DI--tert-BUTYLCYCLOHEXANE AND SOME HOMOMORPHS

5.1 Introduction 41

5.2 Results and discussion 42

5.3 Conclusions 50

5.4 Experimental part 51

References and notes 53

6 FORCE FIELD CALCULATIONS ON SOME tert-BUTYL

SUBSTITUTED CYCLOHEXANE COMPOUNDS

6.1 Introduction 57

6.2 Calculations 58

6.3 Results 58

6.4 Discussion 58

6.5 Conclusions 70

References and notes 72

SUMMARY AND FINAL REMARKS 75

SAMENVATTING EN SLOTOPMERKINGEN 81

(8)

1 INTRODUCTION

1.1 SCOPE

The importance of s t e r i c e f f e c t s in organic chemistry was

recog-nized f i r s t a t the end of the nineteenth c e n t u r y ' . Ever since the

study of such e f f e c t s has been one of the main t o p i c s in p h y s i c a l

--organic chemistry. In our laboratory e s p e c i a l l y the e f f e c t s of

over-crowding both in benzene derivatives2 and in cyclohexane d e r i v a t i v e s ^

have been i n v e s t i a a t e d . The i n v e s t i g a t i o n s presented in t h i s t h e s i s

may be regarded as a sequel to those s t u d i e s . The chemistry of

1,2--di-t<^ri-butylbenzene and d e r i v a t i v e s and the conformational a n a l y s i s

of air,- and t i ' a n s - l , 2 - d i - t e r É - b u t y l c y c l o h e x a n e are two d i s t i n c t t o p i c s

in t h i s t h e s i s . The s t u d i e s of these t o p i c s , however, serve a common

goal: the increase of the knowledge of the e f f e c t s of overcrowding on

the p r o p e r t i e s of organic molecules.

The i n v e s t i g a t i o n s described in t h i s t h e s i s were s t a r t e d a f t e r

s u i t a b l e routes for the synthesis of 1,2-di-ter't-butylbenzene had been

developed'*. I t should be r e c a l l e d , however, t h a t the a t t e n t i o n was

f i r s t focussed upon 1 , 2 - d i - t e r t - b u t y l b e n z e n e as the r e s u l t s of s t u d i e s

of II.C. Brown and coworkers. In a now almost c l a s s i c s e r i e s of papers^

on the analogies between homomorphic compounds these authors predicted

t h a t the then unknown hydrocarbon would be s t r a i n e d by 25 kcal mol"i.

This r e s u l t e d in attempts to synthesize 1 , 2 - d i - t e r t - b u t y l b e n z e n e ,

attempts which eventually were successful'*. The papers of Brown and

coworkers created also a great deal of i n t e r e s t in the physical and

(9)

Chemical properties of this highly strained compound. Therefore, when

the investigations on the chemistry of 1,2-di-teri-butylbenzene were

started in this laboratory similar investigations were started or had

been started in other laboratories^. This competition has been a

limiting factor in the scope of the investigations on the chemistry

of l,2-di-io'/'t-butyl benzene presented in this thesis. It has also been

one of the reasons to shift the attention to the conformational

ana-lysis of

cis-

and trans-1,2-di-tr-rt-butylcyclohexane after these

com-pounds had been synthesized^.

1.2 SYNOPSIS

Chapters 2, 3, and 4 of this thesis deal with the chemistry of

1,2-di-tert-butylbenzene and derivatives, chapters 5 and 6 concern

the conformational analysis of

ais-

and

tr'(2ns-l,2-di-iert-butylcyclo-hexane.

Chapter 2 gives the results of the nitration of

1,2-di-te>^t-butyl-benzene^.

Chapter 3 discusses the behaviour of l,2-di-i:ert-butylbenzene and

some derivatives upon electron impact'^.

Chapter 4 gives the results of the hydrogenation of

1,2-di-tert--butylbenzene on Rh and Pt catalysts. It also describes the preparation

of

'-'•;;-

and traws-l ,2-di-ter't-butylcyclohexane^.

Chapter 5 discusses the conformations of

ais-

and

tran,s-l,2-di-t<2r't--butylcyclohexane and some homomorphic compounds on the basis of

spectroscopic data'".

Chapter 6 gives the results of empirical force field calculations

on some tert-butyl substituted cyclohexane compounds. The results are

compared with available experimental data''.

REFERENCES

' For some leading references see:

S.H. linger

and

C. Hansoh,

Prog.

Phys. Org. Chem. j ^ , 91 (1976).

(10)

2 See for i n s t a n c e : B.M. Wepster, Progr. in Sterochem. 2, 99 (1958);

H. Kofod, L.E. Sutton, P.E. Verkade and B.M. Wepster, Reel. Trav.

Chim. Pays-Bas 78, 790 (1959); J.M.A. Baas and B.M. Wepster, Reel.

Trav. Chim. Pays-Bas 9^1, 831 (1972); and J.M.A. Baas, J.M. van der

Toom and B.M. Wepster, Reel. Trav. Chim. Pays-Bas 9 3 , 133 (1974).

In these papers references to e a r l i e r s t u d i e s can be found.

^ See for i n s t a n c e : H. van Bekkum, M.A. Hoefnagel, L. de Lavieter,

A. van Veen, P.E. Verkade, A. Wemmers, B.M. Wepster, J.H. Palm,

L. Schafer, H. Dekker, C. Mosselman and G. Somsen, Reel. Trav. Chim.

Pays-Bas 86, 1363 (1967); H. van Bekkwv, B. van de Graaf, G. van

Minnen-Pathuis, J.A. Peters and B.M. Wepster, Reel. Trav. Chim.

Pays-Bas 89, 521 (1970); and J.D. Remijnse, H. van Bekkum and B.M.

Wepster, Reel. Trav. Chim. Pays-Bas 9_3, 93 (1974). In these papers

references to e a r l i e r s t u d i e s can be found.

"* C. Hoogzand and W. Hubel, Angew. Chem. 73, 680 (1961); E.M. Amett

and M.E. strem, Chem. Ind. 1961, 2008; L.R.C. Barclay, C.E.

MilUgan and N.D. Hall, Can. J . Chem. 40, 1664 (1962); and A.W.

Burgstahler and M.0. Ahdel-Rahman, J . Am. Chem. Soc. 8 5 , 173 (1963).

^ H.C. Brown, G.K. Barbaras, H.L. Bemeis, W.H. Bonner, R.B.

Johannesen, M. Grayson and K. LeBoi Nelson, J . Am. Chem. Soc. 75,

1 (1953); H.C. Brown and X. LeRoi Nelson, J . Am. Chem. Soc. 75, 24

(1953); and H.C. Brown, D. Gintis and L. Domash, J . Am. Chem. Soc.

78, 5387 (1956).

^ For a review s e e : E.M. Amett, J.C. Sanda, J.M. Bollinger and M.

Barber, J . Am. Chem. Soc. 89, 5389 (1967).

^ B. van de Graaf, H. van Bekkum and B.M. Wepster, Reel. Trav. Chim.

Pays-Bas 87, 777 (1968).

^ B. van de Graaf and B.M. Wepster, Reel. Trav. Chim. Pays-Bas 85,

619 (1966).

^ B. van de Graaf, Reel. Trav. Chim. Pays-Bas, submitted.

" B. van de Graaf, H. van Bekkum, H. van Koningsveld, A. Sinnema,

A. van Veen, B.M. Wepster and A.M. van Wijk, Reel. Trav. Chim.

Pays-Bas W , 135 (1974).

(11)

B. van de Graaf and B.M. Wepster, Tetrahedron Letters 1975, 2943;

B. van de Graaf, J.M.A. Baas and B.M. Wepster, Reel. Trav. Chim.

Pays-Bas, accepted.

(12)

2 NITRATION OF l,2-tej>t-BUTYLBENZENE'

2.1 INTRODUCTION

In the l i t e r a t u r e the n i t r a t i o n o f 1 , 2 - d i - t e r t - b u t y l b e n z e n e i s mentioned t w i c e . Olah and Kuhn^ use n i t r o n i u m t e t r a f l u o r o b o r a t e i n tetramethylene sulfone as n i t r a t i n g agent and r e p o r t t h a t , i n a d d i t i o n to d i s p r o p o r t i o n a t i o n , n i t r a t i o n takes place w i t h 4 n i t r o l , 2 d i t e r t --butylbenzene as the only product. They mention no physical constants of t h e i r product and give no proof o f i t s s t r u c t u r e . Burgstahler e t a l . 3 describe the n i t r a t i o n of 1 , 2 - d i - t e r t - b u t y l b e n z e n e w i t h n i t r i c acid i n a c e t i c anhydride. With n i t r i c acid d 1.42 they r e p o r t mono-n i t r a t i o mono-n t o 4 - mono-n i t r o - 1 , 2 - d i - t e r t - b u t y l b e mono-n z e mono-n e , which they describe as a y e l l o w o i l . With n i t r i c acid d 1.50 they f i n d d i n i t r a t i o n t o 4 , 5 -- d i n i t r o -- l , 2 -- d i -- t e r t -- b u t y l b e n z e n e , a c o l o u r l e s s compound w i t h m.p. 149-150 . T h e i r s t r u c t u r e assignments are based on the elemental analyses, the NMR s p e c t r a , and the f a c t t h a t the d i n i t r o d e r i v a t i v e , a f t e r r e d u c t i o n to the diamino d e r i v a t i v e , can be converted i n t o a q u i n o x a l i n e d e r i v a t i v e .

Our i n v e s t i g a t i o n o f the n i t r a t i o n of 1 , 2 - d i - t e r t - b u t y l b e n z e n e , which was already i n an advanced stage when the above-mentioned p u b l i c a t i o n s appeared, y i e l d e d us the f o l l o w i n g , p a r t l y d i f f e r e n t r e s u l t s .

(13)

2.2 RESULTS AND DISCUSSION

The r e s u l t s f o r the m o n o n i t r a t i o n o f 1 , 2 - d i - t e j ' t - b u t y l b e n z e n e w i t h fuming n i t r i c acid i n a c e t i c a c i d - a c e t i c anhydride and f o r the f u r t h e r n i t r a t i o n of the mononitro d e r i v a t i v e s w i t h fuming n i t r i c acid i n a c e t i c anhydride are summarized i n the f o l l o w i n g scheme.

Mononitration of 1,2-di-tert-butylbenzene

The main product of the m o n o n i t r a t i o n , 4 n i t r o l , 2 d i t e r ' t b u t y l -benzene, a pale y e l l o w compound w i t h m.p. 38.8-39.2 , could be ob-t a i n e d by c r y s ob-t a l l i z a ob-t i o n o f ob-the crude r e a c ob-t i o n producob-t from meob-thanol. The s t r u c t u r e assigned f o l l o w s from the elemental a n a l y s i s , the NMR spectrum, and the u l t r a v i o l e t spectrum. The NMR spectrum shows two s i n n l e t s at T 8.41 and T 8 . 3 9 , both w i t h r e l a t i v e i n t e n s i t y nine f o r the t e r t - b u t y l p r o t o n s , and a complicated signal f o r the aromatic protons i n an ABK-pattern; AB p a r t a t T 2 . 0 - 2 . 5 and K p a r t at T 1 . 5 - 1 . 6 , The coupling constants J . p ~ 9.0 eps, J.y^ - 2.2 eps, and Jau ~ 0.6 eps p o i n t t o a 1 , 2 , 4 - t r i s u b s t i t u t e d benzene d e r i v a t i v e . The

u l t r a v i o l e t spectrum shows a maximum a t 271.5 nm w i t h an absorption intens'^ty of 11,000, which points to a nitrobenzene d e r i v a t i v e i n which the n i t r o group i s not i n o r t ^ o - p o s i t i o n r e l a t i v e t o a

(14)

-butyl group"* .

The second n i t r a t i o n product, 3 - n i t r o - l ,2-di-•,...'-butylbenzene, a l s o

pale yellow and c r y s t a l l i n e , m.p. 87.7-88.2'^, could be i s o l a t e d by the

a p p l i c a t i o n of, inter alia, p r e p a r a t i v e gas chromatography. The s t r u c

-t u r e was assigned on -the basis of -the elemen-tal analysis and -the NMR

spectrum. This spectrum shows two s i n g l e t s a t T 8.48 and T 8.44, both

with r e l a t i v e i n t e n s i t y nine for the t ^ r t - b u t y l protons, and a

com-p l i c a t e d signal for the aromatic com-protons in an ABK-com-pattern; AB com-part a t

T 2.6-3.1 and K part a t T 2 . 3 - 2 . 5 . The coupling constants ^.g - 8 e p s ,

Joy ~ 8 eps, and c/ = 2 eps point to a nonsymmetrical 1 , 2 , 3 t r i s u b

-s t i t u t e d benzene d e r i v a t i v e .

In view of the fact t h a t the above-mentioned r e s u l t s deviate

con-siderably from those reported by Olah and Kuhn^ and by Burgstahler e t

a l . ^ we have also reproduced the procedures of these a u t h o r s . In both

cases the formation of a considerable amount of 3 - n i t r o - l

,2-di-ici".'--butylbenzene was found. The same holds for a n i t r a t i o n with benzoyl

n i t r a t e in a c e t o n i t r i l e . The r a t i o s of the isomers for a l l the

mono-n i t r a t i o mono-n s c a r r i e d out by us are givemono-n imono-n Table I.

Table I Mononitration of 1,2-di-i;e2't-butylbenzene

N i t r a t i o n method

Ratio of isomers

3 - n i t r o 4 - n i t r o

N i t r i c acid in a c e t i c a c i d - a c e t i c anhydride 13% ~ 87%

Benzoyl n i t r a t e in acetoni t r i l e 17% 83°/

N i t r i c a c i d i n a c e t i c a n h y d r i d e ; p r o c e d u r e of

Burgstahler et a] .'^ 15% 85%

Nitronium t e t r a f l u o r o b o r a t e in t e t r a m e t h y l e n e

s u l f o n e ; p r o c e d u r e of Olah and Kuhn^ 15% 85%

(15)

A comparison of the above r e s u l t s w i t h the data of Burgstahler e t a l . ' ^ i n d i c a t e s t h a t the 4 - n i t r o - 1 , 2 - d i - t e } ' t - b u t y l b e n z e n e described by them cannot have been pure, but must have contained 3 n i t r o 1 , 2 d i --tü>^t-butylbenzene.

In a l l the n i t r a t i o n procedures the percentage of 3 n i t r o l , 2 d i -- t c j ' t -- b u t y l b e n z e n e i s remarkably h i g h . stook'=> obtained 10.3% of - 2-- n i t r o 2-- l 2-- t e r 2-- t 2-- b u t y l b e n z e n e and 79.4% o f 4 2-- n i t r o 2-- l 2-- t e r / : 2-- b u t y l b e n z e n e upon n i t r a t i o n of t e r t - b u t y l b e n z e n e w i t h n i t r i c a c i d - a c e t i c anhydride In the case of a d d i t i v i t y of s u b s t i t u e n t e f f e c t s only about 6% of 3 n i t r o l , 2 d i t e 7 ' t b u t y l b e n z e n e would have to be formed from 1 , 2 d i -- t e r t -- b u t y l b e n z e n e under s i m i l a r c o n d i t i o n s . The high percentage may be due t o a n o n - p l a n a r i t y of the aromatic r i n g ^ , or even only t o i t s being more f l e x i b l e , i n consequence o f which the t r a n s i t i o n s t a t e f o r n i t r a t i o n on the 3 - p o s i t i o n o f l,2-di-Éer>t-butylbenzene would have less s t e r i c s t r a i n than t h a t f o r the o r t / j o n i t r a t i o n of t e r t b u t y l benzene. In t h i s connection i t i s s t r i k i n g t h a t 3 n i t r o l , 2 d i t e p t butylbenzene absorbs more s t r o n g l y a t 260 nm than does 2 n i t r o l , 4 -- d i -- t s T ' t -- b u t y l b e n z e n e (e being 3050 and 1250 r e s p e c t i v e l y ) , which p o i n t s t o a smaller t w i s t i n g o f the n i t r o group"*.

Further nitration of the mononitro derivatives

The main product i n the n i t r a t i o n o f 4 n i t r o l , 2 d i t e i ' t b u t y l benzene, the p r a c t i c a l l y c o l o u r l e s s 4 , 5 d i n i t r o 1 , 2 d i t e r t b u t y l -benzene, m.p. 150.5-151.5 , could be i s o l a t e d from the r e a c t i o n pro-duct by c r y s t a l l i z a t i o n . The s t r u c t u r e f o l l o w s from the elemental a n a l y s i s , the NMR spectrum, the d i p o l e moment, and the u l t r a v i o l e t spectrum. The NMR spectrum shows a s i n g l e t a t T 8.38 w i t h r e l a t i v e i n t e n s i t y eighteen f o r the t e r t - b u t y l protons and a s i n g l e t a t T 1.87 w i t h r e l a t i v e i n t e n s i t y two f o r the aromatic p r o t o n s . Both the two t e r t - b u t y l groups and the two aromatic protons t h e r e f o r e are equiva-l e n t . The high d i p o equiva-l e moment o f 7.17 D i n d i c a t e s t h a t the two n i t r o groups are ortho r e l a t i v e to each o t h e r . F i n a l l y we can also exclude 2 , 3 - d i n i t r o - l , 4 - d i - t e j > t - b u t y l b e n z e n e as a l t e r n a t i v e s t r u c t u r e i n view

(16)

of the u l t r a v i o l e t spectrum. The absorption i n t e n s i t y of the maximum

a t 266 nm (c 7550) is of the r i g h t order of magnitude for an

undisturb-ed ::;.r':P2o-dinitro system'''", whilst for an r r t ^ o - d i n i t r o system between

two te>'t-butyl groups a much lower absorption i n t e n s i t y must be ex

pected'*. Considering the s i m i l a r i t y of the melting point and the

s p e c t r a , t h i s product i s no doubt i d e n t i c a l with the 4 , 5 d i n i t r o 1 , 2

-- d i -- t c r t -- b u t y l b e n z e n e described by Burgstahler e t a l . ^ .

From the NMR spectrum of a crude n i t r a t i o n mixture of 4 n i t r o l , 2

d i t e r t b u t y l b e n z e n e i t appeared t h a t in addition to 4 , 5 d i n i t r o 1 , 2

-- d i -- t e r t -- b u t y l b e n z e n e a second product was p r e s e n t . This second -

pro-d u c t , which coulpro-d also be pro-detectepro-d with t h i n - l a y e r chromatography on

aluminium o x i d e , in view of the NMR spectrum i s i d e n t i c a l with the

3 , 5 - d i n i t r o - l , 2 - d i - t . ? r t - b u t y l benzene described below.

The main product in the n i t r a t i o n of 3 n i t r o l , 2 d i t e r ' b u t y l

-benzene, viz. 3,5-dini tro-1,2-di-,';f;rt-butyl -benzene, a l i g h t yellow

compound with m.p. 104-106.0 , was i s o l a t e d with the aid of

prepa-r a t i v e t h i n - l a y e prepa-r chprepa-romatogprepa-raphy. The s t prepa-r u c t u prepa-r e follows fprepa-rom the

elemental a n a l y s i s , the NMR spectrum, and the u l t r a v i o l e t spectrum.

The NMR spectrum shows two s i n g l e t s a t T 8.43 and T 8.38, both with

r e l a t i v e i n t e n s i t y nine for the tertbuty^ p r o t o n s , and for the a r o

-matic protons two doublets in an AK-pattern; A part a t ~ 1.47 and K

p a r t at T 1.80. The coupling constant J.^^ - 2.5 eps points to two

non-equivalent aromatic protons in w e t a - p o s i t i o n . The absorption

i n t e n s i t y of the maximum a t 266 nm (c 9550) points to the presence

of a non-hindered n i t r o group"*.

In the crude n i t r a t i o n mixture of 3 - n i t r o - l , 2 - d i - r e r ' t - b u t y l b e n z e n e

both NMR spectrometry and t h i n - l a y e r chromatography on aluminium

oxide pointed to the presence of a second product. The NMR spectrum

of this product, which has not yet been i s o l a t e d , shows for the

aromatic protons two doublets in an AB-pattern; A part at T 2.22 and

B part at T 2.42. The coupling constant J.„ - 9 eps points to two

non-equivalent aromatic protons in ortho-position. In combination with

t h e formation of the product from 3 - n i t r o - 1 , 2 - d i - t e r t - b u t y l b e n z e n e

(17)

t h i s makes the s t r u c t u r e 3 , 4 - d i n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e h i g h l y probable.

I t i s f u r t h e r to be noted t h a t f o r the d i n i t r a t i o n s i t was found necessary t o f o l l o w the procedure of Burgstahler e t a l . ^ and t o add the mononitro p r o d u c t , dissolved i n a c e t i c a n h y d r i d e , to the n i t r i c a c i d . When the n i t r i c acid and the a c e t i c anhydride were p r e v i o u s l y mixed, no r e a c t i o n was observed.

2.3 EXPERIMENTAL PART

The NMR spectra were obtained from s o l u t i o n s i n carbon t e t r a -c h l o r i d e or d e u t e r i o -c h l o r o f o r m w i t h a Varian A-60 spe-ctrometer, the u l t r a v i o l e t spectra w i t h a Beekman DK-2 spectrophotometer, and the i n f r a r e d s p e c t r a , o f which only a few c h a r a c t e r i s t i c absorptions between 1250 and 850 cm"' are mentioned, w i t h a P e r k i n Elmer 521 spectrophotometer. Dipole moments were determined i n benzene w i t h the a i d o f a Wiss. Techn. Werkstatten d i p o l e meter, while f o r the c a l c u l a t i o n the method of Halverstadt and Kumler^ was used. For the gas chromatography, w i t h a katharometer as d e t e c t o r and hydrogen as c a r r i e r gas, the a n a l y t i c columns used were an Apiezon column,

3.9 m X 4 mm 25% Apiezon N on Chromosorb W 42-60 mesh, and a s i l i c o n e column, 4 m X 4 mm 20% s i l i c o n e o i l on Chromosorb W 42-60 mesh. For the p r e p a r a t i v e s e p a r a t i o n a s i l i c o n e column, 4 m x 12 mm 20% s i l i c o n e o i l on Camag k i e s e l g u h r 60-80 mesh was used.

1,2-di-tert-butylbenzene

1 , 2 - d i - t e r t - b u t y l b e n z e n e was prepared according t o Hoogzand and HübeÜ^ from d i - t ï s r f c - b u t y l a c e t y l e n e " ; y i e l d 33% ( l i t e r a t u r e : 31%'°, 50%'2), m.p. 2 6 . 5 - 2 3 . 0 ° ( l i t e r a t u r e : 2 4 - 2 7 ° ^ , 2 7 . 5 - 2 8 . 5 ° ' ° , 2 7 - 2 8 ° ' ^ ) .

Nitration of 1, 2-di-tert-butylbenzene with fuming nitric acid in

acetic acid-acetic anhydride

To 7.50 g of 1 , 2 - d i - t e r t - b u t y l b e n z e n e d i s s o l v e d i n 37.5 ml o f a c e t i c anhydride and 15 ml o f a c e t i c a c i d , at 0° 5.25 ml of n i t r i c

(18)

acid d 1.52 in 22.5 ml of a c e t i c acid was added dropwise with

s t i r r i n g in one hour. The reaction mixture was l e f t to i t s e l f at room

temperature and a f t e r four days was poured out i n t o i c e - w a t e r . The

mixture was e x t r a c t e d with pentane. The pentane e x t r a c t was washed

with 2 .7 potassium hydroxide and then with water, and was dried on

magnesium s u l f a t e . Gas chromatography of t h i s s o l u t i o n a t 180 on the

s i l i c o n e column showed a complete conversion of the l , 2 d i t e " t

butylbenzene and the presence of two products, 13%'"* of 3 n i t r o l , 2

-- d i -- t e r t -- b u t y l b e n z e n e , r e l a t i v e r e t e n t i o n time with respect to -

1,2-- d i 1,2-- t e r t 1,2-- b u t y l b e n z e n e 3 . 0 , and 87% of 4 1,2-- n i t r o 1,2-- 1 , 2 1,2-- d i 1,2-- t e r t 1,2-- b u t y l b e n z e n e ,

r e l a t i v e r e t e n t i o n time 4 . 1 . F i l t r a t i o n and evaporation of the pentane

gave 9.4 g of a yellow o i l , from which, by d i s s o l u t i o n in methanol and

cooling to -30 , 6.45 g of crude 4 - n i t r o - 1 , 2 - d i - t e r ' t - b u t y l b e n z e n e ,

m.p. 32-35 , was obtained. Repeated c r y s t a l l i z a t i o n s from methanol

gave 4.80 g (52%) of 4 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e , which according

to gas chromatography was pure; pale yellow, almost c o l o u r l e s s needles

with m.p. 3 8 . 8 - 3 9 . 2 ° .

Found : C 71.6 ; H 9.0 ; N 5.9

Calc. for Cii,H2iN02 (235.33): C 71.45; H 9.00; N 5.95.

U l t r a v i o l e t spectrum in iso-octane {\ in nm, e ) : 380, 60; 360, 160;

340, 280; 320, 630; 310, 1600; 300, 3450; 290, 6300; 280, 9300; max.

271.5, 11,000; 260, 8450; 250, 4800; min. 236.5, 2350; 230, 3600; 220,

9400; 215, 11,700; 210, 14,200.

Infrared spectrum in CCli,: 1230, 1188, 1125, 1054, and 898 c m ' ' .

Dipole moment: 4.79 D in benzene a t 25°.

The combined mother liquors were evaporated and the residue was

separated with the aid of preparative gas chromatography through a

s i l i c o n e column. Two dark-coloured f r a c t i o n s were obtained, viz. 460

mg of impure 3 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e and 1120 mg of impure

4 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n 2 e n e . The low y i e l d is probably due to

decomposition in the evaporation chamber. Chromatography of the impure

3 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e over neutral aluminium oxide with

(19)

petroleum e t h e r 60-80° as eluent gave 430 mg of a l i g h t y e l l o w o i l c o n t a i n i n g 90% o f 3 - n i t r o - 1 , 2 - d i - t s r t - b u t y l b e n z e n e (gas chromatography). D i s s o l u t i o n i n ethanol and c o o l i n g to -30 gave 255 mg o f crude

3-- n i t r o 3-- 1 , 2 3-- d i 3-- t e r t 3-- b u t y l b e n z e n e , m.p. 843--88 . R e c r y s t a l 1 i z a t i o n from ethanol gave 220 mg (2.4%) of product, which according to gas chroma-tography was pure; pale y e l l o w , almost c o l o u r l e s s needles w i t h m.p. 3 7 . 7 - 8 8 . 2 ° . Found : C 71.5 ; H 9.1 ; N 5.8 Calc. f o r CiitH2iN02 ( 2 3 5 . 3 3 ) : C 71.45; H 9 . 0 0 ; N 5.95. U l t r a v i o l e t spectrum i n iso-octane (X i n nm, c ) : 400, 70; 380, 250; 360, 500; 340, 720; 320, 950; 304-296, 1050; 290, 1100; 280, 1550; 270, 2350; 260, 3050; 250, 3950; 240, 6000; 230, 9700; 220, 12,000; 210, 15,100. I n f r a r e d spectrum i n CCl^: 1240, 1215, 1184, 1055, and 898 c m " ' . Dipole moment: 4.11 D i n benzene at 25 .

Nitration of 1,2-di-tert-butylbenzene with benzoyl nitrate in

aceto-ni trile

To a s o l u t i o n of 19 mg of 1 , 2 - d i - t e r t - b u t y l b e n z e n e and 51 mg of s i l v e r n i t r a t e i n 0.5 ml of a c e t o n i t r i l e was added w i t h s t i r r i n g 42 mg of benzoyl c h l o r i d e i n 0.25 ml of a c e t o n i t r i l e a t 0 . A f t e r f o u r days a t room temperature, 2 ml of saturated sodium c h l o r i d e s o l u t i o n was added and the mixture was e x t r a c t e d w i t h e t h e r . The e t h e r e a l e x t r a c t was washed w i t h 2 /'.' potassium hydroxide and then w i t h w a t e r , and was d r i e d on magnesium s u l f a t e . Gas chromatography a t 220 on the Apiezon column showed t h a t , i n a d d i t i o n to non-converted 1 , 2 - d i - t e r t - b u t y l b e n z e n e , 3 - n i t r o - 1 , 2 - d i - t e r t - b u t y l b e n z e n e and 4-- n i t r o 4-- 1 , 2 4-- d i 4-- t e r t 4-- b u t y l b e n z e n e were present i n a r a t i o of 17:93; r e l a t i v e r e t e n t i o n times w i t h respect t o 1 , 2 - d i - t e r t - b u t y l b e n z e n e 3.7 and 5.7 r e s p e c t i v e l y .

(20)

Nitration of 1, 2-di-tert-butylbenzene according to the procedure of

Burgstahler e t al. ^

190 mg of 1 , 2 - d i - t e r t - b u t y l b e n z e n e was n i t r a t e d according to the

procedure of Burgstahler et a l . ^ . Analysis of the reaction product

with gas chromatography a t 180 on the s i l i c o n e column showed t h a t ,

in addition to nonconverted 1 , 2 d i t e r t b u t y l b e n z e n e , 3 n i t r o l , 2

-- d i -- t e r t -- b u t y l benzene and 4--ni t r o -- 1 , 2 -- d i -- / ; e r t -- b u t y l benzene were

p r e s e n t in a r a t i o of 15:85.

Nitration of 1,2-di-tert-butylbenzene according to the procedure of

Olah and Kuhn2 , • _

570 mg of 1 , 2 - d i - t e r t - b u t y l b e n z e n e was n i t r a t e d according to the

procedure of Olah and Kuhn^. Analysis of the reaction product with

gas chromatography a t 180 on the s i l i c o n e column showed t h a t , in

a d d i t i o n to l a r g e amounts of non-converted 1 , 2 - d i - t e r t - b u t y l b e n z e n e ,

inter alia 3 n i t r o 1 , 2 d i t e r t b u t y l b e n z e n e and 4 n i t r o 1 , 2 d i t e r t

--butylbenzene were present in a r a t i o of 15:85.

Nitration of 4-nitro-2,2-di-tert-butylbenzene

A solution of 1.00 g of 4 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e in 6 ml

of a c e t i c anhydride was added dropwise with s t i r r i n g a t -10 to 4 ml

of n i t r i c acid d 1.52. The reaction mixture was l e f t to i t s e l f a t

room temperature and a f t e r two hours was poured out into i c e - w a t e r .

The mixture was e x t r a c t e d with pentane. The pentane solution was

washed with a s a t u r a t e d sodium bicarbonate solution and then with

w a t e r , and was dried on magnesium s u l f a t e . After f i l t r a t i o n , the

pentane was evaporated and the r e s i d u e , a yellow o i l , taken up in

e t h a n o l . Cooling to 30 gave 600 mg crude 4 , 5 d i n i t r o l , 2 d i t e r t

butylbenzene; l i g h t yellow l e a f l e t s with m.p. 148150°. R e c r y s t a l

-l i z a t i o n gave 513 mg (42%) of pa-le ye-l-low, p r a c t i c a -l -l y c o -l o u r -l e s s

l e a f l e t s with m.p. 150.5-151.5° {Burgstahler et a l . ^ 149-150°).

Found C 60.2 ; H 7.2 ; N 10.1

Calc. for Ci4H2oN20it (280.33): C 59.98; H 7.19; N 9.99

(21)

U l t r a v i o l e t spectrum in iso-octane (A in nm, e): 400, 36; 380, 190;

360, 520; 340, 950; 320, 1450; 310, 1850; 300, 2450; 290, 3400; 280,

5400; 270, 7350; max. 266, 7550; 260, 7200; min. 254, 6700; 250, 7200;

240, 10,600; 230, 12,800; max. 220, 15,000; 215, 14,600.

Infrared spectrum in CCK: 1230, 1211, 1195, 900, and 857 cm"'.

Dipole moment: 7.17 D in benzene a t 25 .

Attempts to n i t r a t e 4 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e with a

pre-viously prepared mixture of n i t r i c acid and a c e t i c anhydride were

unsuccessful, p r a c t i c a l l y no conversion taking place.

When the above n i t r a t i o n was repeated on a smaller s c a l e , s t a r t i n g

from 100 mg of 4 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e , a NMR spectrum of

the crude reaction product showed, in addition t o the 4 , 5 d i n i t r o

-- 1 , 2 -- d i -- t e r t -- b u t y l b e n z e n e , 12% of a second component, which was

i d e n t i f i e d by means of t h i s spectrum as 3 , 5 d i n i t r o l , 2 d i t e r t

--butylbenzene. Again with t h i n - l a y e r chromatography on aluminium

oxide, petroleum e t h e r 60-80 being used as e l u e n t , only two products

were shown to be p r e s e n t . R^ values for 3 , 5 d i n i t r o l , 2 d i t e r t

--butylbenzene and 4 , 5 - d i n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e 0.38 and 0.20

r e s p e c t i v e l y .

Nitration of 3-nitro-l, 2-di-tert-butylbenzene

A s o l u t i o n of 70.5 mg of 3 - n i t r o - l , 2 - d i - t e r t - b u t y l b e n z e n e in 1 ml

of a c e t i c anhydride was added dropwise with s t i r r i n g at -5 to 1 ml

of n i t r i c acid d 1.52. The reaction mixture was l e f t to i t s e l f at

room temperature and poured out a f t e r four hours into i c e - w a t e r . The

mixture was e x t r a c t e d with pentane. After being washed successively

with a s a t u r a t e d sodium bicarbonate solution and with w a t e r , the

pentane e x t r a c t was dried on magnesium s u l f a t e . Thin-layer

chromato-graphy on aluminium oxide, petroleum e t h e r 60-80° being used as

e l u e n t , showed the presence of two products, R, values 0.18 and 0 . 3 8 ,

of which the l a t t e r was c l e a r l y the main product. After f i l t r a t i o n ,

the pentane was evaporated. The NMR spectrum of the residue was

determined, from which a composition of 14% of 3 , 4 d i n i t r o l , 2 d i

(22)

-tert-butylbenzene and 86% of 3,5-dinitro-l,2-di-tert-butylbenzene

could be deduced. Preparative thin-layer chromatography (thickness of

layer 1 mm) on aluminium oxide, petroleum ether 60-80 being used as

eluent, gave 37 mg (44%) of the main product

3,5-dinitro-l,2-di-tert--butylbenzene as yellow crystals with m.p. 104-106 . Crystallization

from ethanol gave 26 mg of light yellow needles with m.p. 104.5-106.0 .

Found C 60.1 ; H 7.3 ; N 9.9

Calc. for C14H20N2O4 (280.33): C 59.98; H 7.19; N 9.99

Ultraviolet spectrum in iso-octane (A in nm, E ) : 380, 180; 360, 410;

340, 840; 320, 1550; 300, 2600; 290, 5250; 280, 8150; max. 266, 9550;

250, 8600; min. 236, 7250; 230, 8050; 220, 13,700; max. 215, 15,300.

Infrared spectrum in KBr: 1228, 1176, 1052, 912, and 874 cm"'.

ACKNOWLEDGEMENTS

We thank Mr.

A. van Veen

and Mr.

A. Sinnema

for measuring and

interpreting the NMR spectra, the late Mr.

M. van Leeuwen

for carrying

out the elemental analyses, Mr.

U.J. van Benschop

for measuring the

infrared spectra, and Mr.

M.A. Hoefnagel

for determining the dipole

moments.

REFERENCES AND NOTES

' B. van de Graaf and B.M. Wepster, Reel. Trav. Chim. Pays-Bas 85,

619 (1966).

2

G.A. Olah

and

S.J. Kuhn,

J. Am. Chem. Soc. 86, 1067 (1964).

^ a)

A.W. Burgstahler, M.0. Abdel-Rahman

and

Ping-Lu Chien,

Tetra-hedron Letters 1964, 61; b) A.W. Burgstahler, Ping-Lu Chien

and

M.0. Abdel-Rahman, J. Am. Chem. Soc. 86, 5281 (1964).

"* See

e.g.

:

J. Burgers, M.A. Hoefnagel, P.E. Verkade, H. Visser

and

B.M. Wepster,

Reel. Trav. Chim. Pays-Bas 77, 491 (1958).

5

L.M. Stock,

J. Org. Chem. 26, 4120 (1961).

^ L.R.C. Barclay. C.E. MilUgan

and

N.D. Hall,

Can. J. Chem. 40,

(23)

^ G. Kortüm, Z. Physik. Chem. (Leipzig), B 42, 53 (1939).

8 p. Grammatiaakis ,

Buil. Soc. Chim. France (5) 2J., 103 (1954).

5 I.F. Halverstadt

and

W.D. Kumler, J. Am. Chem. Soc. 64, 2988 (1942).

'O C. Hoogzand

and !•/.

Hübel, Angew. Chem. 7_3, 680 (1961).

" G.F. Hennion and T.F. Banigan, Jr., J. Am. Chem. Soc. 68, 1202

(1946).

'2 c. Hoogzand, private communication.

13 A.W. Burgstahler

and M.O.

Abdel-Rahman, J. Am. Chem. Soc. 85, 173

(1963).

''* For the calculation of the percentages from the areas of the peaks

in the chromatograms it has been assumed that the heat conductivity

for the two isomers is the same.

(24)

3 BEHAVIOUR OF 1,2-DI-tert-BUTYLBENZENE AND SOME DERIVATIVES UPON

ELECTRON IMPACT'

3.1 INTRODUCTION i

I n several cases2 s t e r i c s t r a i n i n n e u t r a l molecules has been c o r r e l a t e d w i t h i o n i z a t i o n or appearance p o t e n t i a l d a t a . An example f r e q u e n t l y r e f e r r e d t o i s the c o r r e l a t i o n between the d i f f e r e n c e s i n s t e r i c s t r a i n o f the isomeric d i t e r t b u t y l b e n z e n e s and the d i f f e r -ences i n the appearance p o t e n t i a l s of t h e i r [M-15] i o n s ^ ' S . To e x p l a i n t h i s c o r r e l a t i o n i t has been suggested^ t h a t the molecular i o n o f 1 , 2 - d i - t e r t - b u t y l b e n z e n e isomerizes t o t h a t o f 1,3- and/or 1,4-- d i 1,4-- t e r t 1,4-- b u t y l b e n z e n e , c o n v e r t i n g i n t h i s process the s i z a b l e s t e r i c s t r a i n to i n t e r n a l energy. Considering the i n t e r e s t i n the appearance p o t e n t i a l data i t i s s u r p r i s i n g t h a t the mass spectrum i t s e l f o f 1,2-- d i 1,2-- t e r t 1,2-- b u t y l b e n z e n e has never been published although i t has been measured several t i m e s ^ » ^ .

I n t h i s paper mass s p e c t r a l data f o r 1 , 2 - d i - t e r t - b u t y l b e n z e n e and some of i t s d e r i v a t i v e s are compared w i t h those of l e s s s t r a i n e d i s o -mers. The f o r m a t i o n and the subsequent fragmentation of the [M-15]

ions of the i s o m e r i c d i - t e r t - b u t y l b e n z e n e s i s given special a t t e n t i o n . The s i g n i f i c a n c e of the d i f f e r e n c e s i n the appearance p o t e n t i a l s of these ions i s d i s c u s s e d .

3.2 RESULTS AND DISCUSSION

Mass spectra

(25)

substi-Table I P a r t i a l mass spectra^ o f some d i - and t r i - t e r t - b u t y l s u b s t i t u t e d benzene d e r i v a t i v e s Benzene derivativ 1,2-di-tBu 1,2,4-tri-tBu 1,3-di-tBu 1,4-di-tBu 1,3,5-tri-tBu 4-N02-l,2-di-tBu 4,5-di-N02-l,2-di es -tBu 5-N02-l,2,4-tri-tBu 5-N02-l,3-di-tBu 3-N02-l,2-di-tBu 3,5-di-N02-l,2-di 2-N02-l,4-di-tBu 4-Br-l,2-di-tBu^ -tBu

Mt

44(5) 22(6) 20(7) 14(6) 14(6) 41(6) 21(5) 22(4) 11(4) 4(1.3) .5(.3) 38(9) 45(8) Relative [M-15]" 78(9) 76(21) 100(37) 100(40) 100(43) 74(11) 69(17) 77(14) 100(40) 3(.9) 1.5(.9) 100(25) 100(17) abundances: % base [M-43]" 6(.7) 1(.3) 5(2) 2(.8) 1(.4) 4(.6) 2(.5) 1(.2) 10(4) --1(.2) 6(1) peak (% r. 39) [M-57]" 70(8) 12(3) 1(.4) 1(.4) .4(.2) 82(12) 40(10) 18(3) --__b __c 1(.2) 35(6) 57" 100(12) 100(27) 35(13) • 23(9) 42(18) 100(15) 100(24) 100(18) 25(10) 100(34) 100(59) 37(9) 42(7)

Obtained w i t h a CH-4 spectrometer o p e r a t i n g a t 70 eV. Compounds were introduced by d i r e c t i n s e r t i o n probe. . , ,

[ M - 5 6 ] • r e l a t i v e abundance 5%. '' [M-56|- r e l a t i v e abundance .5%.

(26)

tuted benzene derivatives are given in Table I. The mass spectra of

the isomeric di-tert-butylbenzenes are also given in full in Figures

1-3.

The spectra of 1,3- and l,4-di-tert-butylben2ene, apart from a

characteristic difference in intensity for the ion at m/e 160, are

rather similar in appearance. They are dominated by the peak at m/e

175 corresponding to the a-cleavage ion [M-CH3] ; in both spectra this

ion carries about 40% of the total ion current. The appearance of

the mass spectrum of 1,2-di-tert-butylbenzene is more complex. The

base peak is shifted to m/e 57 and at the high end of the mass

spec-trum there are several intense fragment ion peaks besides the peak at

m/e 175. Of these ion at m/e 133 ([M-Ci+Hg] ) is of special interest

because its intensity suggests considerable aryl-alkyl cleavage; a

fragmentation which normally is not important with polyalkylbenzenes^.

We will discuss the formation of the [M-C^Hg] ions from the molecular

ion of 1,2-di-tert-butylbenzene below.

The data in Table I show that derivatives of

1,2-di-tert-butylben-zene are, just as 1,2-di-tert-butylben1,2-di-tert-butylben-zene itself, easily

differen-tiated from positional isomers. The most characteristic features in

the mass spectra of the 1,2-di-tert-butylbenzene derivatives are the

base peaks at m/e 57 and the relatively abundant [M-Ci,Hg] or

[M-Ci^Hg]- ions (Table I, notes b and c ) . In view of the steric strain

of these compounds it is remarkable that their molecular ions are,

with the exception of those of 3-nitro- and

3,5-dinitro-l,2-di-tert--butylbenzene, as abundant as those of the less strained compounds

in Table I^. In the case of 3-nitro- and

3,5-dinitro-l,2-di-tert--butylbenzene the relatively low abundance of the molecular ions as

well as the formation of [M-Ci+Hg] • ions instead of [M-C^Hg]" ions may

be explained by an additional ortho-effect.

Metastable characteristics

In Tables II and III metastable characteristics are given from DADI

(or MIKE) spectra of the molecular ions and the [M-CH3]" ions of the

isomeric di-tert-butylbenzenes. These data show that both the

(27)

mole-> 1 O) CD C71 t/) C\J NJ 0 )

^

4 J U O l C L U~i

%.

TO

s ^ 1 • 1 — -a en on ro Ho

+ •

r» -r e l a t i v e a b u n d a n c e r e l a t i v e a b u n d a n c e O) O) > 1

^)

tl) s-•4-> U 0 ) Q . l / l ?H ttl 4^i 1

• ,

-a in

-4

o \ ^ E C5 CVJ r e l a t i v e a b u n d a n c e

(28)

c u l a r ions and the [M-CH3] ions decomposing w i t h i n the metastable

Table I I Metastable c h a r a c t e r i s t i c s of the molecular ions of the isomeric d i - t e r t - b u t y l b e n z e n e s

Benzene d e r i v a t i v e : 1 , 2 - d i - t B u 1 , 3 - d i - t B u Metastable t r a n s i t i o n % T(meV) % T(meV)

1 , 4 - d i - t B u % T(meV)

190" > 175" 100 81 100 19 100 21

i g o t - 133" 3.3 — < 0.1 — < 0.1

Obtained from DADI scans on a Varian 311 spectrometer. Percentages give r e l a t i v e abundances w i t h respect t o the most intense metastable t r a n s i t i o n . Releases of k i n e t i c energy (T) were c a l c u l a t e d from peak widths a t h a l f h e i g h t , values given are c o r r e c t e d f o r the width o f the main beam.

Table I I I Metastable c h a r a c t e r i s t i c s of the [M-CH3J ions of the isomeric d i - t e r t - b u t y l b e n z e n e s Benzene d e r i v a t i v e : Metastable t r a n s i t i o n 1 , 2 - d i - t B u % T(meV) 1 , 3 - d i - t B u % T(meV) 1 , 4 - d i - t B u % T(meV)

1 7 5 " ^

175" .

175" ->

175" ->

1 7 5 " ^

1 7 5 " .

1 7 5 " .

160t

147"

133"

119"

105"

91"

57"

< 0.1

3.1

100

2.4

3.6

0.7

< 0.2

-163

19

22

17

-2.4

69

10

30

1.4

1.1

100

-69

32

27

-26

100

24

8.2

13

0.8

0.4

30

27

122

77

33

-32

See note a. Table I I ,

(29)

time-window have not rearranged to common s t r u c t u r e s . This i s contrary t o a suggestion made by Loudon and Mazengo^. They pointed o u t t h a t a rearrangement of the molecular ion of 1 , 2 - d i - t e r t - b u t y l b e n z e n e can e x p l a i n the e n e r g e t i c s of the formation of the [M-CH3] i o n s . We w i l l discuss the s i g n i f i c a n c e of these e n e r g e t i c s below.

The data i n Tables I I and I I I show t h a t the c h a r a c t e r i s t i c [M-Ci+HgJ ions are formed from the molecular ion o f 1 , 2 - d i - t e r t - b u t y l b e n z e n e by two d i f f e r e n t pathways: ( i ) d i r e c t cleavage o f the a r y l - a l k y l bond i n the molecular i o n ; ( i i ) via the [M-CH3I ion by l o s s of C3Hg. The f i r s t pathway is r a t h e r unusual f o r ( p o l y ) a l k y l b e n z e n e s , i t s a b i l i t y to compete w i t h the more usual a-cleavage r e a c t i o n can be r a t i o n a l i s e d by the almost t o t a l r e l i e f of the s t e r i c s t r a i n when the a r y l - a l k y l bond i s c l e a v e d , as compared w i t h - as shown below - a p a r t i a l r e l i e f of s t e r i c s t r a i n i n the a-cleavage r e a c t i o n . However, i f the assumption i s made t h a t the frequency f a c t o r s f o r the cleavage of the a r y l - a l k y l bond and of the b e n z y l i c bond are o f the same order of magnitude^ i t f o l l o w s t h a t the data i n Tables I I and I I I i n d i c a t e that the f i r s t pathway given above f o r the formation o f the [M-C^Hg] ions i s the minor one. Formation of Ci+Hg ions (m/e 57) by cleavage of the a r y l -- a l k y l bond e v i d e n t l y also occurs w i t h almost t o t a l r e l i e f o f s t e r i c s t r a i n . No metastable was found f o r t h i s r e a c t i o n i n the DADI spectrum of the molecular ion of 1 , 2 - d i - t e r t - b u t y l b e n z e n e but a very weak meta-s t a b l e wameta-s found i n a high voltage meta-scan. The r e a c t i o n might compete more e f f e c t i v e l y w i t h the a-cleavage r e a c t i o n a t higher molecular ion i n t e r n a l e n e r g i e s . I t should be n o t e d , however, t h a t the abundance

(% Ï. 39) of the Ci+Hg ions i s r a t h e r s i m i l a r f o r the isomeric d i t e r t --butylbenzenes. On the whole, t h e r e f o r e , i t seems t h a t the charac-t e r i s charac-t i c feacharac-tures of charac-the mass speccharac-trum of 1 , 2 - d i - charac-t e r charac-t - b u charac-t y l benzene are l a r g e l y a r e s u l t o f secondary fragmentations o f the [M-CH3] ions

For 1 , 2 - d i - t e r t - b u t y l b e n z e n e the a c t i v a t i o n energy f o r the formation of the [M-CH3J ions i s r e l a t i v e l y s m a l l . The r e l a t i v e l y l a r g e release of k i n e t i c energy accompanying t h i s f o r m a t i o n , t h e r e f o r e , must be a t t r i b u t e d to a s i z a b l e reverse a c t i v a t i o n e n e r g y ' 0 . This i s i n l i n e w i t h an unrearranged molecular ion and a r e l a x a t i o n process going on 22

(30)

during the formation of the [M-CH3J''" ions to minimize the steric strain

in these.

Loss of a methyl radical from an even-electron ion usually is not

a low energy process. Yet in case of the [M-CH3J ions from

1,4-di--tert-butylbenzene this reaction shows the most intense metastable

and differentiates the mass spectra of 1,3- and

1,4-di-tert-butylben-zene. This can be explained by resonance stabilization of the product

ions at m/e 160 (ion structure |) for 1,4-di-tert-butylbenzene. Such

an explanation is consistent with the conclusions reached above

regarding the structures of the molecular ions and the [M-CH3] ions

a; m/e 160

of the isomeric di-tert-butylbenzenes.

Energetics of the formation of the [M-C//3J ions

It remains to show that the conclusions about the structures of the

[M-CH3J ions of the di-tert-butylbenzenes are consistent with the

energetics of their formation. The appearance potentials of the ions

formed in their ground states at the threshold is given by: • .

A([M-CH3]") = AH^([M-CH3]") + A H ^ ( C H 3 ) - AH^(M) + e" + e° - ë^ (1)

i n which e i s the excess a c t i v a t i o n energy ( k i n e t i c s h i f t ) , e° the reverse a c t i v a t i o n energy and e, the average heat content of the molecule before i o n i z a t i o n . Under i d e n t i c a l c o n d i t i o n s ê. w i l l be prac-t i c a l l y equal f o r isomers. T h e r e f o r e , s u b s prac-t r a c prac-t i n g prac-the prac-two eqns. (1) f o r 1,2- and 1 , 4 - d i - t e r t - b u t y l b e n z e n e y i e l d s :

A([M-CH3]") - A([M-CH3]" = A H . ( [M-CH3]") - A H . ( [M-CHj]") - A H . ( M ) +

p . 0 . 1 ' n T ' n I n

A H . ( M ) + (e + e°) - ( e * + e°)

(31)

in which

o

and

p

are suffixes denoting 1,2- and

1,4-di-tert-butyl-benzene, respectively. Experimentally^ the difference between the heats

of formation of the isomers (22.3±0.5 kcal mol"') is equal but

oppo-site to the difference between the appearance potentials of their

[M-CH3]" ions (24.4±3.1 kcal mol"'). Thus:

A(rM-CH3]") - A([M-CH3]") == A H . ( M ) - A H . ( M ) (3)

'

•' p o

T o ' P

and in combination with eqn. (2):

AHf([M-CH3]p - AH^([M-CH3]p

~-

(e* + e " ) ^ - (e* + e ° ) ^ (4)

The near equality of expression (3) has received considerable

attention because it seems to be a specific example of an equation

proposed and used by

Jalonen

and

Pihlaja^'^

to correlate strain in

neutral molecules with appearance potential data. They derived their

equation for the case that the fragment ions have similar heats of

formation, assuming that terms as in the righthand side of expression

(4) can be neglected".

Loudon

and

Mazengo^

have pointed out, and it

will be shown that they were right, that in case of the

di-tert-butyl-benzenes it is unlikely that the [M-CH3] ions will have similar

heats of formation if no rearrangements have taken place. Accepting in

fact the equation proposed by

Jalonen

and

Pihlaja'^'^

they, therefore,

suggested a rearrangement of the molecular ion of

1,2-di-tert-butyl-benzene to that of 1,3-di-tert-butyl1,2-di-tert-butyl-benzene and/or that of

1,4-di-tert--butylbenzene. In that case both sides of expression (4) would be

equal to zero and expression (3) would be an exact equation. The

meta-stable characteristics given in this paper, however, show that both the

molecular ions and the [M-CH3] ions have not isomerized to common

structures. Therefore, the near equality of expression (3) is just

fortuitous and an evaluation of expression (4) seems in order.

Since the ionization potentials of the di-tert-butylbenzenes are

quite similar^ and as the molecular ions do not isomerize it follows

that the activation energies for the formation of the [M-CH3] ions

differ considerably, (A( [M-CH3])"-IP) being 47 and 68 kcal mol"' for

(32)

1,2- and 1 , 4 - d i - t e r t - b u t y l b e n z e n e , r e s p e c t i v e l y . This i m p l i e s a con-s i d e r a b l e d i f f e r e n c e i n the k i n e t i c con-s h i f t con-s . Thicon-s d i f f e r e n c e i con-s estimated as 11 kcal m o l " ' by using an approximate rate equation

14

w i t h i d e n t i c a l frequency f a c t o r s o f 2.4*10 and one t h i r d o f the o s c i l l a t o r s a c t i v e ' ^ " ' ' * . Taking i n t o a c c o u n t ' ^ t h a t there i s a s i z a b l e reverse a c t i v a t i o n energy f o r the loss o f CHj from the molecular i o n of 1 , 2 - d i - t e r t - b u t y l b e n z e n e one f i n d s from expression (4) t h a t the

[M-CH3J ions from l , 2 - d i - t e 2 ' £ - b u t y l b e n z e n e are s t r a i n e d by 9.7 kcal m o l " ' compared w i t h those from 1 , 4 - d i - t e r t - b u t y l b e n z e n e . This r e s u l t i s c o n s i s t e n t w i t h the conclusions about the [M-CH3] ion s t r u c t u r e s .

3.3 EXPERIMENTAL PART

Mass s p e c t r a l data were obtained using CH-4 and Varian 111 and 311 spectrometers; see notes a and d o f Table I and note a o f Table I I .

Most compounds used were p r e v i o u s l y r e p o r t e d ' ^ ' ' ' ^ a n a l y t i c a l

samples. N i t r a t i o n o f 1 , 2 , 4 - t r i - t e r t - b u t y l b e n z e n e ' ^ i n the usual way'^ w i t h n i t r i c a c i d i n a c e t i c a c i d a c e t i c anhydride gave 5 n i t r o l , 2 , 4 t r i t e r t b u t y l b e n z e n e ; y i e l d 30% w i t h m.p. 9292.6° a f t e r c r y s t a l -l i z a t i o n from e t h a n o -l . Bromination o f 1 , 2 - d i - t e r t - b u t y -l b e n z e n e w i t h bromine i n a c e t i c acid gave 27% 4 - b r o m o - l , 2 - d i - t e r t - b u t y l b e n z e n e besides 2 - b r o m o - t e r t - b u t y l b e n z e n e ' ^ . Using t h i s m i x t u r e mass spectra were obtained by GC-MS (note d , Table I ) .

REFERENCES AND NOTES

' S. van de Graaf, Reel. Trav. Chim. Pays-Bas, s u b m i t t e d .

2 J. Jalonen and K. Pihlaja, Org. Mass Spectrom. 7, 1203 (1973). 3 E.M. Amett, J.C. Sanda, J.M. Bollinger and M. Barber, J . Am. Chem.

Soc. 89, 5389 (1967).

•* J. Jalonen and K. Pihlaja, Org. Mass Spectrom. 6, 1293 (1972). ^ A.G. Loudon and R.Z. Mazengo, Org. Mass Spectrom. 8, 179 (1974). 6 L.R.C. Barclay, C.E. MilUgan and N.D. Hall, Can. J . Chem. 40,

1664 (1962); E.M. Amett and M.E. Strem, Chem. Ind. 1961, 2008. -^ H.M. Grubb and S. Meyerson, in F.W. McLafferty ( E d . ) , Mass

(33)

ö This observation can be accounted for if the P(E)-curves have a

minimum between 2 and 3 eV for all compounds (see:

F.W. McLafferty,

T. Wachs, C. Lifshitz, G. Innorta and P. Irving, J. Am. Chem. Soc.

92, 6867 (1970)).

9 The slightly tighter transition state one might expect for the

a-cleavage reaction being compensated for by the statistical factor

of three in favor of this reaction.

'0 R.G. Cooks, J.H. Beynon, R.M. Caprioli and G.R. Lester, Metastable

Ions, Elsevier, Amsterdam, 1973, p. 104.

" This assumption is not correct unless the molecular ions of the

isomers examined isomerize to common structures. See the following

discussion.

12 s.A. Benezra and M.M. Bursey, Org. Mass Spectrom. 7, 241 (1973).

13 The kinetic shift of 36 kcal mol"' estimated this way for

1,4-di--tert-butylbenzene may be compared with the 22 kcal mol"' which can

be calculated from the kinetic energy released in the reaction

(Table II) by using

Franklin's

empirical relationship

(T = e /(0.44*S);

M.A. Haney

and

L.J. Franklin,

J. Chem. Phys. 4 8 ,

4093 (1968)) and by assuming that the reverse activation energy

is negligible.

1"* The same procedure gives for the loss of CHÓ from the molecular ion

13

of ethylbenzene (frequency factor = 4*10 ) a kinetic shift of 16

kcal mol"', which is satisfactory close to the value of 17 kcal

mol"' that can be calculated from A([M-CH3]")-IP (I.

Howe

and

D.H.

Williams,

J. Am. Chem. Soc. ^ , 7137 (1969)) and tabulated values

of heats of formation

{F.H. Field

and

L.J. Franklin,

Electron

Impact Phenomena, Academic Press, New York, 2nd ed. (1970)).

1^ Assuming that the reverse activation energy for

1,4-di-tert-butyl-benzene is negligible (see note 13) and that that for

1,2-di-tert--butylbenzene is released completely as kinetic energy. Because of

the latter assumption the value of 9.7 kcal mol"' for the difference

between the heats of formation of the [M-CH3] ions can be regarded

as an upper limit.

(34)

^ B. van de Graaf and B.M. Wepster, Reel. Trav. Chim. Pays-Bas 8 5 ,

619 (1966).

'^ A.J. Hoefnagel, J.H.A.J. Nunnink, A. van Veen, P.E. Verkade and

B.M. Wepster, Reel. Trav. Chim. P a y s - B a s ^ , 386 (1969); J.M.A. Baas,

H. van Bekkum, M.A. Hoefnagel and B.M. Wepster, Reel. Trav. Chim.

Pays-Bas 88, 1110 (1969); and J.M.A. Baas and B.M. Wepster, Reel.

Trav. Chim. Pays-Bas 9 1 , 1002 (1972).

8 U. Krüerke, C. Hoogzand and W. Hübel, Chem. Ber. 94, 2817 (1961).

^ In c o n t r a s t to l i t e r a t u r e data [A.W. Burgstahler, Ping-Lu Chien and

M.0. Abdel-Rahman, J . Am. Chem. Soc. 86, 5281 (1964)) considerable

bromode-tert-butylation was observed in repeated experiments.

(35)

4 HYDROGENATION OF 1,2-DI-tert-BUTYLBENZENE ON PLATINUM AND RHODIUM

CATALYSTS. SYNTHESIS OF

cis-

AND trans-1,2-DI-tert-BUTYLCYCLOHEXANEl

4.1 INTRODUCTION

It is known that a considerable steric strain is present in

1,2-di--tert-butylbenzene^. In view of this it may be expected that in

reactions in which the ring loses its aromatic character

di-tert--butylbenzene may show a behaviour different from less strained

1,2--dialkylbenzenes. In this article we describe the hydrogenation of

1,2-di-tert-butylbenzene on rhodium and platinum catalysts. Apart

from in the course and the kinetics of the hydrogenation, we were

also interested in the reaction products,

cis-

and

trans-1,2-di-tert--butylcyclohexane; an investigation into the properties of these

stereochemically interesting compounds forms a sequel to other work

in our laboratory^.

The catalytic hydrogenation of 1,2-di-tert-butylbenzene has not

been investigated before. An indication that the aromatic ring in

1,2--di-tert-butylbenzene and derivatives is readily hydrogenated was

found by

Burgstahler

et 31."*'^ during the preparation of

1,2-di-tert--butylbenzene from l,2-bis(l,l-dimethyl-2-butylthioethyl)benzene by

desulfurization with Raney nickel. Further

Burgstahler et

al."*

ob-tained a completely saturated product by hydrogenation of

2,3-di-tert--butylcyclohexene and 2,3-di-tert-butyl-1,4-cyclohexadiene, both

obtained by reduction of 1,2-di-tert-butylbenzene with lithium in

liquid ammonia. Considering our results, this product, which was not

investigated further by them, must have been a mixture of

ais-

and

(36)

trans-1,2-di-tert-butylcyclohexane.

4.2 RESULTS AND DISCUSSION

The course of the hydrogenations

The hydrogenation of 1,2-di-tert-butylbenzene has been investigated

with the following catalysts: rhodium on carbon, platinum on carbon,

and reduced platinum oxide. In these hydrogenations, in addition to

the two isomeric cyclohexanes, an intermediate product appeared to

be formed, which according to elementary analysis, refractive index,

and NMR spectrum was 2,3-di-tert-butylcyclohexene already described

by

Burgstahler

et al."*. In Table I the experimental data of the

hydro-genations of 1,2-di-tert-butylbenzene are listed, in Table II data of •

hydrogenations of the intermediate product

2,3-di-tert-butylcyclo-hexene.

Table I Hydrogenation of 1,2-di-tert-butylbenzene

Exp. Amount Products in % ^^^^ „^ Half-life time

no.

Catalyst ,- . Solvent . , n, b u ^ J.

•^ of cat.

azs trans

al kene substrate

1 Rh(5% on C) 200 mg EtOH 71.1 28.9 30.1 3 h. 4'

2 Rh(5% on C) 200 mg AcOH 56.5 43.5 45.2 23'

3 Pt(5% on C) 200 mg EtOH 91.5 8.5 5.7 22 h.

4 Pt(5% on C) 200 mg AcOH 90.0 10.0 7.5 23'

5 Pt02 25 mg AcOH° 84.0 16.0 11.5 1 h. 12'

Hydrogenations were carried out at 25 and atmospheric hydrogen

pressure. In all experiments 500 mg of 1,2-di-tert-butylbenzene was

used in 50 ml of solvent.

2,3-di-tert-butylcyelohexene.

(37)

Table II Hydrogenation of 2,3-di-terÉ-butylcyclohexene

Catalyst

Rh (5% on C)

Pt (5% on C)

Solvent

AcOH

AcOH

Products

ais

4.0

3.5

in

%

trans

96.0

96.5

^ Hydrogenations were carried out at 25° and atmospheric hydrogen

pressure.

The course of the hydrogenation of 1,2-di-tert-butylbenzene has

been represented in a graph for two characteristic experiments,

experiment 2 in Fig. 1 and experiment 5 in Fig. 2^.

%

hydrogenation

Fig. 1 Hydrogenation of 1,2-di-tert-butylbenzene over rhodium on

car-bon (see Table I, experiment 2 ) . • , 1,2-di-tert-butylbenzene; A , 2,3

-di-tert-butylcyclohexene; O , ets-l,2-di-tert-butylcyclohexane; A s

trans-1,2-di-tert-butylcyclohexane.

From Fig. 1, hydrogenation with rhodium on carbon as catalyst, it

appears that one of the isomeric 1,2-di-tert-butylcyclohexanes is

formed substantially directly from the aromatic, whilst the other, so

(38)

100 80 ^ 60 +-> o "O o 40 s-CL 20-50 60 70 80 90

• % hydrogenation

Fig. 2 Hydrogenation of 1,2-di-tert-butylbenzene over reduced platinum

oxide (see Table I, experiment 5). • , 1,2-di-tert-butyl benzene; A ,

2,3-di-tert-butyleyclohexene; O , et's-1,2-di-tert-butylcyclohexane;

• , trans-1,2-di-tert-butylcyclohexane.

far as can be ascertained, is formed exclusively

via

the intermediate

product 2,3-di-tert-butyleyclohexene (see Scheme 1 ) .

Scheme 1

trans

On the basis of the idea that hydrogenation of an aromatic in one

residence on the catalyst surface takes place completely, or in any

case substantially, through al l-cjis-addition of hydrogen'''^ the

cis--configuration has been assigned to the isomer which is formed directly

from the aromatic. This assignment of configuration is confirmed by

the NMR and IR spectra of the isomers. A discussion of these spectra

(39)

w i l l be given i n a f o l l o w i n g p u b l i c a t i o n ' 3 .

I n the hydrogenations w i t h rhodium on carbon a great s e l e c t i v i t y i s to be found as regards the hydrogenation of the aromatic as compared w i t h t h a t of 2 , 3 - d i - t e r t - b u t y l c y c l o h e x e n e . The maximum q u a n t i t y o f 2 , 3 - d i - t e r t - b u t y l e y e l o h e x e n e obtained i s equal t o the t o t a l q u a n t i t y t h a t has been desorbed. In the l i t e r a t u r e only a s i n g l e example approx-i m a t approx-i n g t h approx-i s s e l e c t approx-i v approx-i t y has been g approx-i v e n approx-i ° . Wapprox-ith the platapprox-inum c a t a l y s t s the s e l e c t i v i t y i n t h i s respect i s s m a l l e r . Thus i n experiment 5 ( F i g . 2) we f i n d a maximum of 11.5% of 2 , 3 - d i - t e r t - b u t y l c y c l o h e x e n e , w h i l e from the u l t i m a t e q u a n t i t y of trans i t can be i n f e r r e d t h a t a t o t a l q u a n t i t y of about 17% has been desorbed. In t h i s ease again the hydro-genation indeed probably proceeds e n t i r e l y as i n d i c a t e d i n Scheme 1 , In our opinion the great s e l e c t i v i t y observed when using rhodium on carbon as c a t a l y s t must be a t t r i b u t e d , apart from t o a g r e a t d i f f e r e n c e i n hydrogenation r a t e , t o a p r e f e r e n t i a l a d s o r p t i o n of the aromatic on the metal s u r f a c e .

Another type of s e l e c t i v i t y i s found to a pronounced degree i n the hydrogenation o f 2 , 3 - d i - t e r t - b u t y l c y c l o h e x e n e : both w i t h platinum and w i t h rhodium c a t a l y s t s t r a n s - 1 , 2 - d i - t e r t - b u t y l c y c l o h e x a n e i s formed i n l a r g e excess (see Table I I ) . Such a predominance of the traws-isomer i s a t variance w i t h what may be expected on the basis of a mechanism f o r the hydrogenation o f cyclohexene d e r i v a t i v e s advanced by Sauvage et a l . i ' . These i n v e s t i g a t o r s found t h a t i n a c e t i c acid w i t h reduced p l a t i n u m oxide as c a t a l y s t more t r a n s i s o m e r i s formed from 1 , 4 d i a l -kylcyelohexenes according as the s u b s t i t u e n t i n p o s i t i o n 4 i s b u l k i e r ; thus 4 - t e r t - b u t y l - l - m e t h y l c y c l o h e x e n e gives 63% of t r a n s - i s o m e r as a g a i n s t 1,4-dimethylcyclohexene 43%. In order t o account f o r t h i s r a t h e r small e f f e c t , they base themselves on the geometry of the c y c l o -hexene molecule i n the adsorbed s t a t e ' ^ . They assume t h a t i n the adsorbed s t a t e the molecule i s i n a boat conformation i n which the bonds with the metal surface are i n exo p o s i t i o n r e l a t i v e to the r i n g (see F i g . 3a). There are two p o s s i b i l i t i e s w i t h such a geometry: the s u b s t i t u e n t i n p o s i t i o n 4 may be i n exo or endo p o s i t i o n . Sauvage et 33

(40)

a l . " take the view that according as this substituent is bulkier there

will be greater preference for the

exo

position, so that hydrogenation

will produce the irans-isomer in excess.

a b c F i g . 3 Possible geometries o f the t r a n s i t i o n s t a t e of hydrogenation.

A p p l i c a t i o n o f t h i s mechanism t o the hydrogenation of 2 , 3 d i t e r t -- b u t y l c y c l o h e x c n e leads t o the p r e d i c t i o n t h a t the ei.s--isomer would be formed p r e f e r e n t i a l l y , f o r i n the geometry l e a d i n g to the trans--isomer the s u b s t i t u e n t i n p o s i t i o n 3 would occupy a f l a g p o l e p o s i t i o n , which i s e n e r g e t i c a l l y very unfavourable.

For cyclohexenes w i t h a bulky s u b s t i t u e n t , such as a t e r t - b u t y l group, i n p o s i t i o n 1 we propose a d i f f e r e n t geometry f o r the t r a n s i t i o n s t a t e t o the half-hydrogenated s t a t e , viz. a boat conformation in which the bonds w i t h the metal surface are i n endo p o s i t i o n r e l a t i v e to the r i n g . I t i s t r u e t h a t the p o s i t i o n of the r i n g r e l a t i v e t o the metal surface i n t h i s case i s not so f a v o u r a b l e , but t h i s is compensated f o r a large s u b s t i t u e n t i n p o s i t i o n 1 by the f a c t t h a t the exo p o s i t i o n which t h i s s u b s t i t u e n t now occupies i s more favourable (see Figs 3b, 3c).

I f we accept t h i s p i c t u r e , we f i n d f o r 2 , 3 - d i - t e r t - b u t y l c y c l o h e x e n e t h a t i n the t r a n s i t i o n s t a t e leading t o the ais-isomer ( F i g , 3b) the t e r t - b u t y l group i n p o s i t i o n 3 occupies an e n e r g e t i c a l l y unfavourable f l a g p o l e p o s i t i o n , w h i l s t i n the t r a n s i t i o n s t a t e leading t o the trans-- isomer ( F i g . 3c) the t e r t trans-- b u t y l group i n p o s i t i o n 3 occupies a bowtrans-- bow-s p r i t p o bow-s i t i o n .

We would add t h a t the r e s u l t s of hydrogenations of other c y c l o -34

(41)

hexenes w i t h a 1 - t e r t - b u t y l s u b s t i t u e n t are also i n c o n f o r m i t y w i t h t h i s mechanism. Thus hydrogenation over platinum and rhodium c a t a l y s t s o f 1 , 4 d i t e r t b u t y l c y c l o h e x e n e gives mainly c i s 1 , 4 d i t e r t b u t y l -cyclohexane, since the t e r t - b u t y l croup i n p o s i t i o n 4 i n the t r a n s i t i o n s t a t e p r e f e r s the exo p o s i t i o n over the endo p o s i t i o n , w h i l s t 2 t e r t b u t y l 3 c a r b o x y c y c l o h e x e n e mainly gives t 2 ^ a n s 2 t e r t -- b u t y l eyelohexanecarboxylic a c i d ' ^ .

F i n a l l y two solvent e f f e c t s may be pointed t o . The f i r s t concerns the i n f l u e n c e o f the s o l v e n t on the r a t e of h y d r o g e n a t i o n , s i m i l a r t o the e f f e c t s which have been observed by other i n v e s t i g a t o r s ' ' * . In a d d i t i o n , when rhodium on carbon i s used as c a t a l y s t , the q u a n t i t y o f 2 , 3 - d i - t e r t - b u t y l e y c l o h e x e n e t h a t i s desorbed appears to be dependent upon the s o l v e n t (see Table I ) . No reasonable e x p l a n a t i o n o f these phenomena can be given a t the moment. .

The kinetics of the hydrogenations

The hydrogenation r a t e of 1 , 2 - d i - t e r t - b u t y l b e n z e n e has been com-pared w i t h t h a t o f benzene and t h a t o f some 1,2-dialkylbenzenes w i t h rhodium on carbon as c a t a l y s t . The hydrogenations are a l l zero order i n s u b s t r a t e . The r e s u l t s are l i s t e d i n Table I I I .

Table I I I K i n e t i c s of hydrogenation^

Substrate

benzene

o-xylene

1,2-diethylbenzene

1,2-diisopropylbenzene

1,2-di-tert-butylbenzene

k X 10^

7.55

2.79

1.32

0.74

7.39

^ e l .

1.00

0.37

0.18

0.10

0.98

Hydrogenations were c a r r i e d out a t 25 and atmospheric hydrogen pressure w i t h Rh (5% on C) as c a t a l y s t ; r a t e constant k expressed i n mole hydrogen s e c " ' g c a t a l y s t " ' .

Cytaty

Powiązane dokumenty

Dalej: nie może być większego zadowolenia niż to, które się rodzi z harmonii, a uczy jej sam ruch sfer [niebieskich], stąd, gdy się doda harmonię do innych rzeczy składających

Znacznie istotniejszy z tego punktu widzenia okazał się przekład dzieła Benjamina Constanta, jakiego Wincenty Niemojowski według własnych twier- dzeń dokonał w

widać, że 43,0% respondentów uważało, iż osoby te powinny być zatrudniane do prostych, nieskomplikowanych prac, 20,8% – że należy doko- nywać przeglądu kadr i zatrudniać

2 zabytków ruohomyoh znaleziono a.in, 3 fragmenty obrączek azklanyoh, kilka noży żelaznych, wyroby z kośol, przęólikl gliniane, frag­ ment dmuchawy oeramlcznej, dużą

Voltammetric curves for a rotating disc electrode above 600 mV in NM solution show a limiting current, which increases linearly with the square root of the rotation

Są to zapiski ukazujące rozterki młodego przedstawiciela olsztyńskiej inte- ligencji (jest też kilka odniesień do życia osobistego autora), człowieka w jakimś stopniu zmagają-

Tematyka zainteresowań Browicza była niezwykle rozległa: dla przykładu warto przytoczyć choćby kilka tytułów jego prac: Pasożyty roślinne w durze jelitowym (1874), O