• Nie Znaleziono Wyników

1/28

N/A
N/A
Protected

Academic year: 2021

Share "1/28"

Copied!
51
0
0

Pełen tekst

(1)

1/28 Differentially rotating barotropes A. Odrzywołek ANALYTICAL APPROXIMATION

FOR

DIFFERENTIALLY ROTATING BAROTROPES

Andrzej Odrzywolek

Dept. of General Relativity & Astrophysics Jagiellonian University Cracow, Poland.

Jena University Wednesday 2006.11.01

(2)

2/28 Differentially rotating barotropes A. Odrzywołek FIRST SELF-GRAVITAING ROTATING BODIES

• C. Maclaurin, Treatise on fluxions, 1742

• Maclaurin spheroid theory

• Newton’s ”infinitesimal calculus” first application

• Reply to Bishop G. Berkely The analyst: A DISCOURSE Addressed to an Infidel Math- ematician

But what about non-rotating self gravitating bodies?

It is believed that Newton explained spherical shape of celestial bodies . . .

Jena University Wednesday 2006.11.01

(3)

3/28 Differentially rotating barotropes A. Odrzywołek Nicolaus Copernicus ,,De Revolutionibus”, Book I, Chapter IX:

(4)

3/28 Differentially rotating barotropes A. Odrzywołek Nicolaus Copernicus ,,De Revolutionibus”, Book I, Chapter IX:

For my part I believe that gravity is nothing but a certain natural desire, which the divine provi- dence of the Creator of all things has implanted in parts, to gather as a unity and a whole by combin- ing in the form of a globe. This impulse is present, we may suppose, also in the sun, the moon, and the other brilliant planets, so that through its op- eration they remain in that spherical shape which they display.

Copernicus also was motivated by relation of the gravity and shape of the celestial bodies

Jena University Wednesday 2006.11.01

(5)

4/28 Differentially rotating barotropes A. Odrzywołek ROTATING BAROTROPES

Simple self-gravitating bodies:

→ Barotropic EOS p = p(ρ)

→ Newtonian self-gravity Φg = Φg(ρ)

→ Time-independent (stationary) solutions ρ = ρ(r)

→ No other important properties (magnetic fields, viscosity, etc.)

Jena University Wednesday 2006.11.01

(6)

5/28 Differentially rotating barotropes A. Odrzywołek BAROTROPES: EOS EXAMPLES

1. Polytropic stars:

p = Kργ = Kρ1+1/n 2. Cold white dwarfs: degenerate electron gas EOS 3. Isothermal interstellar gas clouds:

p = c2s ρ 4. Uniform density bodies: γ → ∞

Jena University Wednesday 2006.11.01

(7)

6/28 Differentially rotating barotropes A. Odrzywołek PURE ROTATION ASSUMPTION

We assume motion in our star in a form of simple rotation:

v = r Ω(r, z)eφ in cylindrical coords:

r = (r, φ, z)

and substitute into Euler and continuity equations:

∂v

∂t + (v∇)v = −1

ρ∇p − ∇Φg

∂ρ

∂t + div(ρv) = 0

Jena University Wednesday 2006.11.01

(8)

7/28 Differentially rotating barotropes A. Odrzywołek SELF-GRAVITATING, ROTATING GAS IN

FULL MECHANICAL EQUILIBRIUM

r Ω(r, z)2er = 1

ρ∇p + ∇Φg

∂ρ

∂t + Ω(r, z)∂ρ

∂t = 0 Continuity Equation has a general solution:

ρ(r, z, φ; t) = F (r, z, φ − Ω t), F − arbitrary function

∂ρ

∂t = 0 ↔ axial symmetry

Equatorial symmetry also can be prooved (Lichtenstein theorem)

Jena University Wednesday 2006.11.01

(9)

8/28 Differentially rotating barotropes A. Odrzywołek INTEGRABILITY CONDITION

∇ × r Ω(r, z)2er = ∇ ×  1

ρ∇p + ∇Φg



2 r Ω ∂Ω

∂z eφ = ∇ 1 ρ



× ∇p But p = p(ρ):

∇ 

1 ρ

 × ∇p = −ρ12 ∂p∂ρ∇p × ∇p ≡ 0 so:

∂ Ω(r, z)

∂z = 0 ↔ Ω = Ω(r)

Jena University Wednesday 2006.11.01

(10)

9/28 Differentially rotating barotropes A. Odrzywołek SUMMARY OF THE ROTATING BAROTROPES

Under the following assumptions:

• Our body is self-gravitating

• EOS is barotropic

• Pure rotation is the only movement allowed

we have found the following properties of the solutions of Euler equations:

• Angular velocity is constant over cylinders

• Density distribution is axially and equatorially symmetric and time- independent

• Density satisfies “Rotating barotrope” equation

Jena University Wednesday 2006.11.01

(11)

10/28 Differentially rotating barotropes A. Odrzywołek

“ROTATING BAROTROPE” EQUATION

h(ρ) + Φ

g

+ Φ

c

= C

h - enthalpy ∇h = ∇p/ρ,

Φ

c

- centrifugal potential:

Φ

c

=

r

Z

0

r Ω(r)

2

dr

(12)

10/28 Differentially rotating barotropes A. Odrzywołek

“ROTATING BAROTROPE” EQUATION

h(ρ) + Φ

g

+ Φ

c

= C

h - enthalpy ∇h = ∇p/ρ,

Φ

c

- centrifugal potential:

Φ

c

=

r

Z

0

r Ω(r)

2

dr

∆Φ g = 4πGρ

(13)

10/28 Differentially rotating barotropes A. Odrzywołek

“ROTATING BAROTROPE” EQUATION

h(ρ) + Φ

g

+ Φ

c

= C

h - enthalpy ∇h = ∇p/ρ,

Φ

c

- centrifugal potential:

Φ

c

=

r

Z

0

r Ω(r)

2

dr

∆Φ g = 4πGρ Φ g = −G

Z ρ dV

|r − r

0

|

Jena University Wednesday 2006.11.01

(14)

11/28 Differentially rotating barotropes A. Odrzywołek CANONICAL FORM OF INTEGRAL

EQUATION

Hammerstein, A. 1930 Acta Mathematica, 54, 117-176

h(ρ) + R(ρ) + Φ

c

= C

f = R [F (f )]

where:

f = C − Φ

c

− h(ρ), F (f ) = h

−1

(f + Φ

c

− C)

Jena University Wednesday 2006.11.01

(15)

12/28 Differentially rotating barotropes A. Odrzywołek SOLUTION METHOD

f1 = R[F (f0)], f2 = R[F (f1)],

· · ·

fn = R[F (fn−1)]

· · · Iteration succesfully applied numerically:

Self-consistent field method (Ostriker, J.P., Mark, J.W.-K. 1968 ApJ, 151, 1075)

HSCF (Hachisu, I. 1986 ApJS, 61, 479)

Jena University Wednesday 2006.11.01

(16)

13/28 Differentially rotating barotropes A. Odrzywołek

FIRST-ORDER APROXIMATION

f

1

= R[F (f

0

)],

f

2

= R[F (f

1

)],

· · ·

f

n

= R[F (f

n−1

)]

· · ·

(17)

13/28 Differentially rotating barotropes A. Odrzywołek

FIRST-ORDER APROXIMATION

f

1

= R[F (f

0

)],

f

2

= R[F (f

1

)],

· · ·

f

n

= R[F (f

n−1

)]

· · ·

−→ h(ρ

1

) = −R(ρ

0

) − Φ

c

+ C

(18)

13/28 Differentially rotating barotropes A. Odrzywołek

FIRST-ORDER APROXIMATION

f

1

= R[F (f

0

)],

f

2

= R[F (f

1

)],

· · ·

f

n

= R[F (f

n−1

)]

· · ·

−→ h(ρ

1

) = −R(ρ

0

) − Φ

c

+ C

Let ρ0 is density for non-rotating star Φc ≡ 0:

h(ρ

0

) + R(ρ

0

) = C

0

(19)

13/28 Differentially rotating barotropes A. Odrzywołek

FIRST-ORDER APROXIMATION

f

1

= R[F (f

0

)],

f

2

= R[F (f

1

)],

· · ·

f

n

= R[F (f

n−1

)]

· · ·

−→ h(ρ

1

) = −R(ρ

0

) − Φ

c

+ C

Let ρ0 is density for non-rotating star Φc ≡ 0:

h(ρ

0

) + R(ρ

0

) = C

0

No

integration at all!

h(ρ

1

) = h(ρ

0

) − Φ

c

+ C − C

0

Jena University Wednesday 2006.11.01

(20)

14/28 Differentially rotating barotropes A. Odrzywołek

h1 = h0 − Φc − ∆C

C (3) C (2)

C (1)

C (0)

R0

 

h0

 h0−Φc

−Φc

h(r, z=0)

r

Jena University Wednesday 2006.11.01

(21)

15/28 Differentially rotating barotropes A. Odrzywołek VALUE OF ∆C

By substitution of our formula into basic equation we get:

∆C = Φc(r)

This holds only if ∆C = 0, Φc ≡ 0. Instead, we can use mean value:

∆C = −bΦc = −  4

3πR30

−1 Z

V0

Φc d3r

− bΦc < C(1) ≡ −Φc(R0)

Jena University Wednesday 2006.11.01

(22)

16/28 Differentially rotating barotropes A. Odrzywołek

∆C FROM VIRIAL THEOREM

0 0.5 1 1.5

0.1 0.2 0.3 0.4

-0.5

D C Z

∆C = −Φc(R0) (◦)

∆C = d−Φc (×)

Z =

2 Ek − |Eg| + 3 Z

p dV

|Eg|

Jena University Wednesday 2006.11.01

(23)

17/28 Differentially rotating barotropes A. Odrzywołek NEGATIVE DENSITY (ENTHALPY)

1 2 3 4 5 6 7

-1.0 -0.5 0.0 0.5

1.0 To compute structure of

rotating barotrope we need to know unphysi- cal part of non-rotating solution with ρ < 0!

. . . + wn

in Lane-Emden equation replaced by ”odd-like” or

”even-like” term:

. . .+|w|n or . . .+sign(w)|w|n

Jena University Wednesday 2006.11.01

(24)

18/28 Differentially rotating barotropes A. Odrzywołek EXAMPLE: POLYTROPIC EOS

Enthalpy is:

h(ρ) = Kγ

γ − 1ργ−1 Zero-order – n-th Lane-Emden function wn:

ρ0 = ρc(wn)n Approximate formula:

ρ1 =



ρ1/nc wn − 1

nKγ(Φc + ∆C)

n

Jena University Wednesday 2006.11.01

(25)

19/28 Differentially rotating barotropes A. Odrzywołek

Properties of the enthalpy distributions for n = 3/2 polytropic sequence with v-const rotation law. Parameters of rotation are: upper row, from left: differentiability A = 0.02R0; central angular velocity: Ω0 = 1, 3, 5, 7; lower row:

differentiability A = 0.2R0; central angular velocity: Ω0 = 0.5, 0.75, 1.0, 1.25.

Jena University Wednesday 2006.11.01

(26)

20/28 Differentially rotating barotropes A. Odrzywołek

A=0.02

0 = 75 Ω0 = 150 Ω0 = 200 Ω0 = 250 A=0.2

0 = 0.5 Ω0 = 1.0 Ω0 = 1.5 Ω0 = 2.0 A=2

0 = 0.01 Ω0 = 0.02 Ω0 = 0.03 Ω0 = 0.035

Jena University Wednesday 2006.11.01

(27)

21/28 Differentially rotating barotropes A. Odrzywołek EXAMPLE: ELEMENTARY FUNCTIONS

For n = 1, Ω(r) = Ω0/(1 + r2/A2) and ∆C = Φc(R0 = π) we get:

ρ1(r, z) = sin √

r2 + z2

√r2 + z2 + 1 2

20A2r2 1 + r2

A2

− 1 2

20A2π2 1 + π2

A2

Not very accurate, but we have purely analytical formula for differentially rotating barotrope!

(28)

21/28 Differentially rotating barotropes A. Odrzywołek EXAMPLE: ELEMENTARY FUNCTIONS

For n = 1, Ω(r) = Ω0/(1 + r2/A2) and ∆C = Φc(R0 = π) we get:

ρ1(r, z) = sin √

r2 + z2

√r2 + z2 + 1 2

20A2r2 1 + r2

A2

− 1 2

20A2π2 1 + π2

A2

Not very accurate, but we have purely analytical formula for differentially rotating barotrope!

Jena University Wednesday 2006.11.01

(29)

22/28 Differentially rotating barotropes A. Odrzywołek OFF-CENTER DENSITY (ENTHALPY) MAXIMUM

Near r = 0 we have:

wn(x) ' 1 − 1

6 x2 + n

120 x4 + . . . , Φc ' −1

220 r2 + . . . enthalpy for z = 0 is approximately:

h1(r) = hc +



20 4

3πGρc



r2 + . . .

If Ω20 > 43πGρc to ρc < ρmax !

In Carbon-Oxygen white dwarfs, ignition density ρc ' 2 · 109 gives Ω0 ∼ 25 rad/s.

Heger & Langer 2000:

0(Fe) > 30 rad/s 0(He) ∼ 10−3 rad/s Off-center ignition of Ia supernova unlikely

Jena University Wednesday 2006.11.01

(30)

23/28 Differentially rotating barotropes A. Odrzywołek FIRST-ORDER APPROXIMATION

versuss NUMERICAL RESULTS

Example: polytrope with n = 3/2 and j-const rotation law defined by A = 0.2R0 and Ω0 = 1.5.

Solid line — numerical results of Eriguchi & Muller (1985).

Integral equation solved on finite grid.

× — analytical formula with

∆C = −bΦc = −  4

3πR30

−1 Z

V0

Φc d3r

◦ — ∆C choosen to satisfy virial theorem

Jena University Wednesday 2006.11.01

(31)

24/28 Differentially rotating barotropes A. Odrzywołek AXIS RATIO TESTS

0.0 0.1 0.2 0.3 0.4 0.5

0 1 2 3 4 5 6 7 8 9 10

Jena University Wednesday 2006.11.01

(32)

25/28 Differentially rotating barotropes A. Odrzywołek

0 2 4 6 8 10 12

0 1 2 3 4 5 6 7 8 9 10

Jena University Wednesday 2006.11.01

(33)

26/28 Differentially rotating barotropes A. Odrzywołek

TOTAL ENERGY TESTS

Etot = (Ek + Eg + U )/E0

0 2 4 6 8 10 12

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

Jena University Wednesday 2006.11.01

(34)

27/28 Differentially rotating barotropes A. Odrzywołek DIMENSIONLESS ANGULAR MOMENTUM

j2 = 1 4πG

J2

M10/3 ρ1/3max

0 2 4 6 8 10

0.0 0.1 0.2 0.3 0.4 0.5

Jena University Wednesday 2006.11.01

(35)

28/28 Differentially rotating barotropes A. Odrzywołek POSSIBLE APPLICATIONS & EXTENSIONS

1. Second order approximation ≡ New numerical scheme 2. Initial guess for numerical algorithms

3. Fitting formula for numerically obtained enthalpy

4. Semi-analytical sequences with constant mass and/or angular momentum

5. Educational/ lecture tool OPEN QUESTIONS:

1. Analytial formula for ∆C (∼ Ω2.180 from V.T. numerically)

2. Unique analytical continuation beyond ρ = 0 for non-rotating component

Jena University Wednesday 2006.11.01

(36)

29/28 Differentially rotating barotropes A. Odrzywołek END

Jena University Wednesday 2006.11.01

(37)

30/28 Differentially rotating barotropes A. Odrzywołek THE j-CONST ANGULAR VELOCITY PROFILE

Ω(r) = Ω0

1 + (r/A)2. Φc(r) = −1

2

20 r2

1 + (r/A)2. The name j-const reflects the behaviour for A → 0:

Ω(r) = A20

A2 + r2 ∼ A20 r2 .

Specific angular momentum is defined as j = ρ Ω(r) r2. Therefore Ω(r) behaves as for rotating body with j = const.

If A → ∞ then Ω(r) → Ω0 it corresponds to the uniform rotation.

Jena University Wednesday 2006.11.01

(38)

31/28 Differentially rotating barotropes A. Odrzywołek

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Jena University Wednesday 2006.11.01

(39)

32/28 Differentially rotating barotropes A. Odrzywołek

0.0 0.2 0.4 0.6 0.8 1.0

10-5 10-4 10-3 10-2 10-1 100

Jena University Wednesday 2006.11.01

(40)

33/28 Differentially rotating barotropes A. Odrzywołek THE v-CONST ROTATION LAW

Ω(r) = Ω0

1 + r/A. Φc(r) = −Ω20 A2

 1

1 + A/r − ln(1 + r/A)

 .

Similarly to the case described in the previous subsection, the name v-const reflects the behaviour for A → 0:

Ω(r) = AΩ0

A + r ∼ Ω0 r .

Accordingly, because of the relation v = Ω(r) r between angular and linear velocity, Ω(r) behaves as for matter rotating with constant linear velocity v.

Again, if A → ∞ then Ω(r) → Ω0 = const.

Jena University Wednesday 2006.11.01

(41)

34/28 Differentially rotating barotropes A. Odrzywołek

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Jena University Wednesday 2006.11.01

(42)

35/28 Differentially rotating barotropes A. Odrzywołek

0.0 0.2 0.4 0.6 0.8 1.0

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Jena University Wednesday 2006.11.01

(43)

36/28 Differentially rotating barotropes A. Odrzywołek GRAVITATIONAL POTENTIAL INSIDE

ELLIPSOID

Φg(x, y, z) = π G ρ (a2x − x2) Ax + (ay2 − y2) Ay + (a2z − z2) Az

Ai = axayaz

Z

0

du

(a2i + u)(a2x + u)(a2y + u)(a2z + u)

Φc(x, y, z) = 1

2Ω2 x2 + y2 Φg + Φc = C = const −→ ellipsoid equation.

Jena University Wednesday 2006.11.01

(44)

37/28 Differentially rotating barotropes A. Odrzywołek SYSTEM OF ALGEBRAIC EQUATIONS

(1) aCe2

x = π G ρ Ax122 (2) aCe2

y = π G ρ Ay122 (3) aCe2

z = π G ρ Az

(4) eC = π G ρ a2xAx + ay2Ay + a2zAz − C (5) V = 43 π axayaz

Solutions of this system (ax, ay, az, C, eC) is a function of parameters (V, ρ, Ω).

Let us denote: ax/az ≡ ε and χ = 2πGρ2

Jena University Wednesday 2006.11.01

(45)

38/28 Differentially rotating barotropes A. Odrzywołek MACLAURIN SPHEROID: THE SHAPE

χ = ε(1 + 2 ε2) arccos ε − 3ε2

1 − ε2 (1 − ε2)3/2

• Dla EEkg = 0 −→ ball

• Dla 0 < EEkg < 0.5 −→ Maclaurin sferoid

• Dla EEkg = 0.5 −→ infinite disk at rest Virial theorem:

Ek

Eg = 1 2 −

Z

p d3r/Eg −→ 0 < Ek

Eg < 1 2

Jena University Wednesday 2006.11.01

(46)

39/28 Differentially rotating barotropes A. Odrzywołek JACOBI ELLIPSOID

For Ek/Eg > 0.1375 (χ > 0.187) non-axisymetric solu- tion exist! (C. Jacobi, 1834)

• For EEkg ≤ 0.1375 −→ Maclaurin sferoid

• For 0.1375 < EEkg < 0.5 −→ Jacobi ellipsoid (triaxial)

• For EEkg = 0.5 −→ infinite ,,rod” at rest

For exactly the same M & J Jacobi ellipsoid is ,,ground state”:

Ek + Eg=min

Jena University Wednesday 2006.11.01

(47)

40/28 Differentially rotating barotropes A. Odrzywołek Maclaurin Sferoid Jacobi Ellipsoid

E

k

E

g

= 0.23

Jena University Wednesday 2006.11.01

(48)

41/28 Differentially rotating barotropes A. Odrzywołek STABILITY

• Ek/Eg < 0.1375 −→ Maclaurin spheroid is stable

• Ek/Eg = 0.1375 −→ Maclaurin spheroid ≡ Jacobi Ellipsoid

• 0.1375 < Ek/Eg < 0.27 −→ Maclaurin spheroid is secularly unstable

• Ek/Eg > 0.27 −→ Maclaurin s. is dynamically unstable

• 0.1375 < Ek/Eg < 0.2328 −→ Jacobi ellipsoid. is stable

• Ek/Eg > 0.2328 −→ Jacobi e. is dynamically unstable

No stable configurations — no need for precise description of structure beyond 0.27 (or 0.2382).

Jena University Wednesday 2006.11.01

(49)

42/28 Differentially rotating barotropes A. Odrzywołek ROCHE MODEL

Central mass M + envelope ρ → 0.

Equipotential surface:

√GM

r2 + z2 + 1

2Ω2r2 = const Critical surface:

GM

Re2 = Ω2Re, Re =  GM Ω2

1/3

Jena University Wednesday 2006.11.01

(50)

43/28 Differentially rotating barotropes A. Odrzywołek GENERALIZED JEANS MODEL

Maclaurin Sferoid with mass M and volume V1 + maseless envelope ρ → 0 and volume V2.

¯

ρ = M

V1 + V2, ρM = M V1 χR = Ω2

2πG ¯ρ, χM = Ω2 2πGρM χR = 0.36, χM = 0.187 ρM/ρ = χ¯ RM ' 2 co daje n ' 0.6 [0.83, 0.808]

Jena University Wednesday 2006.11.01

(51)

44/28 Differentially rotating barotropes A. Odrzywołek GENERAL RELATIVITY & ROTATING BAROTROPES

ds2 = (eν)2 dt2 − (eµ)2 (dr2 + r22) − (eψ)2 (ω dt − dφ)2 gdzie ν, µ, ψ, ω to funkcje r i θ.

4-velocity: uα = e−ν

1−v2 1, 0, 0, Ω = e−ν

1−v2 tα + Ω φα, v ≡ |v| = eψ−ν (Ω − ω).

EOS: p = p(ε); entalpia: ∇h = ∇p/(ε + p)

∇h + ∇ν + ∇ ln p

1 − v2 + v2

1 − v2 ∇Ω/(Ω − ω) = 0

Jena University Wednesday 2006.11.01

Cytaty

Powiązane dokumenty

dził ze zgiętemi trochę kolanami, wprawdzie w pasie, owinąwszy się, jak prześcieradłem, zamiast na guziki zapiął płótno szpilkami, trzymało się to jednak,

На дружні представлена держав відповіла Греция, що грецке гіравительсво знає добре, що робить і не вагає ся взяти на себе відвічаль- ности за

Dla niej chorobą śmiertelną i oraz śmiercią jest grzech, z którego powstanie jest ożywieniem cudownem, a ludzkim sposobem dokonać się nie może, lecz tylko

Największy czas, abyśmy zrozumieli swoje własne korzyści, abyśmy się pozbyli bierności i zdobyli się na wspólny wysiłek celem zorganizowania zbiornicy jaj,

Fragment panoramy Lublina, lata 30., Bonifraterska 1/ A fragment of panorama of Lublin in the 1930s, Bonifraterska 1,... Bonifraterska

Sala-Martin (Columbia University) (WEF). To compare the competitiveness of countries with different levels of development, the index integrates the concept of stages of

(b) niekontrolowana aktywacja proliferacji komórek (c) działanie glikokortykoidów (apoptoza tymocytów, tymocyty = prekursorowe komórki obwodowych limfocytów T.

[r]