• Nie Znaleziono Wyników

MC1776CREV5F

N/A
N/A
Protected

Academic year: 2022

Share "MC1776CREV5F"

Copied!
12
0
0

Pełen tekst

(1)

Device

Operating

Temperature Range Package



SEMICONDUCTOR TECHNICAL DATA

PROGRAMMABLE OPERATIONAL AMPLIFIER

ORDERING INFORMATION

MC1776CD

TA = 0° to +70°C SO–8 PIN CONNECTIONS

P1 SUFFIX PLASTIC PACKAGE

CASE 626

D SUFFIX PLASTIC PACKAGE

CASE 751 (SO–8)

1

1 8

8

(Top View) Iset VCC Output Offset Null Offset Null

Invert Noninvert VEE

1 2 3 4

8 7 6 5 +

Input – This extremely versatile operational amplifier features low power

consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the Iset input. This allows the amplifier’s characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

±1.2 V to ±18 V Operation

Wide Programming Range

Offset Null Capability

No Frequency Compensation Required

Low Input Bias Currents

Short Circuit Protection

Resistive Programming (See Figure 1)

Rset to Ground Rset to Negative Supply

Active Programming

FET Current Source Bipolar Current Source

(Recommended for supply voltage less than ±6.0 V)

Typical Rset Values

VCC, VEE Iset = 1.5 µA Iset = 15 µA

±6.0 V

±10 V

±12 V

±15 V

3.6 MΩ 6.2 MΩ 7.5 MΩ 10 MΩ

360 kΩ 620 kΩ 750 kΩ 1.0 MΩ

Pins not shown are not connected.

Typical Rset Values

VCC, VEE Iset = 1.5 µA Iset = 15 µA

±1.5 V

±3.0 V

±6.0 V

±15 V

1.6 MΩ 3.6 MΩ 7.5 MΩ 20 MΩ

160 kΩ 360 kΩ 750 kΩ 2.0 MΩ VCC – 0.6

Iset = Rset

7 2 3

4 8 – +

Rset

VEE Iset =VCC – 0.6 – VEE Rset

– + 2 3

7

6 4 8 VEE

VG VEE

2 7

3

4 8

6

VEE R

VB VEE Q –

+ 6

VCC

VCC 7

2 3

4 8 – +

Rset VEE

6 VCC

(2)

MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.)

Rating Symbol Value Unit

Power Supply Voltages VCC,VEE ±18 Vdc

Differential Input Voltage VID ±30 Vdc

Common Mode Input Voltage VICM Vdc

VCC and |VEE| t 15 V VCC,VEE

VCC and |VEE| w 15 V ±15

Offset Null to VEE Voltage Voff–VEE ±0.5 Vdc

Programming Current Iset 500 µA

Programming Voltage Vset (VCC –2.0 V) Vdc

(Voltage from Iset Terminal to Ground) to VCC

Output Short Circuit Duration (Note 1) tSC Indefinite sec

Operating Temperature Range TA 0 to +70 °C

Storage Temperature Range Tstg –65 to +150 °C

Junction Temperature TJ 150 °C

NOTE 1. May be to ground or either supply voltage. Rating applies up to a case temperature of +125°C or ambient temperature of +70°C and Iset ≤ 30 µA.

2 3

4 6 7VCC

Output

VEE 50 100

100 50

100 2.0 k

30 pF

10 k Inputs

8

+ –

1 5

Iset

10 k Offset Null

Representative Schematic Diagram

Voltage Offset Null Circuit Transient Response Test Circuit

2

3

7 VCC 6

100 k VEE 1

8 4 Rset –

+

+ 2 –

3 7

8 4 6 VCC

Rset

CL RL

VO

Vin

Pins not shown are not connected.

VEE 5

(3)

ELECTRICAL CHARACTERISTICS (VCC = +3.0 V, VEE = –3.0 V, Iset = 1.5 µA, TA = +25°C, unless otherwise noted.*)

Characteristic Symbol Min Typ Max Unit

Input Offset Voltage (RS ≤ 10 kΩ) VIO mV

TA = +25°C – 2.0 6.0

Tlow* ≤ TA ≤ Thigh* – – 7.5

Offset Voltage Adjustment Range VIOR – 9.0 – mV

Input Offset Current IIO nA

TA = +25°C – 0.7 6.0

TA = Thigh – – 6.0

TA = Tlow – – 10

Input Bias Current IIB nA

TA = +25°C – 2.0 10

TA = Thigh – – 10

TA = Tlow – – 20

Input Resistance ri – 50 – MΩ

Input Capacitance ci – 2.0 – pF

Input Voltage Range VID V

Tlow ≤ TA ≤ Thigh +1.0 – –

Large Signal Voltage Gain AVOL V/V

RL ≥ 75 kΩ, VO = ±1.0 V, TA = +25°C 25 k 200 k –

RL ≥ 75 kΩ, VO = ±1.0 V, Tlow ≤ TA ≤ Thigh 25 k – –

Output Voltage Swing VO V

RL ≥ 75 kΩ, Tlow ≤ TA ≤ Thigh ±2.0 ±2.4 –

Output Resistance ro – 5.0 – kΩ

Output Short Circuit Current ISC – 3.0 – mA

Common Mode Rejection CMR dB

RS ≤ 10 kΩ, Tlow ≤ TA ≤ Thigh 70 86 –

Supply Voltage Rejection Ratio PSRR µV/V

RS ≤ 10 kΩ, Tlow ≤ TA ≤ Thigh – 25 200

Supply Current ICC, IEE µA

TA = +25°C – 13 20

Tlow ≤ TA ≤ Thigh – – 25

Power Dissipation PD µW

TA = +25°C – 78 120

Tlow ≤ TA ≤ Thigh – – 150

Transient Response (Unity Gain) Vin = 20 mV, RL ≥ 5.0 kΩ, CL = 100 pF

Rise Time tTLH – 3.0 – µs

Overshoot os – 0 – %

Slew Rate (RL ≥ 5.0 kΩ) SR – 0.03 – V/µs

*Tlow = 0°C Thigh = +70°C

(4)

ELECTRICAL CHARACTERISTICS (VCC = +3.0 V, VEE = –3.0 V, Iset = 15 µA, TA = +25°C, unless otherwise noted.*)

Characteristic Symbol Min Typ Max Unit

Input Offset Voltage (RS ≤ 10 kΩ) VIO mV

TA = +25°C – 2.0 6.0

Tlow* ≤TA ≤ Thigh* – – 7.5

Offset Voltage Adjustment Range VIOR – 18 – mV

Input Offset Current IIO nA

TA = +25°C – 2.0 25

TA = Thigh – – 25

TA = Tlow – – 40

Input Bias Current IIB nA

TA = +25°C – 15 50

TA = Thigh – – 50

TA = Tlow – – 100

Input Resistance ri – 5.0 – MΩ

Input Capacitance ci – 2.0 – pF

Input Voltage Range VID V

Tlow ≤TA ≤ Thigh ±1.0 – –

Large Signal Voltage Gain AVOL V/V

RL ≥ 5.0 kΩ, VO = ±1.0 V, TA = +25°C 25 k 200 k –

RL ≥ 5.0 kΩ, VO = ±1.0 V, Tlow ≤TA ≤ Thigh 25 k – –

Output Voltage Swing VO V

RL ≥ 5.0 kΩ, Tlow ≤TA ≤ Thigh ±2.0 ±2.1 –

Output Resistance ro – 1.0 – kΩ

Output Short Circuit Current ISC – 5.0 – mA

Common Mode Rejection CMR dB

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh 70 86 –

Supply Voltage Rejection Ratio PSRR µV/V

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh – 25 200

Supply Current ICC, IEE µA

TA = +25°C – 130 170

Tlow ≤TA ≤ Thigh – – 180

Power Dissipation PD µW

TA = +25°C – 780 1020

Tlow ≤TA ≤ Thigh – – 1080

Transient Response (Unity Gain) Vin = 20 mV, RL ≥ 5.0 kΩ, CL = 100 pF

Rise Time tTLH – 0.6 – µs

Overshoot os – 5.0 – %

Slew Rate (RL ≥ 5.0 kΩ) SR – 0.35 – V/µs

*Tlow = 0°C Thigh = +70°C

(5)

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, Iset = 1.5 µA, TA = +25°C, unless otherwise noted.*)

Characteristic Symbol Min Typ Max Unit

Input Offset Voltage (RS ≤ 10 kΩ) VIO mV

TA = +25°C – 2.0 6.0

Tlow* ≤TA ≤ Thigh* – – 7.5

Offset Voltage Adjustment Range VIOR – 9.0 – mV

Input Offset Current IIO nA

TA = +25°C – 0.7 6.0

TA = Thigh – – 6.0

TA = Tlow – – 10

Input Bias Current IIB nA

TA = +25°C – 2.0 10

TA = Thigh – – 10

TA = Tlow – – 20

Input Resistance ri – 50 – MΩ

Input Capacitance ci – 2.0 – pF

Input Voltage Range VID V

Tlow ≤TA ≤ Thigh ±10 – –

Large Signal Voltage Gain AVOL V/V

RL ≥ 75 kΩ, VO = ±10 V, TA = +25°C 50 k 400 k –

RL ≥ 75 kΩ, VO = ±10 V, Tlow ≤TA ≤ Thigh 50 k – –

Output Voltage Swing VO V

RL ≥75 kΩ, TA = +25°C ±12 ±14 –

RL ≥75 kΩ, Tlow ≤TA ≤ Thigh ±10 – –

Output Resistance ro – 5.0 – kΩ

Output Short Circuit Current ISC – 3.0 – mA

Common Mode Rejection CMR dB

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh 70 90 –

Supply Voltage Rejection Ratio PSRR µV/V

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh – 25 200

Supply Current ICC, IEE µA

TA = +25°C – 20 30

Tlow ≤TA ≤ Thigh – – 35

Power Dissipation PD mW

TA = +25°C – 780 0.9

Tlow ≤TA ≤ Thigh – – 1.05

Transient Response (Unity Gain) Vin = 20 mV, RL ≥ 5.0 kΩ, CL = 100 pF

Rise Time tTLH – 1.6 – µs

Overshoot os – 0 – %

Slew Rate (RL ≥ 5.0 kΩ) SR – 0.1 – V/µs

*Tlow = 0°C Thigh = +70°C

(6)

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, Iset = 15 µA, TA = +25°C, unless otherwise noted.*)

Characteristic Symbol Min Typ Max Unit

Input Offset Voltage (RS ≤ 10 kΩ) VIO mV

TA = +25°C – 2.0 6.0

Tlow* ≤TA ≤ Thigh* – – 7.5

Offset Voltage Adjustment Range VIOR – 18 – mV

Input Offset Current IIO nA

TA = +25°C – 2.0 25

TA = Thigh – – 25

TA = Tlow – – 40

Input Bias Current IIB nA

TA = +25°C – 15 50

TA = Thigh – – 50

TA = Tlow – – 100

Input Resistance ri – 5.0 – MΩ

Input Capacitance ci – 2.0 – pF

Input Voltage Range VID V

Tlow ≤TA ≤ Thigh ±10 – –

Large Signal Voltage Gain AVOL V/V

RL ≥ 5.0 kΩ, VO = ±10 V, TA = +25°C 50 k 400 k –

RL ≥ 75 kΩ, VO = ±10 V, Tlow ≤TA ≤ Thigh 50 k – –

Output Voltage Swing VO V

RL ≥5.0 kΩ, TA = +25°C ±10 ±13 –

RL ≥75 kΩ, Tlow ≤TA ≤ Thigh ±10 – –

Output Resistance ro – 1.0 – kΩ

Output Short Circuit Current ISC – 12 – mA

Common Mode Rejection CMR dB

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh 70 90 –

Supply Voltage Rejection Ratio PSRR µV/V

RS ≤ 10 kΩ, Tlow ≤TA ≤ Thigh – 25 200

Supply Current ICC, IEE µA

TA = +25°C – 160 190

Tlow ≤TA ≤ Thigh – – 200

Power Dissipation PD µW

TA = +25°C – – 5.7

Tlow ≤TA ≤ Thigh – – 6.0

Transient Response (Unity Gain) Vin = 20 mV, RL ≥ 5.0 kΩ, CL = 100 pF

Rise Time tTLH – 0.35 – µs

Overshoot os – 10 – %

Slew Rate (RL ≥ 5.0 kΩ) SR – 0.8 – V/µs

*Tlow = 0°C Thigh = +70°C

(7)

Figure 1. Set Current versus Set Resistor

Figure 2. Positive Standby Supply Current versus Set Current

Figure 3. Open Loop Gain versus Set Current Figure 4. Input Bias Current versus Set Current

Figure 5. Input Bias Current versus Ambient Temperature

Figure 6. Gain Bandwidth Product versus Set Current Iset, SET CURRENT (µA)

10 k 100 k 1.0 M 10 M 100 M

0.1 1.0 10 100

, SET RESISTOR (Rset

Iset, SET CURRENT (µA)

0.01 0.1 1.0 10 100

0.1 1.0 10 100 1000

POSITIVE STANDBY SUPPLY CURRENTµ( A)

, OPEN LOOP GAIN (V/M)

Iset, SET CURRENT (µA)

0.1 1.0 10 100

104 105 106 107

AVOL

Iset, SET CURRENT (µA)

0.01 0.1 1.0 10 100

0.1 1.0 10 100

, INPUT BIAS CURRENT (nA)

I IB

T, TEMPERATURE (°C) 0

6.0 12 18 24 30

–60 –40 –20 0 20 40 60 80 100 120 140

, INPUT BIAS CURRENT (nA)

I IB

Iset = 1.5 µA

Iset = 1.5 µA

GBW, GAIN BANDWIDTH PRODUCT (Hz)

Iset, SET CURRENT (µA) 1.0 k

10 k 100 k 1.0 M 10 M

0.1 1.0 10 100

Ω) VCC = +15 V

VEE = –15 V Rset to VEE

VCC = +15 V VEE = –15 V Rset to GND

VCC = +3.0 V VEE = –3.0 V Rset to GND VCC = +3.0 V

VEE = –3.0 V Rset to VEE

+3.0 V ≤ VCC ≤ +18 V –3.0 V ≥ VEE ≥ –18 V

RL = 75 k

VCC = +15 V VEE = –15 V

VCC = +3.0 V VEE = –3.0 V

+3.0 V ≤ VCC ≤ +18 V –3.0 V ≥ VEE ≥ –18 V

+3.0 V ≤ VCC ≤ +18 V –3.0 V ≥ VEE ≥ –18 V

VCC = +15 V

VEE = –15 V VCC = +3.0 V

VEE = –3.0 V

(8)

Figure 7. Output Voltage Swing versus Load Resistance

Figure 8. Supply Current versus Ambient Temperature

Figure 9. Output Voltage Swing versus Supply Voltage

Figure 10. Slew Rate versus Set Current

Figure 11. Input Noise Voltage versus Set Current

Figure 12. Optimum Source Resistance for Minimum Noise versus Set Current

1.0 k 10 k 100 k 1.0 M

0 6.0 12 18 24 30

V VOLTAGE SWING (V)

RL, LOAD RESISTANCE (Ω)

, PEAK–TO–PEAK OUTPUTO(pp)

–60 –40 –20 0 20 40 60 80 100 120 140 0

30 60 90 120 150

T, AMBIENT TEMPERATURE (°C)

S, SUPPLY CURRENTµ( A)I

0 2.0 4.0 6.0 8.0 10 12 14 16 18 20

0 4.0 8.0 12 16 20 24 28 32 36 40

VCC, (VEE), SUPPLY VOLTAGES (V)

VO,OUTPUT VOLTAGE SWING (V)

0.01 0.1 1.0 10 100

0.001 0.01 0.1 1.0 10

(V s)µ

Iset, SET CURRENT (µA)

SR, SLEW RATE

0.01 0.1 1.0 10 100

10–17 10–16 10–15 10–13

10–14

Iset, SET CURRENT (µA)

V(RMS), MEAN SQUARE VOLTAGE(V /Hz)2

0.01 0.1 1.0 10 100

0.1 1.0 10 100

OPTIMUM SOURCE RESISTANCE (M )Ω

Iset, SET CURRENT (µA) VCC = +15 V

VEE = –15 V Iset = 15 µA

VCC = +15 V VEE = –15 V Iset = 1.5 µA

VCC = +3.0 V VEE = –3.0 V 1.5 µA ≤ Iset ≤ 15 µA

Iset = 1.5 µA VCC = +15 V VEE = –15 V

Iset = 15 µA VCC = +3.0 V VEE = –3.0 V Iset = 1.5 µA

VCC = +3.0 V VEE = –3.0 V Iset = 1.5 µA

VCC = +15 V VEE = –15 V

1.5 µA ≤ Iset ≤ 15 mA RL = 75 k

Iset = 15 µA RL = 5.0 k

Iset = 1.5 µA RL = 5.0 k

VCC = +15 V VEE = –15 V

VCC = +3.0 V VEE = –3.0 V

f = 1.0 kHz

∆1 = Hz

+3.0 V ≤ VCC ≤ +18 V –3.0 V ≥ VEE ≥ –18 V

(9)

Figure 13. Wien Bridge Oscillator

Figure 14. Multiple Feedback Bandpass Filter

Figure 15. Multiple Feedback Bandpass Filter (1.0 kHz)

Figure 16. Gated Amplifier

Figure 17. High Input Impedance Amplifier MC1776C

22 k

200 k 2

3

C R

VO 10 k

Rset 7

6 8 4

–15 V

R C

+ +15 V

fo = 1

2π RC (for fo = 1.0 kHz) R= 16 kΩ

C = 0.01 µF

Choose a value for C, then R5 =

R1 =

R2 = MC1776C

CC 2

3 –

+ 7

6 VO

4 Rset R5

R2

VEE Vin R1

VCC

Q

R5 2A (fo)

R1,R5

QO fo GBW ≤ 0.1

8

MC1776C +15 V

Input

Output

–15 V 2.0 M 8 4 C

R2

R1 R5

2

3

6 – 7

+

for a 1.0 kHz filter with Q = 10 and A (fo) = 1

R1 = 160 k R2 = 820 R5 = 300 k C = 0.01 µF

MC1776C Input

Output –

+ 2

3

–15 V 8

4

6

VCC 2.7 M 15 V

270 k 10 k 7

1 M

Gate Q

+15 V

10 k

10 k

5.6 k

MC1776C

50 M 10 k

90 k Output Input

500 k

500 k

50 M

+ 2

3

6 7

4 8

+15 V

30 M –15 V C

For a given:

fo = center frequency A (fo) = Gain at center frequency Q = quality factor

To obtain less than 10% error from the operational amplifier:

where fo and GBW are expressed in Hz. GBW is available from Figure 6 as a function of Set Current, Iset.

πfoC

4Q2 R1–R5

(10)

P1 SUFFIX PLASTIC PACKAGE

CASE 626–05 ISSUE K

D SUFFIX PLASTIC PACKAGE

CASE 751–05 (SO–8) ISSUE R

OUTLINE DIMENSIONS

NOTES:

1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).

3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

1 4

5 8

F

NOTE 2 –A–

–B–

–T–

SEATING PLANE

H

J

G

D K

N C

L

M

A M

0.13 (0.005)M T B M

DIM MIN MAX MIN MAX INCHES MILLIMETERS

A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC

M ––– 10 ––– 10

N 0.76 1.01_ 0.030 0.040_

SEATING PLANE 1

4 5 8

A 0.25 M C B S S

0.25 M B M

h q

C

X 45_

L

DIM MIN MAX MILLIMETERS

A 1.35 1.75 A1 0.10 0.25 B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E

1.27 BSC e

3.80 4.00

H 5.80 6.20 h

0 7

L 0.40 1.25 q

0.25 0.50

_ _

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

2. DIMENSIONS ARE IN MILLIMETERS.

3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.

4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

D

E H

A

B e

A1 B

C A

0.10

(11)

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that

(12)

How to reach us:

USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Cytaty

Powiązane dokumenty

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,

Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees,