• Nie Znaleziono Wyników

Second-order oscillatory forces on a body in waves

N/A
N/A
Protected

Academic year: 2021

Share "Second-order oscillatory forces on a body in waves"

Copied!
7
0
0

Pełen tekst

(1)

AppUed Ocean Research 14 (1992) 325-331

econd-order oseiltetory forces on a body in waves

M. Mclver

Department of Mathematical Sciences, Loughborough University of Teclmoiogy, Loughborough, Leicestershire, LEll 3TU, UK (Received 10 June 1991; accepted 10 January 1992)

When a small amplitude, water-wave train is incident upon a fixed body, a second-order analysis predicts that the body experiences a steady force and a force at twice the frequency o f the incident wave. The double-frequency force is comprised of integrals of products o f linear quantities over the surface of the body and the mean vi^aterline and a term due to the second-order potential. A n application of Green's theorem to the first-order potential and its horizontal derivative shows that the integral of the first order terms over the body is related in a simple way to the waterline integral and the far-field representation of the linear, diffraction potential. A minor modification o f the analysis yields the far-field formulae for the drift force.

1 I N T R O D U C T I O N

T h e i m p o r t a n c e o f i n c l u d i n g n o n l i n e a r effects w h e n c a l c u l a t i n g the wave l o a d i n g o n o f f s h o r e structures is w e l l established. T h e r e are m a n y effects w h i c h c a n n o t be p r e d i c t e d b y linear t h e o r y a n d yet have p r o f o u n d consequences f o r the m o t i o n o f a b o d y . F o r example, M a r u o ' predicted t h a t a floating b o d y is subject t o wave d r i f t i n g , and N e w m a n ^ showed t h a t the i n t e r a c t i o n between wave trains o f d i f f e r e n t frequencies produces forces o n a b o d y at the s u m a n d difference frequencies w h i c h , i n c e r t a i n circumstances, can lead to resonant oscillations o f the b o d y . IMore recently, N e w m a n ^ d e m o n s t r a t e d t h a t the v e r t i c a l f o r c e o n a b o d y w h i c h extends a large distance b e l o w the water surface m a y be d o m i n a t e d b y a c o m p o n e n t a c t i n g at twice the f r e q u e n c y o f the i n c i d e n t wave. F u l l y n o n l i n e a r p r e d i c t i o n s o f the wave l o a d i n g o n a b o d y r e m a i n scarce (see, e.g., B r e v i g et alf"), b u t considerable e f f o r t has been expended i n e x t e n d i n g linear t h e o r y t o second order. A l t h o u g h this a p p r o a c h is l i m i t e d t o small a m p l i t u d e waves a n d m o t i o n s , each o f the effects described above is success-f u l l y predicted b y a second-order analysis. I n p a r t i c u l a r , secondorder t h e o r y predicts t h a t a b o d y i n a m o n o -c h r o m a t i -c wave t r a i n experien-ces b o t h a steady f o r -c e a n d a f o r c e at twice the f r e q u e n c y o f the i n c i d e n t wave.

T h e c a l c u l a t i o n o f the steady f o r c e requires k n o w l -edge o n l y o f the first-order p o t e n t i a l a n d the f o r c e is m o s t d i r e c t l y expressed i n terms o f integrals o f p r o d u c t s o f first-order q u a n t i t i e s over the m e a n w e t t e d surface o f

Applied Ocean Research 0141-1187/93/506.00 © 1993 Elsevier Science Publishers L t d .

the b o d y a n d the water line. T h i s a p p r o a c h was used by Ogilvie^ to calculate the mean, v e r t i c a l f o r c e o n a submerged, c i r c u l a r c y l i n d e r . H o w e v e r , M a r u o ^ s h o w e d t h a t the steady, h o r i z o n t a l force o n a b o d y (the d r i f t f o r c e ) m a y be w r i t t e n entirely i n terms o f the f a r - f i e l d ampHtude o f the firstorder d i f f r a c t e d wave. N u m e r i -cally, this has the advantage t h a t i t is n o t necessary t o calculate the g r a d i e n t o f the first-order p o t e n t i a l over the b o d y surface, s o m e t h i n g w h i c h is r e q u i r e d i n the direct a p p r o a c h .

T h e c a l c u l a t i o n o f the d o u b l e - f r e q u e n c y f o r c e is m u c h m o r e c o m p l i c a t e d because i t depends i n p a r t o n the second-order p o t e n t i a l . E v e n the specification o f the correct r a d i a t i o n c o n d i t i o n w h i c h this p o t e n t i a l satisfies has caused m u c h c o n t r o v e r s y a m o n g s t a u t h o r s . H o w -ever, i t is n o w w i d e l y accepted t h a t the m o s t complete d e s c r i p t i o n o f the second-order w a v e field is t h a t given by M o U n . ^ B y d i v i d i n g the second-order p o t e n t i a l i n t o a p a r t w h i c h is l o c k e d t o the first-order system a n d a p a r t w h i c h satisfies the homogeneous f r e e surface c o n d i t i o n , he was able t o a p p l y suitable r a d i a t i o n c o n d i t i o n s to each c o m p o n e n t . These c o n d i t i o n s have been v e r i f i e d b y W a n g , ' w h o l o o k e d at the l o n g - t i m e l i m i t o f the i n i t i a l value p r o b l e m . Despite this agreement, the actual c a l c u l a t i o n o f the f o r c e due t o the second-order p o t e n t i a l remains a n o n t r i v i a l task. B y i n t r o d u c i n g a fictitious, d o u b l e f r e q u e n c y r a d i a t i o n p o t e n t i a l , M o h n ^ and L i g h t h i l l ^ i n d e p e n d e n t l y showed t h a t t h i s f o r c e c o u l d be expressed i n terms o f first-order q u a n t i t i e s . H o w e v e r , the c a l c u l a t i o n requires an i n t e g r a l o f p r o d u c t s o f first-order quantities over the entire f r e e surface, w h i c h is n u m e r i c a l l y t i m e c o n s u m i n g . T h e m o r e direct a p p r o a c h o f finding the second-order p o t e n t i a l

(2)

326 M. Mclver

was u n d e r t a k e n i n t w o dimensions b y V a d a ' ' a n d i n three dimensions by ICim and Y u e / ° but the resulting calcu-lations still r e q u i r e a significant c o m p u t a t i o n a l e f f o r t .

C o n t r i b u t i o n s t o the d o u b l e - f r e q u e n c y f o r c e also arise f r o m the q u a d r a t i c t e r m i n B e r n o u l l i ' s e q u a t i o n a n d f r o m the f a c t t h a t the w e t t e d surface o f the b o d y can change d u r i n g a wave p e r i o d . These c o n t r i b u t i o n s m a y be w r i t t e n i n terms o f integrals o f p r o d u c t s o f first-order quantities over the m e a n w e t t e d surface o f the b o d y a n d the w a t e r Hne. H o w e v e r , the purpose o f this w o r k is to show t h a t this p a r t o f the f o r c e m a y a l t e r n a t i v e l y be expressed i n terms o f the f a r field a m p l i t u d e o f the Hnear, scattered wave, i n a d d i t i o n to a water-line i n t e g r a l . T h e r e s u l t i n g f o r m u l a e are s i m i l a r to those d e r i v e d b y M a r u o ' f o r the d r i f t f o r c e a n d a simple m o d i f i c a t i o n o f the m e t h o d used here p r o v i d e s an alternative d e r i v a t i o n o f his results.

T h e f a r - f i e l d f o r m u l a e f o r the h o r i z o n t a l c o m p o n e n t s o f the d o u b l e - f r e q u e n c y f o r c e are o b t a i n e d b y a p p l y i n g Green's t h e o r e m t o the linear, d i f f r a c t i o n p o t e n t i a l a n d its h o r i z o n t a l derivative. M a n y other i n t e g r a l identides i n h y d r o d y n a m i c s have been derived using the s i m i l a r a p p r o a c h o f a p p l y i n g Green's theorem t o t w o p o t e n -tials, a n d a review o f the existing identities is given by N e w m a n . " F u l l details o f the d e r i v a t i o n o f t h e f o r m u l a f o r a t w o - d i m e n s i o n a l b o d y are presented i n the next secdon. The a p p r o p r i a t e m o d i f i c a t i o n s f o r a three-d i m e n s i o n a l b o three-d y are given i n section 3, a n three-d i n the final section, a p p l i c a d o n s t o specific b o d y shapes are given.

2 T W O - D I M E N S I O N A L A N A L Y S I S

A fixed, t w o - d i m e n s i o n a l b o d y is either p a r t i a l l y or t o t a l l y immersed i n an i n f i n i t e l y deep fluid, as i l l u s t r a t e d i n F i g . 1. F o r convenience, i t is assumed t h a t i f the b o d y intersects the u n d i s t u r b e d free surface then i t does so at r i g h t angles. Rectangular Cartesian coordinates x a n d z are chosen so that the x-axis p o i n t s a l o n g the free surface a n d the z-axis p o i n t s v e r t i c a l l y u p w a r d s . T h e line

L

z = 0 coincides w i t h the rest p o s i t i o n o f the free surface. T h e fluid is assumed to be i n v i s c i d a n d incompressible a n d the m o t i o n is i r r o t a t i o n a l . T h u s , the flow is described b y a velocity p o t e n t i a l , w h i c h satisfles

V ' $ = 0 (1)

i n the fluid. T h e wave steepness e is assumed t o be smaU a n d so the v e l o c i t y p o t e n t i a l , $ , a n d wave elevation, C, m a y be expanded as

a n d

(2)

(3) T h e equations and b o u n d a r y c o n d i t i o n s g o v e r n i n g the first-order p o t e n t i a l $ i are a v a ü a b l e i n m a n y s t a n d a r d texts (e.g. M e i ' ^ ) . F o r convenience, these equations are summarised below. T h u s , e $ i is w r i t t e n as

= Re -\gA (4)

where A is the a m p l i t u d e o f the first-order i n c i d e n t wave, LÜ is its f r e q u e n c y and g is the acceleration due t o g r a v i t y . T h e time independent p o t e n t i a l satisfies eqn (1) a n d the free surface c o n d i t i o n

/C^i - ^ := 0 o n z = 0

dz (5)

where

K=^''/g (6) There is n o flow t h r o u g h the surface o f the b o d y a n d so

d4>i/d>i = 0 o n (7) where is the instantaneous wetted surface o f the b o d y

a n d d/dn is a derivative i n the d i r e c t i o n o f the i n w a r d n o r m a l to S^. T h e fluid is a t rest at large depths, thus

V 0 , 0 as z ^ - o o

(8)

I n a d d i t i o n , i f the incident wave is t r a v e f l i n g i n the p o s i t i v e X d i r e c t i o n , (pi satisfies the f a r - f i e l d c o n d i t i o n

i ( x , z ) (e iKx Re-'^-^l e^^ iKx+Kz as X as X -oo ( 9 )

Fig. 1. Definition sketch.

where R a n d T are the first-order r e f l e c t i o n and transmission coefficients respectively.

N u m e r i c a l procedures f o r finding (p^ a n d the associated first-order forces o n a b o d y are w e l l estabhshed a n d described i n M e i . ' ^ T h e second-order f o r c e m a y be spHt i n t o a steady p a r t a n d a p a r t a c t i n g at the f r e q u e n c y 2w. T h e steady force is d e t e r m i n e d solely f r o m (f>i whereas the d o u b l e - f r e q u e n c y f o r c e depends o n b o t h 01 a n d the second-order p o t e n t i a l $ 2 . B y i n t e g r a t i n g the pressure over the w e t t e d surface o f the b o d y a n d e x p a n d i n g the r e s u l t i n g i n t e g r a l t o O(e^), i t m a y be s h o w n t h a t the c o n t r i b u t i o n t o the second-order

(3)

Second-order oscillatory forces on a body in waves 321

h o r i z o n t a l f o r c e f r o m the first-order p o t e n t i a l is given b y T h e f a r - f i e l d b e h a v i o u r o f ip is given b y e^F^l\ where .§,2 P 2g [V^^fn^dS {a,Q) FJ. + Re [ƒ; 2.V(1) „-2it^'l e J (10) ( T h i s is the t w o - d i m e n s i o n a l analogue o f the three-d i m e n s i o n a l f o r m u l a o b t a i n e three-d by M e i ' ^ ( p . 662, eqn 9.34b).) Here, is the m e a n w e t t e d surface o f t h e b o d y ,

is the x c o m p o n e n t o f the u n i t i n w a r d n o r m a l to a n d the b o d y is assumed t o intersect the u n d i s t u r b e d free surface at r i g h t angles, at the p o i n t s ( - a , 0) a n d [a, 0 ) . S u b s t i t u t i o n o f eqn (4) i n t o (10) gives, a f t e r some m a n i p u l a t i o n ,

pgA^ AK ( V 0 , ) ' " v d 5 + - [ < / . ! ( - « , 0 ) - < / . ? ( « , 0)] (11) A representation f o r the i n t e g r a l i n eqn (11) i n terms o f the f a r - f i e l d f o r m o f and its value at the intersection p o i n t s is derived below.

I t is convenient t o i n t r o d u c e the f u n c t i o n s

^ = d4>i/dx (12) a n d

X = - d c P y / d z (13) B o t h f u n c t i o n s satisfy Laplace's e q u a t i o n i n the fiuid

a n d , m o r e o v e r , x is the h a r m o n i c c o n j u g a t e t o ip. C l e a r l y , ip decays w i t h d e p t h and, u n d e r the a s s u m p t i o n t h a t the tangendal derivatives o f tpi a n d d^\/dz are c o n t i n u o u s o n the b o u n d a r y z = 0, ijj satisfies the free surface c o n d i t i o n , eqn ( 5 ) . I f the b o d y intersects the free surface, care needs to be taken t o d e t e r m i n e the b e h a v i o u r o f •0 near the intersection p o i n t s . Wigley''* d e r i v e d expressions f o r the a s y m p t o t i c expansion o f a h a r m o n i c f u n c t i o n near a corner i n t w o dimensions. T h e precise b e h a v i o u r o f the f u n c t i o n depends o n the b o u n d a r y c o n d i d o n s t o be satisfied o n the Hnes f o r m i n g the corner a n d the v a l u e o f the i n c l u d e d angle, w h i c h is here assumed to be 7r/2. T h e b o u n d a r y value p r o b l e m f o r (pi near one o f the intersection p o i n t s , say t h a t at

(a, 0 ) , is a p a r t i c u l a r example o f the b o u n d a r y value p r o b l e m I I I described b y Wigley.''* H e showed t h a t as cpi is b o u n d e d at the corner, i t has an a s y m p t o t i c expansion there w h i c h is a p o l y n o m i a l i n ( Z , Z , Z ^ In Z , Z ^ I n Z ) where Z is the c o m p l e x variable x — a - f jz a n d the o v e r b a r denotes c o m p l e x conjugate. F u r t h e r m o r e , expansions f o r the derivatives o f <pi m a y be o b t a i n e d b y d i f f e r e n t i a t i n g f o r m a l l y . T h u s , the first derivatives o f (pi are b o u n d e d at the corner, b u t there is the p o s s i b ü i t y o f a l o g a r i t h m i c s i n g u l a r i t y i n the second derivatives o f (pi, t h e r e f o r e i n the first derivatives o f -0, at this p o i n t .

• i i i : ( e ' ^ - ^ ' - R e - ' ^ - ^ ) e ^ ^ i i s : T e ' ^ ^ + ^ ip{x,z) as X —> —oo as X —> oo (14) A p p l i c a t i o n o f Green's t h e o r e m t o the t w o h a r m o n i c f u n c t i o n s (pi and ip, a r o u n d the c o n t o u r C i ü u s t r a t e d i n F i g . 1, gives

dn dn (15)

where d/dn is the derivative i n the d i r e c t i o n o f the o u t w a r d n o r m a l t o the fluid. T h e possible singularities i n dip/dn at the intersection p o i n t s o f the b o d y a n d the f r e e surface are n o t s u f f i c i e n t l y s t r o n g t o p r o d u c e c o n t r i -b u t i o n s t o the i n t e g r a l f r o m these p o i n t s . T h u s , as -b o t h (pi and Ip satisfy eqn ( 5 ) , c o n t r i b u t i o n s t o the i n t e g r a l arise o n l y f r o m the b o d y surface a n d the closing lines as X —> ± o o . A f t e r some m a n i p u l a t i o n , using eqns ( 7 ) - ( 9 ) a n d (14), the i n t e g r a l i n eqn (15) m a y be r e w r i t t e n as

dip

2KR=0 ; i 6 )

o n (17)

B y d e f i n i t i o n ,

dip dip dip dn dx dz

where n^ a n d n^ ate the x a n d z c o m p o n e n t s respectively o f the u n i t i n w a r d n o r m a l t o the b o d y . T h e u n i t vector p o i n t i n g i n the a n t i c l o c k w i s e , t a n g e n t i a l d i r e c t i o n to the b o d y is given b y {n^, n f ) and so, using the C a u c h y -R i e m a n n equations,

dipldn = -dxlds o n (18) where d/ds is the a n t i c l o c k w i s e , t a n g e n t i a l derivative.

S u b s t i t u t i o n o f e q n (18) i n t o eqn (16), i n t e g r a t i o n b y parts a n d use o f eqn (5) gives

K

d(p\ d^i

s„ dz ds ÓS=^]{a,0) a , 0 ) + 27? (19)

B y expressing drpi/dn a n d d(p\/ds o n S-g i n terms o f the X a n d z derivatives of cpi a n d u s i n g eqn ( 7 ) , i t is possible t o s h o w t h a t d(px/dz — -n^d<px/ds o n 5'b T h u s , eqn (19) m a y be r e w r i t t e n as (20)

i f / ^ ^ V

K ] s X d s ) "-^ d 5 = - [ 2 7 ? + 0 ? ( ö , O ) - 0 ? ( - « , O ) ] (21) ( T h i s expression m a y a l t e r n a t i v e l y be d e r i v e d f r o m eqn (16) using the i n t e g r a l i d e n t i t y given b y B r a n d ' ^ (p. 220, eqn 4 ) . ) A s <p\ satisfies the b o d y b o u n d a r y c o n d i t i o n ( 7 ) , {y(p\Y = {d<p\/ds)^ o n a n d so s u b s t i t u t i n g eqn (21) i n t o eqn (11) gives

ML

pgA^ 1 \R+<p\{a,Q)-cp\{-aM (22)

(4)

3 2 8 M. Mclver

I f the b o d y is c o m p l e t e l y submerged, eqn ( 2 2 ) is replaced by

2.(1)

pgA^

R

2 ( 2 3 )

A s t r a i g h t f o r w a r d m o d i f i c a t i o n to the analysis yields a representation f o r /^^^ w h e n the fluid is n o t i n f i n i t e l y deep b u t has a d e p t h h. T h e details are o m i t t e d b u t the r e s u l t i n g expressions f o r ƒ ^J^-* are

pgA^

(sinh kh cosh kh + kh)R sinh kh cosh kh

+ </.?(«, 0 ) - , ^ ? ( - f l , 0 )

i f the b o d y intersects the free surface and

eYjl

_ (sinh kh cosh kh + kh)R

pgA^ 2 s i n h kh cosh kh

i f the b o d y is submerged, where

K=k t a n h kh

( 2 4 )

( 2 5 )

( 2 6 )

A f u r t h e r m o d i f i c a t i o n to the analysis whereby Green's t h e o r e m is a p p l i e d to t ^ i , the c o m p l e x c o n j u g a t e io (pi, a n d produces the f a r - f i e l d f o r m u l a e o b t a i n e d by M a r u o ^ f o r the h o r i z o n t a l d r i f t f o r c e .

3 T H R E E - D I M E N S I O N A L A N A L Y S I S

I n three dimensions, the first-order p o t e n t i a l (j)y{x,y,z) is w r i t t e n as

, JKx+Kz I /

( 2 7 )

where cp^ satisfies eqns ( 1 ) , ( 5 ) , ( 7 ) a n d ( 8 ) a n d

\-nKR

T h e p o l a r coordinates R a n d 9 are d e f i n e d b y

X = R cos 9 a n d y = R sin 9 a n d the K o c h i n f u n c t i o n H{9) describes the angular v a r i a t i o n o f the scattered

wave. T h e o s c i l l a t o r y , second order, h o r i z o n t a l f o r c e due to the first-order p o t e n t i a l is split i n t o c o m p o n e n t s i n the x and y d i r e c t i o n s , ƒ a n d / V / respectively, where 0 )

2.(1) pgA^a 1 ( V 0 , 2y

!>f;;,dr

( 2 9 ) where j = x o r y, a is a t y p i c a l d i m e n s i o n o f the b o d y a n d r is the m e a n w a t e r l i n e . F o l l o w i n g the m e t h o d o f the p r e v i o u s section, an expression f o r /^J^' is o b t a i n e d by a p p l y i n g Green's t h e o r e m t o 0 i a n d = d(p]/dx. T h e i n t e g r a l f o r m u l a ( 1 5 ) is o b t a i n e d , where C is n o w the surface consisting o f the u n d i s t u r b e d free surface, the m e a n w e t t e d surface o f the b o d y and c o n t r o l surfaces at large d e p t h a n d as 7? ^ oo. (The a s s u m p t i o n is m a d e t h a t the b e h a v i o u r o f Vtjj at the w a t e r l i n e is n o t

s u f f i c i e n t l y singular t o c o n t r i b u t e t o the i n t e g r a l . H o w e v e r , to the a u t h o r ' s k n o w l e d g e this has n o t been p r o v e d a n d there are no general results w h i c h determine the b e h a v i o u r o f a h a r m o n i c f u n c t i o n near a b o u n d a r y c o r n e r i n three dimensions.) B o t h cpi a n d ijj s a t i s f y the linearised, f r e e surface c o n d i t i o n and decay w i t h d e p t h a n d so c o n t r i b u t i o n s t o eqn ( 1 5 ) arise o n l y f r o m the b o d y surface a n d the surface as i? ^ oo. T h e m e t h o d o f s t a t i o n a r y phase is used t o evaluate the i n t e g r a l over the c o n t r o l surface at i n f i n i t y a n d , a f t e r some m a n i p u l a t i o n eqn ( 1 5 ) becomes h ^ d S = -4H{IT) ( 3 0 ) T h e i n t e g r a l i n eqn ( 3 0 ) m a y be r e w r i t t e n b y o b s e r v i n g t h a t V t / ) = V A ( 0 , d(t>x/dz, -dc^i/dy) = V A B say. T h u s , V A ((7iiB).ndS {V(pi/\B).ndS ( 3 1 )

T h e first i n t e g r a l on the r i g h t - h a n d side o f eqn ( 3 1 ) m a y be evaluated using Stokes' t h e o r e m , a n d direct substi-t u substi-t i o n o f 4&gsubsti-t;i a n d B i n substi-t o substi-the second i n substi-t e g r a l gives

an

-K bin^ d P - f ( V 0 i ) X - d 5 ( 3 2 )

where the free surface c o n d i t i o n (eqn ( 5 ) ) a n d the b o d y b o u n d a r y c o n d i t i o n (eqn ( 7 ) ) have been used. ( A s i n the p r e v i o u s section, eqn ( 3 2 ) m a y also be d e r i v e d f r o m eqn ( 3 0 ) b y u s i n g the i n t e g r a l i d e n t i t y given b y B r a n d ' ^ (p. 2 2 0 , eqn 4 ) . ) S u b s t i t u t i o n o f eqn ( 3 0 ) i n t o eqn ( 3 2 ) a n d t h e n i n t o eqn ( 3 1 ) gives 2Al) pgA^a 1 2a b\n^

dr -

Ka I f the b o d y is c o m p l e t e l y submerged, replaced by

ML

pgA^a Ka ( 3 3 ) eqn ( 3 3 ) is ( 3 4 )

T h e expression f o r the y c o m p o n e n t o f the f o r c e m a y be o b t a i n e d b y a p p l y i n g Green's t h e o r e m t o pi a n d

d(pi/dy. A s i m i l a r analysis yields

ML

pgA^a ]_ 2a b\nyAV f o r a surface-piercing b o d y a n d 2.(1) pgA^a

0

( 3 5 ) ( 3 6 )

f o r a submerged b o d y . I t is interesting t o observe t h a t the first-order p o t e n t i a l does n o t c o n t r i b u t e to the d o u b l e f r e q u e n c y f o r c e o n a submerged b o d y , i n the

(5)

Second-order oscUlatory forces on a body in waves 329

d i r e c t i o n p e r p e n d i c u l a r to the i n c i d e n t wave advance, irrespective o f any s y m m e t r y i n the b o d y shape.

E a c h o f the expressions m a y be m o d i f i e d t o a l l o w f o r the effect o f finite depth. The resulting f o r m u l a e are equiv-alent t o those i n eqns ( 3 3 ) - ( 3 6 ) w i t h H{-ïï)/Ka replaced by H{TX) (sinh Ich cosh Ich + Jdi)/{Ica sinh kh cosh Icli). A s i n the t w o - d i m e n s i o n a l case, the f a r - f i e l d f o r m u l a e f o r the h o r i z o n t a l d r i f t f o r c e derived b y M a r u o ' m a y be o b t a i n e d by a p p l y i n g Green's t h e o r e m to ip^ and d4>\/dx o r dpi/dy. F u r t h e r m o r e , the expression f o r the steady v e r d c a l m o m e n t o n a three-dimensional b o d y , derived by N e w m a n , ' ^ m a y be o b t a i n e d b y a p p l y i n g Green's t h e o r e m to cpi a n d xd(pi/dy -ydcpi/dx,

4 R E S U L T S A N D D I S C U S S I O N

E q u a t i o n s ( 2 2 ) - ( 2 5 ) a n d ( 3 3 ) - ( 3 6 ) are expressions f o r the h o r i z o n t a l c o m p o n e n t s o f the o s c i l l a t o r y , second-order f o r c e due to the f i r s t - o r d e r p o t e n t i a l w h i c h obviate the need to evaluate Vcpi o n the b o d y surface. N u m e r i c a l l y this is m o r e efficient, b u t the f o r m o f the expressions also a l l o w s deductions t o be m a d e m o r e easily a b o u t the force o n certain special bodies.

D e a n " first p r o v e d t h a t there is n o r e f l e c t i o n f r o m a submerged, c i r c u l a r c y l i n d e r at any frequency. F r o m eqn ( 2 3 ) , an i m m e d i a t e consequence is t h a t the first-order p o t e n t i a l does n o t c o n t r i b u t e t o the second-first-order, h o r i z o n t a l , o s c i f l a t o r y f o r c e . T h i s result was observed b y W u a n d E a t o c k T a y l o r ' ^ w h o integrated {Vcpifn^ over the surface o f the cyhnder d i r e c t l y . T h e y f o u n d , however, that there is a non-zero c o n t r i b u t i o n to the d o u b l e - f r e q u e n c y f o r c e f r o m the second-order p o t e n t i a l T h i s supports the observations m a d e b y K i m a n d Y u e a n d N e w m a n ^ t h a t i t is n o t , i n general, correct to assume t h a t the d o m i n a n t c o n t r i b u t i o n to the second-order o s c i l l a t o r y f o r c e arises f r o m the first-second-order p o t e n t i a l . One b o d y f o r w h i c h the firstorder c o n t r i -b u t i o n is d o m i n a n t , however, is a su-bmerged, h o r i z o n t a l plate. T h e second-order p o t e n t i a l is finite at the plate tips a n d so does n o t c o n t r i b u t e to the f o r c e b u t the first-order v e l o c i t y is i n f i n i t e there, resulting i n a non-zero h o r i z o n t a l f o r c e o n the plate, given b y eqn ( 2 3 ) . T h u s , the v a r i a t i o n o f this f o r c e m a y be derived i m m e d i a t e l y f r o m the graphs o f the r e f l e c t i o n coefiicient associated w i t h a plate, presented b y M c l v e r . I t is also reasonable t o suppose t h a t the first-order c o n t r i b u t i o n t o the f o r c e m a y be d o m i n a n t w h e n the v e r t i c a l extent o f the b o d y is m u c h less t h a n its w i d t h a n d large velocities occur near the ends o f the b o d y .

C a l c u l a t i o n s o f the f o r c e o n a semicircular c y l i n d e r i n the f r e e surface were made f r o m eqn (22), using the m u l t i p o l e f o r m u l a t i o n o f M a r t i n a n d D i x o n . I t was observed n u m e r i c a l l y t h a t 10 AR (37) at a l l frequencies a n d so eqn (22) m a y be r e w r i t t e n as

ML

pgA' 3R 2 (38)

f o r this b o d y . T h u s , n u m e r i c a l values o f this c o m p o n e n t o f the force at d i f f e r e n t frequencies m a y be o b t a i n e d i m m e d i a t e l y f r o m the table o f r e f l e c t i o n coefficients p r o v i d e d by M a r t i n a n d D i x o n . T h e results coincide w i t h the c o m p u t a t i o n s o f W u and E a t o c k T a y l o r ' ^ a n d o f Isaacson and Cheung,^' w h o integrated the pressure d i r e c t l y over the b o d y . T h e a u t h o r was, however, unable t o p r o v e the result i n eqn (38) and i t is c e r t a i n l y n o t t r u e f o r a general shaped b o d y because, as is d e m o n -strated b e l o w , i t f a i l s f o r the surface-piercing, v e r t i c a l b a r r i e r .

Ursell^^ derived a n e x p l i c i t expression f o r the first-order p o t e n t i a l associated w i t h the b a r r i e r , w h i c h is given b y JKx+Kz Re AKx+Kz Te [Kx+Kz C(A-,Z) + C{x, z) i f X < 0 i f A' > 0 where R -mf{bK) T: C Kx{bK)-nf{bK) KiibK)-mf (bK) Ki{bK)-iTxh{bK)] -k\x\ •^JijbK) 0 K^ + k^ X e [k cos /cz 4- K sin /cz] d/c (39) (40) (41) (42) T h e p a r a m e t e r b is the l e n g t h o f the b a r r i e r , Ji is a Bessel f u n c t i o n a n d f a n d Ki are m o d i f i e d Bessel f u n c t i o n s . S u b s t i t u t i o n o f eqn (39) i n t o eqn (22) gives

ML

3R 2 2i Ki{bK) - m f i b K ) ' k f j b k ) - f /c2 d/c (43) is n o t zero i n general eqn 6.566.5) a n d so T h e i n t e g r a l i n eqn (43) ( G r a d s h t e y n & Ryzhik,^^

^^fil/PS^^ evidentiy does n o t equal 3 i ? / 2 i n this case.

I n three dimensions, the first-order p o t e n t i a l associ-ated w i t h a v e r t i c a l , c i r c u l a r c y l i n d e r extending t h r o u g h o u t the d e p t h m a y be w r i t t e n d o w n e x p l i c i t l y (see, e.g., M e i , ' ^ p . 313), as cosh /c(z - f h) cosh kh 11=0 J„{lcR)

H'„{ka) HnikR) cos nO

where

(44)

(6)

330 M. Mclver

J„ is a Bessel f u n c t i o n , H„ is a H a n k e l f u n c t i o n o f the tirst k i n d a n d a is the radius o f the cylinder. T h e K o c h i n f u n c t i o n , H{9), is o b t a i n e d by e x a m i n i n g the large argument behaviour o f the H a n k e l f u n c t i o n . T h i s a n d the expression f o r 0 i a r o u n d the waterline are substituted i n t o the version o f eqn (33) m o d i f i e d to a l l o w f o r finite depth, t o give

Ml

8i -1)"

PgA^a nika)' H'„{ka)H'„^, {ka)

ka V sinh 2kh

f^e„{-iyj;xka)

h H'„{ka) (46) where the i n t e g r a t i o n i n eqn (33) has been p e r f o r m e d explicitly. C o m p u t a t i o n s o f this expression were made f o r several values o f a/h a n d a c o m p a r i s o n w i t h the predicdons o f ICim a n d Y u e ' " ( T a b l e 4) show exact agreement w i t h the n u m e r i c a l values calculated f r o m the f o r m u l a

M

2i pgA'-a 7r(/ca) ,1=0 " " ( - 1 ) " ;,{ka)H'„+y{ka) 2kh

+

« ( « + ! ) sinh 2kh {k 2kh sinh 2kh (47) f o r a cyhnder f o r w h i c h a/h = 1. T h i s latter f o r m u l a was o b t a i n e d by direct i n t e g r a d o n o f the pressure over the body. K i m a n d Y u e ' ° also calculated the c o n t r i b u d o n t o the second-order force f r o m the second-order p o t e n t i a l and, b y c o m p a r i n g the m a g n i t u d e o f the t w o c o n t r i -b u t i o n s f o r various wave frequencies, concluded that there is no range o f frequencies i n w h i c h the neglect o f the c o n t r i b u t i o n f r o m the second-order p o t e n t i a l c o u l d be j u s t i f i e d . Despite the n u m e r i c a l agreement o f the t w o series i n eqns (46) a n d (47), i t is n o t o b v i o u s h o w one series is t o be t r a n s f o r m e d i n t o the other a n a l y t i c a l l y . C o m p u t a t i o n a l l y , neither series offers any great advan-tage over the other, b u t this is p r i m a r i l y because the latter is o b t a i n e d by e v a l u a t i n g V ^ i j o n the cylinder analytically. T h i s w o u l d n o t be possible f o r a general shaped b o d y , i n w h i c h case the f a r - f i e l d f o r m u l a t i o n s h o u l d be n u m e r i c a l l y m o r e efficient.

5 C O N C L U S I O N

F o r m u l a e have been derived w h i c h relate the h o r i z o n t a l , oscillatory second-order f o r c e due t o the first-order p o t e n t i a l to the f a r - f i e l d a m p l i t u d e o f the linear, d i f f r a c t e d wave and the value o f the f i r s t - o r d e r p o t e n t i a i a r o u n d the waterhne. T h e resulting expressions e l i m i -nate the need t o evaluate the gradient o f the first-order p o t e n t i a l over the surface o f t h e b o d y a n d enable simple observations t o be made a b o u t the f o r c e o n certain

special bodies. A n e x a m i n a t i o n o f the f o r m u l a e f o r p a r t i c u l a r bodies shows that the first-order p o t e n t i a l does n o t , i n general, f o r m the d o m i n a n t c o n t r i b u t i o n t o the h o r i z o n t a l , double frequency f o r c e , a l t h o u g h an exception t o this is that the f o r c e o n a submerged, h o r i -z o n t a l plate is comprised entirely o f this c o n t r i b u t i o n .

A l t e r n a t i v e expressions f o r the v e r t i c a l d o u b l e f r e q u e n c y force o n a b o d y m a y also be o b t a i n e d , by a p p l y i n g Green's theorem to a n d dcjii/dz. H o w e v e r , the s i m p l i c i t y o f the expressions f o r the h o r i z o n t a l f o r c e is a consequence o f the f a c t that the h o r i z o n t a l d e r i v a t i v e o f the p o t e n t i a l satisfies the free surface c o n d i t i o n . This is n o t true o f the v e r t i c a l derivative o f the p o t e n t i a l a n d so the resulting f o r m u l a f o r the v e r t i c a l f o r c e involves an integral over the free surface, w h i c h provides no s i m p l i f i c a t i o n o f the o r i g i n a l expression. S i m i l a r l y , alternative expressions f o r the sum a n d difference frequency forces o n a b o d y i n b i c h r o m a t i c waves m a y be obtained, b y a p p l y i n g Green's t h e o r e m to the first-order p o t e n t i a l associated w i t h one wave a n d a d e r i v a t i v e o f the other first-order p o t e n t i a l . H o w e v e r , this also leads t o f o r m u l a e i n v o l v i n g integrals over the free surface as the t w o potentials satisfy d i f f e r e n t free surface b o u n d a r y c o n d i t i o n s . T h u s , a l t h o u g h the t h e o r y presented here can be extended t o p r o v i d e expressions f o r v e r t i c a l forces a n d sum a n d difference frequency forces, i t is expected that the p r a c t i c a l a p p l i c a t i o n o f the f o r m u l a e w i l l be l i m i t e d t o the c a l c u l a t i o n o f the d o u b l e f r e q u e n c y h o r i z o n t a l f o r c e .

R E F E R E N C E S

1. M a r u o , H . , The d n f t of a body floating i n waves. / Shin Res., 4 (1960) 1-10.

2. Newman, J.N., Second-order, slowly varying forces on vessels in irregular waves. Pwc. Int. Symp. on the Dynamics of Marine Veliicles and Structures in Waves University College, London, 1974, pp. 182-6.

3. Newman, J.N., Second-harmonic wave diffraction at large depths. J. Fluid Mech., 213 (1990) 59-70.

4. Brevig, P., Greenhow, M . & Vinje, T., Extreme wave forces on a submerged wave energy device. Appl. Ocean Res., 4 (1982) 219-25.

5. Ogilvie, T.F., First and second order forces on a cyhnder submerged under a free surface. / . Fluid Mech., 16 fl963) 451-72. ^ ' 6. M o h n , B., Second order diffraction loads upon

three-dimensional bodies. Appl. Ocean Res., 1(4) (1979) 197-202. 7. Wang, P.p., The radiation condition and numerical aspects of second order surface wave radiation and diffraction PhD thesis, 1987, Department o f Ocean Engineering Massachusetts Institute o f Technology, USA.

8. Lighthill, M.J., Waves and hydrodynamic loading. Proc 2nd Int. BOSS Conf, London, 1979, pp. 1-40.

9. Vada, T., A numerical solution of the second-order wave-diffraction problem for a submerged cyhnder of arbitrary shape. / . Fluid Mech., 174 (1987) 23-37

10. K i m , M . H . & Yue, D.K.P., The complete second-order diffraction solution for an axisymmetric body: Part I Monochromatic waves. / . Fluid Mech., 200 (1989) 235-64.

(7)

Second-order oscillatory forces on a body in waves 331

11. Newman, J.N., The interaction of stationary vessels with regular waves. Proc. 11th Symp. on Naval Hydrodynamics, Office of Naval Research, 1976, pp. 491-502.

12. M e i , C C , The Applied Dynamics of Ocean Surface Waves. Wiley-lnterscience, New Y o r k , 1983.

13. M e i , C C , Numerical methods i n water wave diffraction and radiation. Ann. Rev. Fluid Mech., 10 (1978) 393-416. 14. Wigley, N . M . , Asymptotic expansions at a corner of solutions of mixed boundary value problems. / . Math. Mech., 13(4) (1964) 549-76.

15. Brand, L . , Vector and Tensor Analysis. John Wiley & Sons, New Y o r k , 1947.

16. Newman, J.N., The drift force and moment on ships i n waves. / . Ship Res., 11 (1967) 51-9.

17. Dean, W.R., On the reflexion of surface waves by a submerged, circular cylinder. Proc. Camb. Phil. Soc, 44 (1948) 483-91.

18. W u , G.X. & Eatock Taylor, R., Second order diffraction forces on horizontal cyHnders. J. Hydrodynamics, 2 (1989) 55-65.

19. Mclver, M . , Diffraction of water waves by a moored, horizontal flat plate. / . Eng. Math. 19 (1985) 297¬ 319.

20. M a r t i n , P.A. & Dixon, A . G . , The scattering of regular surface waves by a fixed, half-immersed, circular cylinder. Appl. Ocean Res., 5(1) (1983) 13-23.

21. Isaacson, M . & Cheung, K . F . , Second order wave diffraction around two-dimensional bodies by time domain method. Appl. Ocean Res., 13(4) (1991) 175-86. 22. Ursell, P., The effect of a fixed, vertical barrier on surface

waves i n deep water. Proc. Camb. Phil. Soc, 43 (1947) 374-82.

23. Gradshteyn, I.S. & Ryzhik, I . M . , Tables of Integrals, Series and Products. Academic Press, New Y o r k , 1980.

Cytaty

Powiązane dokumenty

26.01.2016 A first-order logic mitigation framework for handling multi-morbid patients.. CKD, AFib and HTN. 26.01.2016 A first-order logic mitigation framework for handling

TK wskazał: „Wymóg efek- tywności kontroli rozstrzygnięć zapadłych w danej sprawie należy rozpatry- wać w perspektywie konstytucyjnych gwarancji prawa do sądu (art. Co prawda

I am honoured to invite you to read the first volume of „Annals of the Mu- seum of the Masovian Countryside in Sierpc.” In the course of creating this mag- azine, we were being

17 W pierwszej połowie lat dwudziestych funkcję przytułku dla dzieci pełniła też przez pewien czas Szkoła Pomocnicza (w czasach pruskich, a następnie jeszcze w roku

(8a) in which 1) and Ø' are defined by the same expression as (5) in which we replace (w, k) by (w1, ki) and (w2, k2), respectively. In order to keep the consistence, the components

Należy jed- nak podkreślić, że w europejskich systemach prawnych fundamentalna zasada dobra dziecka jest stawiana w centrum aksjologii prawa rodzinnego, podczas gdy

Niezależnie od nich, a także choć sam Jablonický twierdzi, że w niektórych kwestiach odnosi się krytycznie do ustaleń zawartych w tej książce, jest to jedna z

When the pre-theoretical notion that is to be formalized is that of logical consequence, incompleteness alone cannot serve as an argument to disqualify a system as a proper logic,