• Nie Znaleziono Wyników

An engineering study of bacterial kinetics and energetics

N/A
N/A
Protected

Academic year: 2021

Share "An engineering study of bacterial kinetics and energetics"

Copied!
140
0
0

Pełen tekst

(1)

A N ENGINEERING

STUDY OF BACTERIAL

KINETICS AND ENERGETICS

A . A . Esener

ár

o o

•o

(2)
(3)

A N ENGINEERING

STUDY OF BACTERIAL

KINETICS AND ENERGETICS

Proefschrift

ter verkrijging van de graad van doctor in de

technische wetenschappen

aan de Technische Hogeschool Delft,

op gezag van de rector magnificus

prof. ir. B.P.Th. Veltman,

voor een commissie aangewezen

door het college van dekanen te verdedigen op

donderdag 1 oktober te 14.00 uur

door

A l i A y d i n E s e n e r

Chemical Engineer B.Sc. M.Sc.

geboren te Ankara

(4)

Dit proefschrift is goedgekeurd door de promotoren

PROF. DR. IR. N.W.F. KOSSEN

PROF. IR. J.A. ROELS

On t h e f r o n t c o v e r d e v i a t i o n s between t h e u n s t r u c t u r e d model p r e d i c t i o n s and t h e e x p e r i m e n t a l r e s u l t s a r e shown f o r oxygen u p t a k e and c a r b o n d i o x i d e p r o d u c t i o n r a t e s d u r i n g f e d - b a t c h g r o w t h ( p a r t o f F i g . 3 o f C h a p t e r 4)

(5)
(6)

I n t h e c o m p l e t i o n o f t h i s t h e s i s I g r a t e f u l l y acknowledge:

P r o f e s s o r s K o s s e n and R o e l s f o r t h e i r e x c e p t i o n a l g u i d a n c e and encouragement as my s u p e r v i s o r s

Dr. I r . J.C. v a n S u i j d a m f o r many d i s c u s s i o n s and t r a n s l a t i n g the summary t o Dutch

I r . G.C. v a n E y b e r g e n f o r t r o u b l e s h o o t i n g i n many computer programs M e s s r s . C. Ras and G. v a n d e r S t e e n f o r c h e m i c a l a n a l y s i s o f samples M e s s r s . J . P h . B r o n k h o r s t , A.L. de G r a a f and B.J.T. K e r k d i j k f o r h e l p i n t h e h a n d l i n g and m a i n t e n a n c e o f t h e b i o r e a c t o r s and a u x i l i a r y equipment

M e s s r s . F. Bolmann and C. Warnaar f o r d r a w i n g s and p h o t o g r a p h s

My s t u d e n t s , J . Roozenburg, G.M. B o l and T. Veerman f o r t h e i r c o n t r i b u t i o n s t o A p p l i c a t i o n 3, C h a p t e r 5 and C h a p t e r 7, r e s p e c t i v e l y G i s t B r o c a d e s N.V. o f D e l f t f o r f i n a n c i a l l y s u p p o r t i n g me d u r i n g t h i s work K r a u s - U i t h o f Fonds f o r t h e i r f i n a n c i a l c o n t r i b u t i o n towards the p r i n t i n g c o s t s o f t h i s t h e s i s

(7)

T A B L E OF CONTENTS

CHAPTER 1 INTRODUCTION

CHAPTER

I A i m and scope

I I O r g a n i z a t i o n o f t h i s t h e s i s

ON THE THEORY AND APPLICATIONS OF UNSTRUCTURED GROWTH MODELS I Development o f m i c r o b i a l e n e r g e t i c s I I M a c r o s c o p i c methods i n t h e s t u d y o f e n e r g e t i c s I I I An i n t r o d u c t i o n t o t h e m o d e l l i n g o f m i c r o b i a l growth IV A s i m p l e u n s t r u c t u r e d model f o r m i c r o b i a l growth V D i s c u s s i o n o f u n s t r u c t u r e d models and e n e r g e t i c s w i t h r e f e r e n c e t o e x p e r i m e n t a l r e s u l t s V I A d i s c u s s i o n on t h e c o n c e p t o f m a i n t e n a n c e V I I N o m e n c l a t u r e and r e f e r e n c e s 5 7 9 10 13 21 22

CHAPTER 3 MATERIALS AND METHODS

I D e s c r i p t i o n o f t h e e x p e r i m e n t a l s y s t e m and

a n a l y t i c a l methods 25 I I Developed and used t o o l s and methods 27

I I I A p p l i c a t i o n o f t h e s t a t i s t i c a l t e c h n i q u e s i n t h e

s t u d y o f m i c r o b i a l k i n e t i c s and e n e r g e t i c s 32

IV N o m e n c l a t u r e and r e f e r e n c e s 39

CHAPTER 4

CHAPTER 5

FED-BATCH CULTURE ; MODELLING AND APPLICATIONS IN THE STUDY OF MICROBIAL ENERGETICS

I Summary 41 I I I n t r o d u c t i o n 41 I I I Model 42 IV D e t e r m i n a t i o n o f b i o k i n e t i c and e n e r g e t i c p a r a m e t e r s 44 V M a t e r i a l s and Methods 45 VI R e s u l t s and d i s c u s s i o n 46 V I I C o n c l u s i o n s 55 V I I I A p p e n d i x 56 I X N o m e n c l a t u r e and r e f e r e n c e s 57

GROWTH OF MONO AND MIXED CULTURES IN SALINE ENVIRONMENT

I A b s t r a c t 59 I I I n t r o d u c t i o n 59 I I I M a t e r i a l s and Methods 60 IV R e s u l t s 61 V D i s c u s s i o n 63 V I C o n c l u s i o n s 66 V I I R e f e r e n c e s 67

(8)

CHAPTER 6 THE INFLUENCE OF TEMPERATURE ON THE KINETICS AND ENERGETICS I I n t r o d u c t i o n 69 I I Model 69 I I I M a t e r i a l s and Methods 70 IV R e s u l t s and D i s c u s s i o n 71 V N o m e n c l a t u r e and r e f e r e n c e s 73 V I Addendum i n f l u e n c e o f t e m p e r a t u r e on ks 75 i n f l u e n c e o f t e m p e r a t u r e on e n e r g e t i c p a r a m e t e r s 75 consequences f o r e n g i n e e r i n g o p e r a t i o n s and d e s i g n 77 V I I R e f e r e n c e s 78

CHAPTER 7 A STRUCTURED MODEL FOR BACTERIAL GROWTH

I I n t r o d u c t i o n 79 I I T h e o r e t i c a l development o f t h e g e n e r a l s t r u c t u r e d model 80 I I I D e s c r i p t i o n o f t h e two c o m p a r t m e n t a l system 81 IV D e r i v a t i o n o f t h e b a l a n c e e q u a t i o n s 83 V E v a l u a t i o n o f t h e v a l i d i t y o f t h e model 84 V I D i s c u s s i o n 85 V I I N o m e n c l a t u r e and r e f e r e n c e s 88 CHAPTER 8 APPLICATIONS I Comments on t h e d e s c r i p t i o n o f m a i n t e n a n c e m e t a b o l i s m d u r i n g a n a e r o b i c growth w i t h p r o d u c t f o r m a t i o n 89 I I B i o e n e r g e t i c c o r r e l a t i o n o f COD t o BOD 95 I I I D e s c r i p t i o n o f m i c r o b i a l growth b e h a v i o u r d u r i n g the wash-out phase; d e t e r m i n a t i o n o f t h e maximum

s p e c i f i c growth r a t e 101 IV On t h e s t a t i s t i c a l a n a l y s i s o f b a t c h d a t a 109 V Carbon d i o x i d e h o l d - u p as a s o u r c e o f e r r o r i n b a t c h c u l t u r e c a l c u l a t i o n s 117 SUMMARY 121 SAMENVATTING 123 OZET 125

(9)

ERRATA

s h o u l d r e a d

and n o t

P . p -P . P . P . P . P . P . P .

19 T a b l e 1,4 l i n e 4

0.698(0.689-19 idem t l i n e 5 - 4 . 6 3 1 ) . 1 0 "

2

22 4- l i n e 8 10 t i m e s l o w e r

44

81

82

83

83

110

112

113

0.698(0.869--4.631)

10 t i m e s h i g h e r

^ x »

Ks

d x / d t = dX/dt =

7 K s h o u l d be r e p l a c e d by G (2x)

Mg » K g

+ l i n e 4

eq(3)

t 1ine.6

e q ( 1 6 )

2 nd t e r m o f e q ( 1 9 ) s h o u l d be d i v i d e d by ( k

K

Y^q)

2

and Y

S 7 >

s h o u l d be Ygjj

f l i n e 4 c a n n o t can

the l a s t term o f eq(5) s h o u l d be - 0 L j ) 2 }

eq(8) u n s u b s c r i p t e d ¥ s s h o u l d be Y s.

(10)

1 I

(11)

C H A P T E R 1

INTRODUCTION

I AIM AND SCOPE

I n t h i s t h e s i s some a s p e c t s o f b a c t e r i a l k i n e t i c s and e n e r g e t i c s a r e s t u d i e d w i t h r e f e r e n c e t o e n g i n e e r i n g a p p l i c a t i o n s . F o r e n g i n e e r i n g a p p l i c a t i o n s t h e v e r b a l model p r e s e n t e d i n F i g u r e 1 p r o v i d e s a good a p p r o x i m a t i o n t o r e a l i t y i n t h e d e s c r i p t i o n o f b a c t e r i a l g r o w t h and p r i m a r y p r o d u c t m e t a b o l i s m . product synthesis use of substrate A T P pool synthesis of biomass precursors biomass synthesis maintenance

Fig. 1: Distribution of substrate energy in microbial metabolism (from Roels and Kossen, 19 78, see Chapter 2, ref.16).

Here b a s i c a l l y t h r e e p r o c e s s e s a r e i d e n t i f i e d ; i ) b i o s y n t h e t i c p r o c e s s d u r i n g w h i c h p r e c u r s o r s a r e formed f r o m t h e s u b s t r a t e f o l l o w e d by t h e p o l y m e r i z a t i o n of them i n t o b i o m a s s , i i ) p r o d u c t f o r m a t i o n and i i i ) m a i n t e n a n c e p r o c e s s e s . The energy i n p u t i n t o t h e system i n t h e form o f c h e m i c a l energy i s d i s t r i b u t e d between t h e s e p r o c e s s e s . O f t e n t h e r e a r e i n t e r a c t i o n s between t h e s e p r o c e s s e s as i n d i c a t e d by t h e two way arrows i n F i g . 1.

(12)

mass i n t h e form of s u b s t r a t e a r e d i s t r i b u t e d between t h e s e p r o c e s s e s , i n an a t t e m p t t o m a n i p u l a t e t h i s d i s t r i b u t i o n as t o m i n i m i z e t h e o v e r a l l c o s t of t h e d e s i r e d p r o d u c t . T h i s can b e s t be a c h i e v e d by d e s c r i b i n g the whole p r o c e s s by a m a t h e m a t i c a l model and o p t i m i z i n g i t a c c o r d i n g t o an o b j e c t i v e f u n c t i o n .

W i t h t h e s e c o n s i d e r a t i o n s i n mind the f o l l o w i n g q u e s t i o n s were s e t and s t u d i e d i n an e f f o r t t o d e v e l o p a sound s t r a t e g y f o r r e s e a r c h , d e s i g n and c o n t r o l of m i c r o b i a l p r o c e s s e s .

1. How can a m i c r o b i a l s y s t e m be m o d e l l e d based on t h e e x i s t i n g knowledge?

2. How can the e x p e r i m e n t a l and c o m p u t a t i o n a l methods be improved and d a t a p r o c e s s e d i n o r d e r t o o b t a i n more o p t i m a l i n f o r m a t i o n ?

3. To what e x t e n t a r e the k i n e t i c and e n e r g e t i c p a r a m e t e r s i n f l u e n c e d by s e l e c t e d e n v i r o n m e n t a l changes ( s a l i n i t y and t e m p e r a t u r e ) ?

4. Does the mode of c u l t i v a t i o n ( b a t c h , f e d - b a t c h , c o n t i n u o u s ) i n f l u e n c e the e n e r g e t i c b e h a v i o u r of the system?

5. How can models c o n s i d e r i n g i n t e r n a l changes i n t h e m i c r o o r g a n i s m s be f o r m u l a t e d ? What a r e t h e i r p r o s p e c t s ?

I I ORGANIZATION OF THIS THESIS

C o n t e n t s of t h e c h a p t e r s a r e b r i e f l y o u t l i n e d i n t h e f o l l o w i n g .

Chapter 2, s t a r t s w i t h an i n t r o d u c t i o n t o t h e c u r r e n t s t a t e of m i c r o b i a l

e n e r g e t i c s . The t h e o r i e s t o be u s e d l a t e r on, a r e d e v e l o p e d h e r e . M i c r o b i a l e n e r g e t i c s and k i n e t i c s a r e d i s c u s s e d i n c o n n e c t i o n w i t h t h e f o r m u l a t i o n of u n s t r u c t u r e d models. The c h o i c e of k i n e t i c and e n e r g e t i c r e l a t i o n s i s

d i s c u s s e d . The d i s c u s s i o n s a r e i l l u s t r a t e d , s u p p o r t e d and/or t e s t e d w i t h the b a t c h and c o n t i n u o u s c u l t u r e d a t a o b t a i n e d d u r i n g t h i s s t u d y . F i n a l l y , a s h o r t comment on the c o n c e p t of m a i n t e n a n c e i s g i v e n .

Chapter 3, c o n s i s t s of t h r e e s u b - s e c t i o n s . The f i r s t d e s c r i b e s the e x p e r i m e n t a l

system and the a n a l y t i c a l methods u s e d . The second s u b - s e c t i o n o u t l i n e s some of t h e t e c h n i q u e s d e v e l o p e d f o r o b t a i n i n g more o p t i m a l i n f o r m a t i o n from the e x p e r i m e n t a l d a t a . The l a s t s u b s e c t i o n shows how t h e use of s t a t i s t i c a l p r o -c e d u r e s -can improve the e f f i -c i e n -c y of e x p e r i m e n t a t i o n and t h e r e l i a b i l i t y of the d a t a o b t a i n e d .

Chapter 4, d e s c r i b e s b a c t e r i a l growth i n f e d - b a t c h mode. I t i s shown t h a t t h e

u n s t r u c t u r e d model p r e s e n t e d e a r l i e r , b r e a k s down d u r i n g the t r a n s i t i o n from e x p o n e n t i a l t o s u b s t r a t e l i m i t e d growth phase. Use of f e d - b a t c h c u l t i v a t i o n i n the s t u d y of m i c r o b i a l k i n e t i c s and e n e r g e t i c s i s a l s o shown and d i s c u s s e d .

In Chapters 5 and 6, the i n f l u e n c e s of s e l e c t e d e n v i r o n m e n t a l changes on the s u b s t r a t e energy d i s t r i b u t i o n a r e s t u d i e d . F i r s t (Chapter S) t h e i n f l u e n c e of the p r e s e n c e of N a C l i s e v a l u a t e d a t d i f f e r e n t c o n c e n t r a t i o n s . The c o n c e n t r a -t i o n range i s from 0 -t o 40 kg/m3. The d a -t a o b -t a i n e d i s a l s o compared w i -t h those r e p o r t e d f o r a c t i v a t e d s l u d g e c u l t u r e s under the same c o n d i t i o n s . I n Chapter 6, t h e i n f l u e n c e of t e m p e r a t u r e i s s t u d i e d i n f e d - b a t c h c u l t u r e s . K i n e t i c d a t a a r e used f o r t h e e s t i m a t i o n of thermodynamic p a r a m e t e r s i n an A r r h e n i u s type of model extended t o d e s c r i b e a l s o t h e s u p e r o p t i m a l t e m p e r a t u r e range. Temperature e f f e c t s on e n e r g e t i c p a r a m e t e r s a r e a l s o p r e s e n t e d .

(13)

Chapter 7, i s an a t t e m p t t o f o r m u l a t e and t e s t a s i m p l e s t r u c t u r e d model i . e . ,

a model d e s c r i b i n g the i n t e r n a l s t r u c t u r e of the o r g a n i s m i n a d d i t i o n t o m a c r o s c o p i c v a r i a b l e s . The s i m p l e two compartmental model d e v e l o p e d i s shown t o d e s c r i b e biomass and s u b s t r a t e p r o f i l e s w e l l . E x t e n s i v e t e s t s w i t h i n t e r n a l c o m p o s i t i o n d a t a i n d i c a t e s the weakness o f the model. P r o s p e c t s o f t h e s e t y p e of models and the c o r r e c t approach t o t h e i r f o r m u l a t i o n and v e r i f i c a t i o n a r e s t r e s s e d .

Chapter 8, c o n s i s t s of f i v e s h o r t p u b l i c a t i o n s w h i c h a r e a l l more or l e s s

a p p l i c a t i o n s o f the c o n s i d e r a t i o n s p r e s e n t e d i n C h a p t e r 2 and 3. The f i r s t two i l l u s t r a t e the use of m a c r o s c o p i c methods i n d a t a a n a l y s i s and c o r r e l a t i o n . The o t h e r s a r e on t h e a p p l i c a t i o n of s t a t i s t i c s on b a t c h d a t a , e s t i m a -t i o n of -the maximum s p e c i f i c grow-th r a -t e by -the wash-ou-t -t e c h n i q u e and e s t i m a t i o n of the c a r b o n d i o x i d e r e t a i n e d i n b r o t h d u r i n g b a t c h c u l t i v a t i o n .

Klebsiella pneumoniae NCTC 418 f o r m e r l y known as Klebsiella aerogenes i s

chosen as the e x p e r i m e n t a l o r g a n i s m , s i n c e i t i s a t y p i c a l s o i l b a c t e r i u m o f t e n a l s o p r e s e n t i n w a s t e w a t e r s and i s c a p a b l e o f g r o w i n g a e r o b i c a l l y and a n a e r o b i c a l l y .

A l l u n i t s i n v o l v i n g biomass d r y w e i g h t a r e e x p r e s s e d on a s h - f r e e b a s i s . An e q u i v a l e n t o f any compound i s d e f i n e d as t h a t amount c o n t a i n i n g 12 grams o f e l e m e n t a l c a r b o n . F o r the biomass f o r m u l a e used h e r e , an e q u i v a l e n t o f biomass i s the same as one mole o f biomass. The y i e l d o f biomass on s u b s t r a t e i s sometimes e x p r e s s e d as C - e q u i v / C - e q u i v ( same as C-mole/C-mole ) , s i n c e t h i s i s a more fundamentel u n i t t h e n m o l a r or mass u n i t s . I t i n d i c a t e s d i r e c t l y t h e f r a c t i o n a l c o n v e r s i o n o f s u b s t r a t e c a r b o n t o biomass c a r b o n .

This thesis has been carried out within the Biotechnology Group of the delft University of Technology.

Postal address: Department of Chemical Engineering, Biotechnology Group, SBR, Jaffalaan 9, TH., Delft 2600, The Netherlands

(14)
(15)

C H A P T E R 2

ON THE THEORY AND APPLICATIONS OF UNSTRUCTURED GROWTH MODELS:

KINETIC AND ENERGETIC ASPECTS

I DEVELOPMENT OF MICROBIAL ENERGETICS

Development o f q u a n t i t a t i v e b a c t e r i a l e n e r g e t i c s c a n be assumed t o have commenced w i t h t h e work o f Monod'. Monod has d e f i n e d t h e m a c r o s c o p i c y i e l d o f b i o -mass on s u b s t r a t e as t h e r a t i o o f t h e bio-mass produced t o s u b s t r a t e consumed. He has p r o d u c e d h i s w e l l known k i n e t i c e x p r e s s i o n d e s c r i b i n g t h e dependence o f g r o w t h r a t e on t h e c o n c e n t r a t i o n o f t h e growth l i m i t i n g s u b s t r a t e ' . F o l l o w i n g the i n t r o d u c t i o n o f c o n t i n u o u s c u l t i v a t i o n t e c h n i q u e s , H e r b e r t (1958) has p r e -s e n t e d e v i d e n c e t h a t i n C - l i m i t e d c o n t i n u o u -s c u l t u r e -s , t h e m a c r o -s c o p i c g r o w t h y i e l d , Ys x was n o t c o n s t a n t b u t d e c r e a s e d as t h e d i l u t i o n r a t e d e c r e a s e d . * H e r b e r t a t t r i b u t e d t h i s e f f e c t t o what he c a l l e d t h e endogeneous metabolisrn. I n e f f e c t t h e f i r s t a t t e m p t was a c u r v e f i t t i n g e x e r c i s e . Then p h y s i o l o g i c a l c o n -s i d e r a t i o n -s were a t t a c h e d t o t h i -s o b -s e r v a t i o n . I t wa-s -s u g g e -s t e d t h a t , endoge-neous m e t a b o l i s m p r o c e e d s a t c o n s t a n t r a t e a t a l l p o s s i b l e g r o w t h r a t e s . The i n t r o d u c t i o n o f t h i s c o n c e p t m o d i f i e d Monod's e x p r e s s i o n t o a new form:

U - Ug { Cs / ( Ks + Cg ) } - Ue (1)

Here i s t h e r a t e o f endogeneous m e t a b o l i s m . When Cs >> Ks , p -> Pmax and hence Vmax = Pg ~ Ve • When Cs = 0 \i e g u a l s t o - pe , i . e . , n e g a t i v e growth i s a c h i e v e d . T h i s i s e q u i v a l e n t t o s e l f d e s t r u c t i o n . The o b s e r v e d y i e l d f o r a c o n t i n u o u s c u l t u r e system c a n now be shown t o be g i v e n by;3

y = ymaX {D / ( D + u )} (2) sx sx e P i r t (1965) c o n s i d e r e d t h e s u b s t r a t e r e q u i r e m e n t f o r g r o w t h a s s o c i a t e d and non-a s s o c i non-a t e d f u n c t i o n s s e p non-a r non-a t e l y non-and p o s t u l non-a t e d h i s w e l l known r e c i p r o c non-a l / l i n e non-a r r e l a t i o n ^ : 1 / Y = 1 / Ymax + m / y (3) S X S X s v ' He has f o r m a l l y i n t r o d u c e d t h e m a i n t e n a n c e c o e f f i c i e n t ms, .and a t t r i b u t e d i t t o

(16)

the s o - c a l l e d m a i n t e n a n c e f u n c t i o n s w h i c h i n c l u d e ; t u r n o v e r of c e l l m a t e r i a l s , o s m o t i c work t o m a i n t a i n c o n c e n t r a t i o n g r a d i e n t s , c e l l m o t i l i t y e t c . Eq.(3) p r e d i c t s a s t r a i g h t l i n e f o r 1/Ys x v s . 1/u . I n a number of c a s e s , however, s t r a i g h t l i n e s c o u l d not be o b t a i n e d and t h i s was shown t o be due t o the i n f l u ence of the growth r a t e on the f e r m e n t a t i o n p a t t e r n and ATP y i e l d of the p a r -t i c u l a r o r g a n i s m . Based on -t h i s o b s e r v a -t i o n , S-tou-thamer and B e -t -t e n h a u s s e n m o d i f i e d eq.(3) by c o n s i d e r i n g the g e n e r a l energy c u r r e n c y , ATP, and o b t a i n e d the f o l l o w i n g f o r m ^ :

qA T P = y 1 ATP + mA T P ( A )

L a t e r on, i n an a t t e m p t t o a c c o u n t f o r the d i s c r e p a n c y between t h e t h e o r e t i c a l and e x p e r i m e n t a l growth y i e l d s , the below r e l a t i o n has been p r o p o s e d 6 ;

q , ™ - U / (

Y

IJ1

) . . - + m

\i

+ m (5)

ATP M ATP ' t h e o r e t i c a l g e

T h i s e q u a t i o n has found l i m i t e d a p p l i c a t i o n s i n c e no means were o f f e r e d f o r the d e t e r m i n a t i o n of the growth a s s o c i a t e d (nig) and i n d e p e n d e n t (me) m a i n t e n a n c e c o e f f i c i e n t s . F u r t h e r m o r e , the Y ^ p v a l u e s can o n l y be c a l c u l a t e d f o r

a n a e r o b i c systems i f the m e t a b o l i c pathway and the a s s o c i a t e d s t o i c h i o m e t r y a r e e x a c t l y known. The r e s p i r a t o r y c h a i n of b a c t e r i a d i f f e r w i d e l y and depend on the growth c o n d i t i o n s . Thus, f o r a e r o b i c systems one must know t h e s o - c a l l e d P/0 r a t i o i n o r d e r t o c a l c u l a t e the Y^Tp v a l u e s , or v i c e v e r s a . I n some c a s e s ^ATP v alu e s o b t a i n e d from a n a e r o b i c s t u d i e s were used f o r the c a l c u l a t i o n of P/0 r a t i o s and Y ^ p v a l u e s . T h i s a p p r o a c h may not be v a l i d s i n c e a e r o b i c and a n a e r o b i c sysems a r e q u i t e d i f f e r e n t e n e r g e t i c a l l y . R e c e n t l y v a n V e r s e v e l d ^ has r e v i e w e d the methods a v a i l a b l e f o r d e t e r m i n i n g the P/0 r a t i o i n b a c t e r i a l s y s -tems. From h i s a c c o u n t and l i t e r a t u r e i t becomes c l e a r t h a t t h e r e i s y e t no r e l i a b l e method f o r t h e e s t i m a t i o n of t h e P/0 r a t i o s . Thus more o f t e n t h a n n o t , one has t o work i n terms of m a c r o s c o p i c y i e l d s and hence eq.(3) s t i l l f i n d s w i d e a p p l i c a t i o n , p a r t i c u l a r l y f o r a e r o b i c g r o w t h w i t h no b y - p r o d u c t f o r m a t i o n .

Under a v a r i e t y of c o n d i t i o n s the growth y i e l d s o b s e r v e d were much l o w e r t h a n e x p e c t e d . Senez^ s t u d i e d t h i s phenomenon and i n t r o d u c e d t h e term unbalanced

growth i m p l y i n g t h a t the two m a j o r p r o c e s s e s i n the m i c r o o r g a n i s m s ; a n a b o l i s m

and c a t a b o l i s m a r e sometimes n o t i n tune w i t h each o t h e r and c o n s i d e r a b l e amount of ATP produced c o u l d be w a s t e d . R e c e n t l y , N e i j s s e l and Tempest^i'O have d e m o n s t r a t e d t h e o c c u r e n c e of t h i s phenomenon i n a number of systems and c o n s i d e r e d energy s p i l l i n g r e a c t i o n s as an i n t e g r a l p a r t of the e v o l u t i o n a r y c o m p e t i t i o n c a p a b i l i t i e s of m i c r o o r g a n i s m s . These a u t h o r s have d e m o n s t r a t e d t h a t the p r e s e n c e of u n c o u p l e r s , e x c e s s energy and Csource and f o r c e d t r a n -s i e n t -s enhance the e x t e n t of energy -s p i l l a g e . 9 - 1 1 For a comprehen-sive a n a l y s i s of the c u r r e n t s i t u a t i o n i n m i c r o b i a l e n e r g e t i c s the r e a d e r i s r e f e r -r e d t o -r e c e n t -r e v i e w s ^ - 1 4

A l t h o u g h an o v e r w h e l m i n g body of i n f o r m a t i o n e x i s t s i n l i t e r a t u r e , the s t a t e of m i c r o b i a l e n e r g e t i c s i s s t i l l not advanced enough a t the f u n d a m e n t a l l e v e l to a l l o w e n g i n e e r i n g a p p l i c a t i o n s t o be based on them. A d d i t i o n a l l y , as has been p o i n t e d out by Stouthamer'3 enough a t t e n t i o n has not been p a i d by many w o r k e r s t o t h e i r e n e r g e t i c c a l c u l a t i o n s and t h i s c o u l d be one of t h e r e a s o n s f o r the a c c u m u l a t i o n of i n c o n s i s t e n t d a t a o v e r the y e a r s . M i c r o b i a l e n e r g e t i c s b e i n g a t an impasse a t the f u n d a m e n t a l l e v e l , r e c e n t l y much work has been done on the m a c r o - e n e r g e t i c b e h a v i o u r . S i n c e t h e s e s t u d i e s r e l y on b a l a n c i n g methods and p r i n c i p l e s of thermodynamics, they a r e f a v o u r e d f o r q u a n t i t a t i v e t e c h n o l o -g i c a l a p p l i c a t i o n s .

(17)

I I MACROSCOPIC METHODS IN THE STUDY OF MICROBIAL ENERGETICS

I n f o r m a t i o n o b t a i n e d by the a p p l i c a t i o n of e l e m e n t a l and energy b a l a n c e s and e n t r o p y i n e q u a l i t i e s can be c l a s s i f i e d as m a c r o s c o p i c i n f o r m a t i o n . A l t h o u g h such i n f o r m a t i o n p r o v i d e s u s e f u l t o o l s i n e n g i n e e r i n g a p p l i c a t i o n s , no m i c r o s c o p i c d e t a i l s a r e p r o v i d e d . These t e c h n i q u e s , n e v e r t h e l e s s , p r o v i d e the t e c h -n o l o g i s t w i t h a s t r o -n g s t a r t i -n g p o i -n t i -n i -n d u s t r i a l a p p l i c a t i o -n s . I f s t r u c t u r e d i n f o r m a t i o n i s supplemented and checked f o r c o n s i s t e n c y by t h e a p p l i c a t i o n of m a c r o s c o p i c methods v e r y u s e f u l i n f o r m a t i o n can be o b t a i n e d w i t h q u a n t i t a t i v e c o n f i d e n c e .

The s u b j e c t has been advanced by many w o r k e r s i n the r e c e n t y e a r s . Recent advancement of the s u b j e c t i s due t o R o e l s and K o s s e n ' ^ , R o e l s ' ^ , E r i c k s o n e t al l 8 - 2 0 and H e i j n e n and R o e l s 2 1 . I n t h i s s e c t i o n o n l y t h e r e l e v a n t r e l a t i o n s from t h e s e p u b l i c a t i o n s w i l l be g i v e n w i t h o u t p r o o f . These r e l a t i o n s w i l l be a p p l i e d t o e x p e r i m e n t a l and t h e o r e t i c a l a n a l y s e s , l a t e r on i n t h i s work.

Assuming t h a t C, H, N and 0 a r e the o n l y e l e m e n t s exchanged i n n o n - n e g l i g i b l e amounts i n the s y s t e m , the f o l l o w i n g s t o i c h i o m e t r i c growth e q u a t i o n can be w r i t t e n f o r growth on a s i n g l e C and energy s o u r c e . T h i s s o u r c e i s assumed t o be growth l i m i t i n g . 0„C H, 0 N, + <I>0„ + $.NH„ 2 b j C j 5 2 4 3 s u b s t r a t e >.C H, 0 Nj 1 b, c, d, biomass $QC H, 0 N, + $,C0„ + $7H.0 (6) 3 a^ b3 c3 d^ 6 2 7 2 p r o d u c t The m a c r o s c o p i c y i e l d f a c t o r i s now d e f i n e d a s : Ys x = I $2 I ^ a2 ( C - e q u i v / C - e q u i v ) (7)

Ys x s i m p l y i n d i c a t e s the degree of t r a n s f o r m a t i o n of the s u b s t r a t e c a r b o n i n t o b i o m a s s . Hence i t seems t o be a more f u n d a m e n t a l p a r a m e t e r t h a n y i e l d v a l u e s e x p r e s s e d on mass o r m o l a r b a s i s . The above e q u a t i o n has 7 f l o w s i n v o l v i n g 4 e l e m e n t s . Thus s p e c i f i c a t i o n of any 3 f l o w s f i x e s t h e s y s t e m a l g e b r a i c a l l y , i . e . , any 4 unknown f l o w s can be c a l c u l a t e d from t h e knowledge of any 3 f l o w s at s t e a d y s t a t e .

S t a r t i n g f r o m the p r i n c i p l e of t h e c o n s e r v a t i o n of a t o m i c s p e c i e s the f o l l o w i n g b a l a n c e s can be shown t o h o l d f o r t h e system d e s c r i b e d :

r = r - r - r (8) c s x p r = 1/4 ( y r - y r - v r ) (9) o 's s 'x x 'p p r.T = - d , r + d r + d r (10) N 2 s 1 x 3 p H e r e , Yx , ys Yp a r e d e f i n e d by t h e f o l l o w i n g :

(18)

= 4 + bl " 2 C, - 3 d. (11) = 4 + b2 " 2 c2 - 3 d2 (12) YP = 4 + b3 " 2 c3 " 3 d3 (13) Y i s a l i n e a r c o m b i n a t i o n o f e l e m e n t a l b a l a n c e s . I t c a n a l s o be d e r i v e d from a degree o f r e d u c t i o n b a l a n c e as d e f i n e d by E r i c k s o n and coworkers.'8>'* I t must a l s o be n o t e d t h a t Y d e f i n e d h e r e o n l y h o l d s f o r NH3 b e i n g t h e N - s o u r c e . R o e l s ' ? has i n t r o d u c e d t h e g e n e r a l i z e d degree o f r e d u c t i o n c o n c e p t w h i c h can be a p p l i e d t o growth w i t h any N s o u r c e .

Eq.(3) i n t r o d u c e d p r e v i o u s l y does n o t c o n s i d e r p r o d u c t f o r m a t i o n . Humphrey and J e f f e r i s * ^ and l a t e r on R o e l s and K o s s e n ' ^ have i n c l u d e d t h e c o n t r i b u t i o n o f p r o d u c t f o r m a t i o n p r o c e s s and m o d i f i e d eq.(3) t o :

, ..max , „max ,, ..

r = r / Y + r / Y + m C (14) s x s x p sp s x

S i m i l a r forms o f t h e above e q u a t i o n c a n be d e r i v e d f o r t h e c o n v e r s i o n r a t e s o f c a r b o n d i o x i d e and oxygen. By c o m b i n i n g e q s . ( 8 ) , (9) and (14) t h e f o l l o w i n g c a n be g i v e n :

r = ( 1 / Ymax - 1) r + ( 1 / Ymax - 1) r + m C (15)

c s x x sp p S X

r„

1/4 { ( Y / Ym 3 X - Y ) r + ( Y / Ym a X - Y ) r + Y m C } (16)

S S X X x s sp p p s s x

From e q s . ( 1 5 ) and (16) a number o f u s e f u l r e l a t i o n s c a n be o b t a i n e d . A few a r e shown b e l o w . A more comprehensive l i s t has been g i v e n r e c e n t l y by H e i j n e n and R o e l s . 2 1 1 / Ymax = Y M ( 1 / Ym a x) - 7 / 4 (17) ox S S X X m = m (18) c s m = (y /4) m (19) o s s

E r i c k s o n e t a l . ' ^ have shown methods f o r d a t a a n a l y s i s and c h e c k i n g t h e con-s i con-s t e n c y by u con-s i n g r e l a t i o n con-s o f t h i con-s con-s o r t . A n o t h e r advantage o f t h e con-s e t o o l con-s l i e con-s i n t h e f o r m u l a t i o n o f t h e o r e t i c a l l i m i t s t o t h e e f f i c i e n c y o f c o n v e r s i o n p r o -c e s s e s . R o e l s ' ' has -c a l -c u l a t e d t h e maximum p o s s i b l e y i e l d v a l u e s a l l o w e d by the second Law o f Thermodynamics. C a l c u l a t i o n o f t h i s a l l o w s t h e d e f i n i t i o n o f the thermodynamic e f f i c i e n c y , l ^ h 'or t^l e growth p r o c e s s .

\ h =Ys x /U f • (20)

O t h e r n p a r a m e t e r s have a l s o been d e f i n e d based on oxygen and e l e c t r o n b a l a n c e s and i n e q u a l i t i e s . F o r growth w i t h NH3 as t h e ammonia s o u r c e , however, t h e r e are no s i g n i f i c a n t d i f f e r e n c e s between t h e v a r i o u s r e l a t i o n s . F o r t h e system d e s c r i b e d t h e f o l l o w i n g u s e f u l l i m i t s have been shown t o h o l d :

Y <

(19)

(22)

Y < Y / Y (23)

sx s x

A p p l i c a t i o n of m a c r o s c o p i c p r i n c i p l e s can a l s o p l a y an i m p o r t a n t r o l e i n p r o -c e s s -c o n t r o l , where the -c o n t r o l p a r a m e t e r -cannot be d e t e r m i n e d d i r e -c t l y e.g., e s t i m a t i o n of biomass c o n c e n t r a t i o n i n b r o t h w i t h suspended p a r t i c u l a t e subs t r a t e , l i k e subs t a r c h . E subs t i m a t i o n of h e a t o u t p u t , a v e r y i m p o r t a n t t a subs k i n p r o -c e s s d e s i g n and -c o n t r o l , -can a l s o be done, based on the measurement of a few o n - l i n e d e t e r m i n e d p a r a m e t e r s .

The m a c r o s c o p i c t o o l s were a p p l i e d t o the e x p e r i m e n t a l d a t a o b t a i n e d d u r i n g t h i s work f o r c h e c k i n g d a t a c o n s i s t e n c y and f o r the e s t i m a t i o n of e n e r g e t i c p a r a m e t e r s . A d d i t i o n a l a p p l i c a t i o n s a r e p r e s e n t e d i n C h a p t e r 8.

I l l AN INTRODUCTION TO THE MODELLING OF MICROBIAL GROWTH

I n g e n e r a l , b i o l o g i c a l systems a r e s u b - s e t s of c h e m i c a l systems. A w e a l t h of i n f o r m a t i o n e x i s t s on c h e m i c a l k i n e t i c s and d y n a m i c s . Thus, one can a t l e a s t i n t h e o r y , e x p e c t t o be a b l e t o d e s c r i b e b i o l o g i c a l systems i n terms of t h e dynamic b e h a v i o u r of i t s c o n s t i t u e n t s ; c h e m i c a l systems. I n p r a c t i c e , however, t h i s approach i n e v i t a b l y f a i l s due t o two r e a s o n s :

i . F i r s t l y , f o r an e x a c t d e s c r i p t i o n o f m i c r o b i a l m e t a b o l i s m one has t o c o n s i d e r a l l the c o n c e n t r a t i o n s o f the c h e m i c a l s u b s t a n c e s i n t h e imme-d i a t e environment of m i c r o o r g a n i s m s ( a - b i o t i c phase) as w e l l as i n the o r g a n i s m i t s e l f ( b i o t i c p h a s e ) . C o n s i d e r i n g t h a t E. ooli has more t h a n 2000 d i f f e r e n t p r o t e i n s , t h i s becomes an i m p o s s i b l e t a s k even a t the age of f a s t c o m p u t e r s ,

i i . S e c o n d l y , a l t h o u g h b i o c h e m i c a l k i n e t i c s has b a s i c a l l y t h e same t a s k s as c h e m i c a l k i n e t i c s i . e . , i d e n t i f i c a t i o n of r e a c t i o n s between m o l e c u l e s , d e t e r m i n a t i o n of the r a t e s of c h e m i c a l r e a c t i o n s and t h e development of t h e r e l e v a n t t h e o r i e s , i t has t o c o n s i d e r more complex k i n d of i n t e r a c -t i o n s , such as r e a c -t i o n s be-tween m o l e c u l e s and c e l l s , m o l e c u l e s and o r g a n e l l e s , c e l l s and c e l l s e t c . I n o t h e r w o r d s , b i o l o g i c a l k i n e t i c s i s not r e s t r i c t e d t o the s t u d y of r e a c t i o n s between e n t i t i e s b e l o n g i n g t o a s i n g l e l e v e l of o r g a n i z a t i o n b u t a l s o b e l o n g i n g t o d i f f e r e n t l e v e l s . 2 4

25 • R e c e n t l y , . Savageau has g i v e n a g e n e r a l g r o w t h e q u a t i o n t h a t i s based upon

t h e n a t u r e of the e l e m e n t a l mechanisms i n complex systems. The r e s u l t i n g s e t of d i f f e r e n t i a l e q u a t i o n s would be, however, v e r y l a r g e and complex f o r a complete system d e s c r i p t i o n . M o r e o v e r , as shown by P r i g o g i n e 2 6 t h e s e t y p e of e q u a t i o n s a r e not o n l y s p e c i f i c t o b i o l o g i c a l systems b u t a r e a p p l i c a b l e t o any system, u n i v e r s a l l y . S i n c e t h i s t y p e of complete d e s c r i p t i o n has p r o v e n t o be n o t p o s s i b l e , one aims f o r s i m p l i f i c a t i o n s t h r o u g h j u s t i f i a b l e a s s u m p t i o n s .

S i g n i f i c a n t s i m p l i f i c a t i o n s become p o s s i b l e v i a a s t u d y of t h e r e l a x a t i o n times of the v a r i o u s p r o c e s s e s t a k i n g p l a c e i n s i d e and the o u t s i d e of the b i o t i c phase. Thus one has t o c o n s i d e r and compare t h e time c o n s t a n t s o f t h e e n v i r o n m e n t a l changes and t h o s e of mechanisms i n s i d e the o r g a n i s m w h i c h f a c i l i t a t e the a d a p t a t i o n o f t h e o r g a n i s m t o t h e s e e n v i r o n m e n t a l c h a n g e s . I n two cases s i m p l i f i c a t i o n become p o s s i b l e :

i . F o r p r o c e s s e s w h i c h a r e c h a r a c t e r i z e d by v e r y l a r g e r e l a x a t i o n t i m e s , compared w i t h t h a t of the growth p r o c e s s , t h e mechanism and thus t h e c o n c e n t r a t i o n of t h e compounds i t r e g u l a t e s , do n o t change s i g n i f i c a n t l y . Thus t h e s e mechanisms and t h e i r e f f e c t s on the t o t a l , system b e h a v i o u r may

(20)

be c o n v e n i e n t l y n e g l e c t e d ,

i i . F o r p r o c e s s e s w h i c h a r e c h a r a c t e r i z e d by v e r y s h o r t r e l a x a t i o n t i m e s , b i o t i c mechanisms f o l l o w and r e s p o n d t i g h t l y t o t h e e n v i r o n m e n t a l changes and a g a i n t h e c o n c e n t r a t i o n s o f the b i o t i c components t h a t a r e a s s o c i a t e d w i t h t h e s e p a r t i c u l a r mechanisms can be c a l c u l a t e d from the a - b i o t i c c o n c e n t r a t i o n s . The s t a t e o f the mechanism c a n be r i g o r o u s l y d e s c r i b e d u s i n g o n l y e n v i r o n m e n t a l c o n c e n t r a t i o n i . e . , c o n c e n t r a t i o n i n t h e a - b i o t i c phase.

Based on t h e s e c o n s i d e r a t i o n s i . e . , most changes among t h e components o f a system o c c u r much f a s t e r t h a n t h e r a t e o f t h e growth f o r t h e system as a w h o l e , Savageau25 c o n c l u d e d t h a t t h i s m a t h e m a t i c a l l y i m p l i e s a s m a l l number o f r e l a t i o n s r e p r e s e n t i n g t h e s l o w e s t phenomena d e t e r m i n e t h e t e m p o r a l r e s p o n s e o f t h e e n t i r e system. A l l o t h e r r e l a t i o n s r e p r e s e n t i n g t h e f a s t e r phenomena c a n be assumed t o have reached a p s e u d o - s t e a d y s t a t e w i t h t i m e d e r i v a t i v e s e q u a l t o z e r o .

P r a c t i c a l growth models a r e u s u a l l y e x p r e s s e d i n terms of a r a t h e r a b s t r a c t u n i t s o f l i f e , t h a t i s , i n terms o f p o p u l a t i o n s . T h i s a p p r o a c h c o n s i d e r s t h e p o p u l a t i o n as an e n t i t y homogeneously d i s t r i b u t e d i n space and t i m e , and thus a v o i d s c o m p l i c a t i o n s t h a t m i g h t a r i s e due t o t h e s t o c h a s t i c phenomena a s s o c i a -t e d w i -t h -t h e e x i s -t e n c e o f i n d i v i d u a l o r g a n i s m s . I -t i s , however, i m p o r -t a n -t -t o n o t e t h a t t h i s a p p r o a c h i s o n l y v a l i d when the number o f o r g a n i s m s i n t h e s y s t e m i s v e r y l a r g e . T h i s was t h e c a s e f o r e x p e r i m e n t s t o be r e p o r t e d i n t h i s work.

Qcowth i s the p r o d u c t i o n o f new biomass by a p o p u l a t i o n when i t consumes a

s u i t a b l e l i v i n g o r non l i v i n g s u b s t r a t e f r o m i t s e n v i r o n m e n t and i n c o r p o r a t e s some o f t h i s s u b s t a n c e i n t o i t s own.24 Reproduction i s t h e i n c r e a s e i n t h e number o f d i s c r e t e i n d e p e n d e n t c e l l s o f a p o p u l a t i o n . Growth and r e p r o d u c t i o n a r e o b v i o u s l y c o u p l e d p r o c e s s e s , however, t h e d e g r e e o f c o u p l i n g may be d i f f e -r e n t f o -r each c a s e . I n t h i s s t u d y t h e s e two p -r o c e s s e s w i l l n o t be c o n s i d e -r e d s e p a r a t e l y b u t t h e t o t a l e f f e c t i s summed w i t h t h e d r y w e i g h t measurements.

One o f the most g e n e r a l a p p r o a c h e s f o r d e s c r i b i n g g r o w t h , was p r o v i d e d by P o w e l l 2 7 . I n h i s a p p r o a c h , t h e c u r r e n t s p e c i f i c growth r a t e o f a p o p u l a t i o n i s assumed t o depend n o t o n l y o n t h e c u r r e n t s t a t e o f t h e a - b i o t i c phase b u t a l s o on the e n t i r e h i s t o r y o f t h e a - b i o t i c phase s e e n by t h e b i o t i c phase. I n o t h e r words P o w e l l e x p r e s s e d t h e s p e c i f i c growth r a t e a t any i n s t a n t t o be a

' f u n c t i o n a l ' o f t h e s t a t e o f t h e a - b i o t i c phase. I n p r a c t i c e , however, t h i s a p p r o a c h i s d i f f i c u l t t o a p p l y and p a r t i c u l a r l y i n t h e c h o i c e o f f u n c t i o n a l s . A s i m p l e r a p p r o a c h would be t o assume t h a t t h e c u r r e n t growth r a t e s a r e

f u n c t i o n s o f t h e c u r r e n t s t a t e o f t h e a - b i o t i c and b i o t i c p h a s e s .

The most r i g o r o u s s i m p l i f i c a t i o n done i n t h e development o f p o p u l a t i o n models i s t h e a s s u m p t i o n t h a t t h e t o t a l amount o f the biomass i n t h e c u l t u r e i s

s u f f i c i e n t t o s p e c i f y t h e a c t i v i t i e s o f the m i c r o o r g a n i s m s . Model based on t h i s a s s u m p t i o n i . e . , i n w h i c h the v a r i a t i o n i n the biomass c o m p o s i t i o n i s t o t a l l y i g n o r e d , a r e c a l l e d UNSTRUCTURED WDELS.

IV A SIMPLE UNSRUCTURED MODEL FOR MICROBIAL GROWTH

The most p o p u l a r k i n e t i c e x p r e s s i o n used t o d a y i s the Monod r e l a t i o n . A l t h o u g h t h i s r e l a t i o n i s an homologue o f the M i c h a e l i s - M e n t e n e q u a t i o n , Monod a r r i v e d a t i t e m p i r i c a l l y . That i s , h i s r e l a t i o n p r o v i d e d good f i t f o r h i s e x p e r i m e n -t a l d a -t a . A l -t e r n a -t i v e l y , one c a n -t r y -t o p r o v i d e a m e c h a n i s -t i c f o u n d a -t i o n by r e a s o n i n g t h a t one enzymic r e a c t i o n t a k i n g p a r t i n a l o n g sequence m i g h t be t h e

(21)

b o t t l e n e c k and thus r a t e l i m i t i n g .

Now, c o n s i d e r a c o n s t a n t volume c u l t i v a t i o n system i n w h i c h t h e t o t a l m i c r o b i a l a c t i v i t y i s q u a n t i f i e d by t h e amount o f biomass (biomass w i l l i m p l y d r y w e i g h t t h r o u g h o u t t h i s work) and t h e r e i s a s i n g l e l i m i t i n g s u b s t r a t e (C and energy s o u r c e ) . To d e s c r i b e t h e s y s t e m , changes o f Cs and Cx and t h e i r i n t e r -dependence have t o be e v a l u a t e d . F o r t h e g e n e r a l c a s e t h e f o l l o w i n g b a l a n c e s can be f o r m u l a t e d : d C / d t (24) d C / d t s r + s (25) I f t h e r e l a t i o n o f l i n e a r s u b s t r a t e c o n s u m p t i o n i s chosen f o r r e l a t i n g r x t o rs 2,4 ( f o r t h e n o - p r o d u c t c a s e ) : r / Y x s x m C s x (26)

Eqs. (24) (25) and (26) w i l l be s u f f i c i e n t t o d e s c r i b e s i m p l e systems such as b a t c h , c o n t i n u o u s and f e d - b a t c h . $ i s t h e n e t f l o w term t o t h e system and i s f i x e d by t h e mode o f o p e r a t i o n , e.g., f o r c o n t i n u o u s c u l t i v a t i o n $ i s d e s c r i b e d by t h e f o l l o w i n g : D ( C (27) * = x D C (28) F o r b a t c h c u l t i v a t i o n , $ a r e z e r o , s i n c e i t i s a c l o s e d system as f a r as t h e non-gaseous phases a r e c o n c e r n e d . Thus t h e f o l l o w i n g p a i r o f eqs. d e s c r i b e t h e system: dC /dt = u C C / (K + C ) x max s x s s dC / d t = - y C C . / {(K + C ) Ym a X} - m C s max s x s s sx s x (29) (30)

No a n a l y t i c a l s o l u t i o n i s p o s s i b l e f o r t h i s s e t and hence n u m e r i c a l methods ' were used f o r s i m u l a t i o n p u r p o s e s d u r i n g t h i s s t u d y . Most o f t h e t i m e d u r i n g b a t c h growth o r g a n i s m s grow a t o r n e a r Um a x • S i n c e t h e e f f e c t o f m a i n t e n a n c e r e q u i r e m e n t s a r e e f f e c t i v e l y m i n i m i z e d a t n i g h u , a c o n v e n i e n t s i m p l i f i c a t i o n can be i n t r o d u c e d by n e g l e c t i n g t h e ms term i n t h e above model. I n t h i s c a s e an a n a l y t i c a l s o l u t i o n i s p o s s i b l e and c a n be shown t o be g i v e n by:

l n ( C /C ) + K Y /(Y C + C ) I n {(C /C ) / ( l + C / (Y C ) -x -xo s s-x s-x so -xo X xo xo sx so C / ( Y C ) ) } = y t (31) x sx so max The i m p l i c i t n a t u r e o f t h i s e x p r e s s i o n g i v e s problems i n p a r a m e t e r e s t i m a t i o n from e x p e r i m e n t a l d a t a by n o n l i n e a r r e g r e s s i o n . F u r t h e r s i m p l i f i c a t i o n s a r e p o s s i b l e by c o n s i d e r i n g v a r i o u s e x p e r i m e n t a l c o n d i t i o n s , e.g., i f C >> C Y and C >> K , t h e model reduces down t o :

(22)

C / C = exp ( U t ) (32) x xo max

Growth b e h a v i o u r i n f e d - b a t c h c u l t u r e s can a l s o be d e s c r i b e d by t h i s g e n e r a l u n s t r u c t u r e d model. T h i s i s p r e s e n t e d i n C h a p t e r 4.

I t i s i m p o r t a n t t o n o t e t h a t an u n r e a l i s t i c f e a t u r e ^0f the l i n e a r r e l a t i o n i s t h a t i t p r e d i c t s s u b s t r a t e u p t a k e even a f t e r s u b s t r a t e has been e x h a u s t e d . P a r t i c u l a r l y i n n u m e r i c a l s i m u l a t i o n s the e x p e r i m e n t e r must c o n s i d e r t h i s p o i n t c a r e f u l l y as t h i s m i g h t l e a d t o the c a l c u l a t i o n of n e g a t i v e s u b s t r a t e c o n c e n t r a t i o n v a l u e s . When Cs = 0, the c o n c e p t of endogeneous m e t a b o l i s m becomes handy. E x p r e s s i o n (1) p r e d i c t s z e r o growth r a t e when:

o r , C = K y / ( y ~ P ) (33) s s e g e C a K u / y (34) s s e g T h i s e x p r e s s i o n can a l s o a l l o w f o r n e g a t i v e g r o w t h ; a n a t u r a l phenomenon w h i c h can be o b s e r v e d e x p e r i m e n t a l l y , when Cs i s s m a l l e r t h a n the r i g h t hand s i d e of eq.(33) .

The d i f f e r e n c e between P i r t and H e r b e r t r e l a t i o n s stem from t h e i r d i f f e r e n t ways of i n t e r p r e t i n g the f u n c t i o n i n g of the m a i n t e n a n c e p r o c e s s e s .

The s i m p l e u n s t r u c t u r e d model has been a p p l i e d t o some p r a c t i c a l s y s t e m s , s u c c e s s f u l l y , p a r t i c u l a r l y f o r b a t c h growth where t h e growth i s n o t l i m i t e d by s u b s t r a t e , a n d f o r s u b s t r a t e l i m i t e d g r o w t h i n c o n t i n u o u s c u l t u r e s .

One wonders i f the Monod' r e l a t i o n i s t h e o n l y s u i t a b l e k i n e t i c e x p r e s s i o n f o r m o d e l l i n g . As has been shown by R o e l s 2 8 t h e d e t a i l e d n a t u r e of the k i n e t i c e q u a t i o n i s o n l y of s l i g h t i m p r o t a n c e f o r s u b s t r a t e l i m i t e d g r o w t h . T h i s i s because of the v e r y low Cg under s u b s t r a t e l i m i t i n g c o n d i t i o n s . A t such low Cs v a l u e s a p s e u d o - s t e a d y s t a t e h y p o t h e s i s w i t h r e s p e c t t o Cs h o l d s . Under t h e s e c o n d i t i o n s , i t can be shown t h a t the s t a t e e q u a t i o n f o r Cx i s o n l y d e f i n e d by t h e e n e r g e t i c and e x p e r i m e n t a l p a r a m e t e r s and n o t by the k i n e t i c r e l a t i o n . S i n c e Cx v s . t i m e , p r o f i l e i s n o t i n f l u e n c e d much by the r a t e e q u a t i o n , one s h o u l d n o t e x p e c t to o b t a i n a c c u r a t e i n f o r m a t i o n on the n a t u r e of the r a t e e x p r e s s i o n from the b i o m a s s - t i m e d a t a . Cs , however, may w e l l p r o v i d e u s e f u l i n f o r m a t i o n f o r the v e r i f i c a t i o n or r e j e c t i o n of t h e r a t e e x p r e s s i o n . U n f o r t u n a t e l y , Cs d a t a o b t a i n e d under s u b s t r a t e l i m i t a t i o n s u f f e r from l a r g e u n c e r t a i n i t i e s . Thus d i s c r i m i n a t i o n between t h e v a r i o u s k i n e t i c models become a d i f f i c u l t t a s k . I n n o n - s u b s t r a t e l i m i t e d systems e.g., b a t c h s y s t e m s , g e n e r a l l y the r a t e of growth i n c r e a s e s w i t h i n c r e a s i n g Cg up t o a p o i n t , t h e r e a f t e r rx r e m a i n s c o n s t a n t e.g., l i k e s a t u r a t i o n k i n e t i c s . I n t h i s case o n l y d a t a from the t r a n s i e n t phase from e x p o n e n t i a l t o s t a t i o n a r y phase can be u s e d f o r model d i s c r i m i n a t i o n . However, t h i s t r a n s i t i o n i s u s u a l l y q u i t e a b r u p t , s i n c e a t the p o i n t when the r e s i d u a l s u b s t r a t e , Cg, i s low ( Ks - Cs) the h i g h c e l l c o n c e n t r a t i o n r a p i d l y u t i l i z e s the r e m a i n i n g s u b s t r a t e .

I n t h e i r r e v i e w , R o e l s and Kossen'6 s t u i e d a number of u n s t r u c t u r e d models and have shown t h a t a l m o s t any o b s e r v a t i o n can be m o d e l l e d by any of them. Thus the c h o i c e of the k i n e t i c e x p r e s s i o n r e m a i n s t o be r a t h e r a r b i t r a r y . T h e r e f o r e , t h r o u g h o u t t h i s work Monod r e l a t i o n w i l l be used w i t h o u t any c o m p a r a t i v e j u s t i f i c a t i o n . Two o t h e r k i n e t i c e x p r e s s i o n s w i l l be compared w i t h t h a t of Monod :

(23)

T i e s s i e r Model u = U { 1 - exp(-C / K ) } max s (35) where K = K / I n 2 s Blackman M o d e l : u f o r max C > u A s — max C / A f o r C < u A s s — max (36)

Many more e x p r e s s i o n s have been r e p o r t e d and c l a i m e d t o be s u p e r i o r under c e r t a i n c a s e s . F o r a c o m p r e h e n s i v e l i s t r e c e n t r e v i e w s c a n be

consulted!6,24,25,31 in g e n e r a l a l l t h e proposed models a r e e m p i r i c a l o r s e m i

-e m p i r i c a l and hav-e mor-e o r l -e s s t h -e sam-e p r o p -e r t i -e s . I t has r -e c -e n t l y b-e-en shown i n l i t e r a t u r e t h a t most of t h e s e models c a n i n f a c t be g e n e r a l i z e d i n t o one f o r m , each model h a v i n g d i f f e r e n t p a r a m e t e r s . ^ 5 , 31

I n v i e w o f t h e s e c o n s i d e r a t i o n s most w o r k e r s f a v o u r Monod r e l a t i o n and do n o t g i v e any f u r t h e r a t t e n t i o n t o o t h e r r e l a t i o n s . I n some c a s e s , however, o t h e r e q u a t i o n s m i g h t be p r e f e r r e d from t h e p o i n t o f m a t h e m a t i c a l c o n v e n i e n c e . F o r i n s t a n c e , t h e u s e o f Blackman k i n e t i c s a l l o w s a n a l y t i c a l s o l u t i o n of f e d - b a t c h m o d e l s , w h i l e t h i s i s n o t p o s s i b l e w i t h Monod k i n e t i c s .

V DISCUSSION OF UNSTRUCTURED MODELS AND MICROBIAL ENERGETICS WITH REFERENCE TO EXPERIMENTAL RESULTS

Batch Cultures

K. •pneumoniae (aerogenes) was c u l t i v a t e d i n b a t c h mode, t o s t u d y t h e k i n e t i c

and e n e r g e t i c b e h a v i o u r . I n o c u l a used were a l w a y s a c t i v e l y g r o w i n g and c o n s e -q u e n t l y no l a g s were e n c o u n t e r e d . A t y p i c a l e x p e r i m e n t i s shown i n F i g . 1 where Cs and Cx p r o f i l e s a r e shown as f u n c t i o n s o f t i m e . A d d i t i o n a l l y t h e

s i m u l a t i o n p r o f i l e s by u s i n g t h e Monod, Blackman and T i e s s i e r models i n combin a t i o combin w i t h t h e l i combin e a r r e l a t i o combin f o r s u b s t r a t e c o combin s u m p t i o combin ( e q . ( 2 6 ) ) , a r e p r e s e combin -t e d ( s o l i d l i n e s ) .

(24)

The b r o k e n l i n e becomes a c o n t i n u a t i o n of l i n e 'a' i f t h e l i n e a r r e l a t i o n i s r e p l a c e d by H e r b e r t ' s endogeneous m e t a b o l i s m d e s c r i p t i o n . The p a r a m e t e r s used f o r s i m u a l t i o n s were o b t a i n e d from c o n t i n u o u s and b a t c h c u l t u r e d a t a . P a r a m e t e r s f o r Blackman and T i e s s i e r models were e s t i m a t e d r o u g h l y . Even t h e n , F i g . 1 shows t h a t a l l t h r e e models can d e s c r i b e the e x p e r i m e n t a l o b s e r v a t i o n s i n a more o r l e s s i d e n t i c a l way, p r o v i d e d a l l p a r a m e t e r s a r e e s t i m a t e d w i t h e q u a l c a r e . The endogeneous m e t a b o l i s m m o d e l , i n a d d i t i o n t o p r e d i c t i n g e x a c t l y the same b e h a v i o u r • as M o n o d + l i n e a r r e l a t i o n m o d e l , d e s c r i b e s the e a r l y decay phase w e l l . Thus as f a r as t h i s system i s c o n c e r n e d , H e r b e r t ' s model seems t o p r o v i d e a more comprehensive d e s c r i p t i o n of the r e a l b e h a v i o u r .

H a v i n g shown the r e l a t i v e s i m i l a r i t y of the p r e s e n t e d m o d e l s , Monod + l i n e a r r e l a t i o n model w i l l now be s u b j e c t e d t o a s e n s i t i v i t y a n a l y s i s w i t h r e s p e c t t o i t s p a r a m e t e r s . T h i s i s a f o u r parameter model ( Ks, Pm a x, Y ™x x, mg ). I n F i g s . 2,3,and 4 r e s u l t s of s i m u l a t i o n s c a r r i e d out by c h a n g i n g one parameter a t a t i m e , a r e shown.

Fiq. 2 : Sensitivity of the batch model to variations in u

v J J max

t(min)

(25)

J71CUC Fig. 4: Sensitivity of the batch model to variations in ^sx

The parameter v a l u e s were v a r i e d around t h e e s t i m a t e d t r u e v a l u e s . The c a s e of Ks i s d i s c u s s e d i n C h a p t e r 4.From t h e s e p l o t s one c a n c l e a r l y c o n c l u d e t h a t the k i n e t i c d e s c r i p t i o n o f b a t c h growth i n terms o f Cx v s . time p r o f i l e , i s not i n f l u e n c e d by c o n s i d e r a b l e changes i n e n e r g e t i c p a r a m e t e r s , ms and Ym a x . However, t h e k i n e t i c p a r a m e t e r , yma x ls shown t o be o f g r e a t i m p o r t a n c e . As p r e v i o u s l y d i s c u s s e d , t h i s p a r a m e t e r i s t h e most i m p o r t a n t f o r b a t c h g r o w t h as i t r i g i d l y f i x e s t h e growth b e h a v i o u r . A n o t h e r c o n c l u s i o n c a n be drawn f r o m F i g 4 i n r e l a t i o n t o parameter e s t i m a t i o n . That i s , i f Ym a.x i s t o be e s t i m a t e d from b a t c h d a t a , u s e o f Cs p r o f i l e would be more a c c u r a t e .

S i n c e mg has no s i g n i f i c a n t i n f l u e n c e on t h e outcome o f b a t c h s i m u l a t i o n s one can see t h a t t h e s i m p l i f i c a t i o n o f t h e g e n e r a l u n s t r u c t u r e d model ( e q s . ( 2 9 ) ,

(30) t o (31) ) has no s i g n i f i c a n t drawbacks. C o n s e q u e n t l y , i t c a n be c o n c l u d e d t h a t m v a l u e s cannot be d e t e r m i n e d f r o m b a t c h d a t a a c c u r a t e l y . More-o v e r , i f t h e e x p e r i m e n t a l b a t c h d a t a i s p l More-o t t e d More-on l More-o g - l i n e a r a x e s , More-one can see t h a t a f a i r l y good s t r a i g h t l i n e i s o b t a i n e d . That i s even a v e r y s i m p l e e x p r e s s i o n l i k e t h a t g i v e n by eq.(32) i s s u f f i c i e n t t o d e s c r i b e most o f the b a t c h g r o w t h . Thus t h e u s e o f c o m p l i c a t e d e x p r e s s i o n s l i k e t h a t g i v e n by eq.(31) may i n t r o d u c e u n n e c e s s a r y c o m p l i c a t i o n s p a r t i c u l a r l y i n the e s t i m a t i o n of model p a r a m e t e r s , i n w h i c h c a s e i m p l i c i t n o n l i n e a r r e g r e s s i o n i s n e c e s s a r y .

As p o i n t e d o u t p r e v i o u s l y , u n s t r u c t u r e d models do n o t c o n s i d e r changes i n c e l l u l a r c o m p o s i t i o n . Hence they a r e e x p e c t e d t o be s u c c e s s f u l a t s t e a d y s t a t e s o r d u r i n g t r a n s i e n t s t a t e s where t h e c e l l u l a r c o m p o s i t i o n r e m a i n s t h e same. F o r b a t c h growth i t has been shown t h a t f o r t h e c o m p o s i t i o n t o r e m a i n the same, each c o n s t i t u e n t compartment i n t h e c e l l must grow e x p o n e n t i a l l y a t t h e same r a t e as t h e t o t a l b i o m a s s . i . e . , s t e a d y s t a t e w i t h r e s p e c t t o w e i g h t f r a c t i o n s o f t h e components. When t h i s c o n d i t i o n i s s a t i s f i e d g r o w t h i s c a l l e d balanced.32 Thus when growth i s b a l a n c e d i t i s e x p o n e n t i a l t o o . The r e v e r s e i s however, n o t t r u e i . e . , e x p o n e n t i a l growth need n o t be b a l a n c e d .

I n an a t t e m p t t o check t h e v a l i d i t y o f t h i s m a t h e m a t i c a l s t a t e m e n t , macro-m o l e c u l a r c o macro-m p o s i t i o n was d e t e r macro-m i n e d d u r i n g e x p o n e n t i a l g r o w t h . As shown

i n F i g . 5, v i s u a l a n a l y s i s cannot r e j e c t t h e h y p o t h e s i s o f b a l a n c e d g r o w t h . However, t h i s m i g h t be a s i m p l i f i e d p i c t u r e , s i n c e , f o r i n s t a n c e t h e p r o t e i n

(26)

c o m p o s i t i o n m i g h t change w h i l e t h e t o t a l m e a s u r a b l e amount r e m a i n s t h e same.

Fig. 5: Macromolecular composition during batch growth.

I n F i g . 6, t h e gas exchange d a t a f o r a d i f f e r e n t b a t c h e x p e r i m e n t i s shown t o g e t h e r w i t h t h e s i m u l a t i o n p r e d i c t i o n s ( s o l i d l i n e s ) . H e r e , a d i s c r e p a n c y e x i s t s between t h e s i m u l a t e d and e x p e r i m e n t a l b e h a v i o u r towards t h e end of t h e e x p o n e n t i a l phase. The e x p e r i m e n t a l d a t a i n d i c a t e s i n c r e a s i n g Yo x and Yc x v a l u e s . No s a t i s f y i n g e x p l a n a t i o n f o r t h i s b e h a v i o u r c o u l d be o f f e r e d . T h i s i s f u r t h e r d i s c u s s e d i n C h a p t e r 4.

(27)

Continuous cultures

D u r i n g growth i n c o n t i n u o u s mode a t s t e a d y s t a t e t h e biomass c o m p o s i t i o n remains t h e same. Hence an u n s t r u c t u r e d model has a good chance o f s u c c e s s . However, such a model a l s o assumes t h e b i o t i c c o m p o s i t i o n t o r e m a i n t h e same at d i f f e r e n t d i l u t i o n r a t e s . As shown i n F i g . 7 t h e m a c r o m o l e c u l a r c o m p o s i t i o n , p a r t i c u l a r l y t h e RNA f r a c t i o n , changes as a f u n c t i o n o f t h e growth r a t e . M o r e o v e r , t h e e l e m e n t a l c o m p o s i t i o n o f biomass a l s o changes. S t a t i s t i c a l a n a l y s i s c a r r i e d o u t f o r 9 e l e m e n t a l c o m p o s i t i o n d e t e r m i n a t i o n s r e v e a l e d t h a t v a r i a t i o n i n C, H and N c o n t e n t s a r e s i g n i f i c a n t . Based on t h i s a n a l y s i s the e l e m e n t a l f o r m u l a o f biomass c a n be a p p r o x i m a t e d as a f u n c t i o n o f t h e growth r a t e , by : C H N 0 where b = (7.33 - 0.50 y ) / z 1 b c d c = (12.33 + 3.40 y ) / ( 1 4 z ) d = 26.97/(16z) z = (53.61 - 3.74 y ) / 1 2

For most c a l c u l a t i o n s an average f o r m u l a a t y = 0.5 h r_1 i s t a k e n ; ( yx = 4.16, m o l e c u l a r w e i g h t = 23.16, C H „N 9->oOn , „ , ) •

Fig. 7: Micvomolecular composition as a function of the growth rate, w 3 RNA = 0.11

wV n 3 Protein = 0.71 W]i~0 ' CaJb°Hld-Ta~te = 0.065

The s e n s i t i v i t y a n a l y s i s p r e s e n t e d f o r b a t c h growth model w i l l n o t be r e p e a t e d f o r c o n t i n u o u s c u l t i v a t i o n . The c o n c l u s i o n w i l l s i m p l y be s t a t e d a s : growth b e h a v i o u r d e s c r i b e d by t h e g e n e r a l u n s t r u c t u r e d m o d e l , e x c e p t near t h e wash-out r e g i o n , i s r i g i d l y f i x e d by t h e e n e r g e t i c p a r a m e t e r s , Y ™X X > m s

-Data o b t a i n e d from a c o n t i n u o u s c u l t u r e experiment were f i t t e d by t h e l i n e a r r e l a t i o n , as shown i n F i g s . 8 and 9. These p l o t s i n d i c a t e t h a t g r o w t h i n

c o n t i n u o u s c u l t u r e c a n i n d e e d be d e s c r i b e d by t h e p r e s e n t e d m o d e l . F i g . 8 shows a good s t r a i g h t l i n e f i t . However, s m a l l b u t d i s t i n c t d e v i a t i o n s c a n be seen f o r d a t a a t low growth r a t e s .

(28)

Fig. 8: Specific rate of svbstrate consumption as a fuction of the growth rate. Fig. 9: Specific OUR and CPR as fuations of the growth rate.

The e n e r g e t i c p a r a m e t e r s may be o b t a i n e d from c o n t i n u o u s c u l t u r e d a t a by p e r -f o r m i n g l i n e a r r e g r e s s i o n v i a t h e u s e o -f e q u a t i o n : q = y I Ym a X + m (38) s s x s or by p e r f o r m i n g n o n l i n e a r r e g r e s s i o n v i a t h e u s e o f t h e f o l l o w i n g e q u a t i o n : Y = y Ymax / ( y + m Ym a x ) (39) sx sx s sx I f t h e e x p e r i m e n t a l measurements a r e e r r o r f r e e , b o t h methods s h o u l d g i v e e x a c t l y t h e same p a r a m e t e r s . I f t h e r e a r e a s s o c i a t e d e r r o r s t h e s e approaches may r e s u l t i n d i f f e r e n t parameter e s t i m a t e s . An a n a l y s i s o f t h e two p r o c e d u r e s was c a r r i e d o u t and i t was found o u t t h a t i n a l l t h r e e c a s e s ( f o r s u b s t r a t e , oxygen, c a r b o n d i o x i d e d a t a v s . g r o w t h r a t e ) n o n l i n e a r r e g r e s s i o n gave a b e t t e r f i t f o r t h e e x p e r i m e n t a l d a t a . T h i s has been a s s e s s e d by c a l c u l a t i n g the scaled sum of residuals ( s e e T a b l e I ) . The d i f f e r e n c e m i g h t stem from t h e f a c t t h a t qs i s n o t a d i r e c t l y m e a s u r a b l e q u a n t i t y , b u t i s c a l c u l a t e d f r o m qs = y / Ys x . Thus i t may have a d i f f e r e n t e r r o r s t r u c t u r e . M o r e o v e r , i n a qs v s . y p l o t one has y i m p l i c i t l y i n b o t h axes and t h i s may be q u i t e u n d e s i -r a b l e f-rom a m a t h e m a t i c a l p o i n t o f v i e w . The dange-rs o f t h i s e x e -r c i s e i . e . , i n c l u d i n g the same v a r i a b l e i n b o t h axes i s d i s c u s s e d by Himmelblau.33

The e x p e r i m e n t a l d a t a have f i r s t been i n d i s c r i m a n e n t l y p r o c e s s e d by l i n e a r and n o n l i n e a r r e g r e s s i o n p r o c e d u r e s . The r e s u l t s a r e p r e s e n t e d i n T a b l e I .

I f t h e r e s i d u a l s a r e examined, one c a n d e t e c t a t r e n d ( F i g . 8 , 9 ) . T h i s i s p a r -t i c u l a r l y a p p a r e n -t i n -t h e qc v s . y p l o t . Here t h e r e s i d u a l s change t h e i r s i g n

(29)

T a b l e I : P a r a m e t e r e s t i m a t e s o b t a i n e d f r o m c o n t i n u o u s and b a t c h c u l t u r e d a t a . C o n t i n u o u s C u l t u r e d a t a : N o n l i n e a r R e g r e s s i o n L i n e a r Regresión A l l d a t a p o i n t s , n=27 / ( Z i e e r r n t i i r n Ymax 0.698 (0.869 - 0.707) 0.710 (0.701 - 0.720) sx Y ™a x 1.583 (1.542 - 1.624) 1.613 (1.570 - 1.659) Ymax 2.391 (2.289 - 2.493) 2.465 (2.367 - 2.570) cx m 3.342 (3.059 - 3 . 6 2 3 ) . 1 0 "2 4.072 (3.290 - 4 . 8 5 2 ) . 1 0- 2 s m 3.740 (3.365 - 4 . 1 1 5 ) . 1 0- 2 4.065 (3.373 - 4 . 7 5 7 ) . 1 0- 2 o m 3.668 (3.177 - 4 . 1 5 9 ) . 1 0_ 2 3.998 (3.321 - 4 . 6 7 5 ) . 1 0- 2 D a t a c o l l e c t e d above , y > 0.1, n=21 Ymax 0.710 (0.699 - 0.721) 0.7* 0.719 (0.706 - 0.732) 1.4* sx Ymax 1.620 (1.563 - 1.677) 2.5* 1.640 (1.570 - 1.701) 3.0* ox Y ™a x 2.513 (2.376 - 2.650) 5.3* 2.561 (2.428 - 2.709) 6.8* ms 4.241 (3.627 - 4 . 8 5 5 ) . 1 0- 2 4.997 (3.846 - 6 . 1 4 8 ) . 1 0- 2 m0 4.320 (3.627 - 5 . 0 1 2 ) . 1 0 ~2 4.609 (3.517 - 5 . 7 0 1 ) . 1 0 ~2 mc 4.530 (3.756 - 5 . 3 0 5 ) . 1 0- 2 4.819 (3.835 - 5 . 8 0 3 ) . 1 0 ~2 Thermodynamic e f f i c i e n c y v e r s u s g r o w t h r a t e d a t a , y> 0.1, n=63 Ymax 0.700 (0.693 - 0.707) mg X 4.146 (3.661 - 4.631). lö~1,B e r r r t t l J B a t c h C u l t u r e d a t a ( a v e r a g e o f t h r e e e x p e r i m e n t s ) : Y ™ £x 0.705 a l l Ymax i n C-eq/C-eq, C-eq/mole

Y™|x 1.544 a ll m i n c-eq/C-eq/hr, mole/C-eq/hr

Y ™a x 2.313

* s c a l e d sum o f r e s i d u a l s x 1 02

f i g u r e s i n p a r e n t h e s e s a r e t h e 95 % c o n f i d e n c e l i m i t s .

i n t h e t i m e sequence o n l y t h r e e t i m e s . Whereas i f t h e y had been r a n d o m l y d i s t -r i b u t e d t h e e x p e c t e d numbe-r o f s i g n change would have been ( n - I ) / 2 = 13. The d i s t i n c t d e v i a t i o n a t l o w y c a n be t h o u g h t t o be due t o t h e r e d u c e d v i a b i l i t y of t h e o r g a n i s m s . S i n c e above y=0.1, v i a b i l i t y i s more t h a n 95 %^4 a n ot h e r s e t

of p a r a m e t e r s were o b t a i n e d o n l y by p r o c e s s i n g d a t a c o l l e c t e d above y=0.1, (n=21, see T a b l e I ) . Note t h a t t h e r e a r e s i g n i f i c a n t d i f f e r e n c e s i n t h e m v a l u e o b t a i n e d by t h e two p r o c e d u r e s . F o r t h e second s e t , t h e goodness o f f i t i s a l s o shown f o r l i n e a r and n o n l i n e a r r e l a t i o n s . F o r d a t a above y=0.1

r e s i d u a l s o f t h e qs v s . y r e l a t i o n changes s i g n 11 t i m e s , qQ v s . y,9 t i m e s

(30)

e x c l u s i o n o f d a t a c o l l e c t e d a t v e r y low growth r a t e s , r e s t o r e d t h e l i n e a r i t y o f the d a t a i n r e l a t i o n t o t h e l i n e a r l a w . Thus i t c a n be c o n c l u d e d t h a t above p=0.1 t h e l i n e a r r e l a t i o n i s a r e a s o n a b l e d e s c r i p t i o n o f t h e c o n t i n u -ous c u l t u r e e n e r g e t i c s .

As d e s c r i b e d p r e v i o u s l y Y o r m v a l u e s c a l c u l a t e d from one e x p e r i m e n t a l r e s p o n -se c a n be c o n v e r t e d t o one ba-sed on a n o t h e r , by t h e u s e o f m a c r o s c o p i c methods Thus t h e most o p t i m a l e s t i m a t e o f t h e p a r a m e t e r s , Y and m c a n be o b t a i n e d by c o n s i d e r i n g d a t a o b t a i n e d f r o m a l l r e s p o n s e s , s i m u l t a n e o u s l y i . e . , when e v e r y measurement c o n t r i b u t e s t o t h e r e s u l t . T h i s c a n be done by p r o c e s s i n g I] v s . H d a t a , where r| i s c a l c u l a t e d f r o m Ys x, Yo x and Yc x d a t a (n=63) . The p a r a m e t e r s o b t a i n e d i n t h i s way a r e a l s o g i v e n i n T a b l e I . From t h i s t a b l e i t c a n be seen t h a t t h e 95 % c o n f i d e n c e l i m i t s o f m v a l u e s a r e q u i t e l a r g e when compared w i t h t h o s e o f Ymax v a l u e s . S i n c e t h e s e p a r a m e t e r s a r e d e t e r m i n e d s i m u l t a n e o u s l y , t h e i r e s t i m a t e s c a n be c o r r e l a t e d . A b e t t e r p i c t u r e c a n be o b t a i n e d about t h e a c c u r a c y o f t h e s e p a r a m e t e r s by c a l c u l a t i n g t h e i r a p p r o x i m a t e l o c u s o f t h e j o i n t c o n f i d e n c e l i m i t s ( F i g . 1 0 ) . From t h i s f i g u r e i t c a n be seen t h a t t h e e s t i m a t e s o f Y ™x x and mg a r e s l i g h t l y c o r r e l a t e d ; t h e p r i n c i p a l axes o f t h e e l l i p s e a r e a t an a n g l e t o t h e c o o r d i n a t e a x e s . I t has t o be emphasized t h a t the e s t i m a t e s o f Ymxx and ms may l i e o u t s i d e t h e i r i n d i v i d u a l c o n f i d e n c e l e v e l s . F r o m t h i s d i s c u s s i o n i t c a n be c o n c l u d e d t h a t t h e v a l u e o f Ymgx c a n be d e t e r m i n e d w i t h r e a s o n a b l e c e r t a i n i t y , w h i l e t h a t o f ms can o n l y be d e t e r -mined w i t h a l a r g e u n c e r t a i n i t y . Wide c o n f i d e n c e l e v e l s r e s t r i c t s one t o draw f i r m c o n c l u s i o n s from e x p e r i m e n t a l work c o n c e r n i n g m a i n t e n a n c e m e t a b o l i s m . Such w i d e c o n f i d e n c e l e v e l s may be one o f t h e r e a s o n s f o r t h e w i d e range o f m v a l u e s r e p o r t e d i n l i t e r a t u r e , f o r t h e same o r s i m i l a r s y s t e m ( s ) .

W i t h r e f e r e n c e t o T a b l e I , as f a r as t h e maximal y i e l d s a r e c o n c e r n e d , one c a n a l s o c o n c l u d e t h a t t h e r e i s no s i g n i f i c a n t d i f f e r e n c e between t h e e n e r g e t i c s of m i c r o b i a l growth i n b a t c h and c o n t i n u o u s modes.

Fig. 10: The loons of the joint confidence limits for energetic parameters as determined by the linear relation for substrate consumption; sq.(S&). (for data shewn in Fig.8)

Cytaty

Powiązane dokumenty

The use of the Hasminskii function allows us to prove the asymptotic stability if condition (3.1) holds but it is difficult or impossible to check (3.4).. We check that V

For functions of one and two real variables, the rate of pointwise and uniform convergence of some Bernstein type algebraic polynomials is investigated..

Free trial available

For the present study however it was considered to be important to be able to include a wider range of true wind angles and a varying true wind, both in speed and direction, to be

In the group of patients subjected to implantation of Austin-Moore’s endoprosthesis, average range of active flexion in hip joint in sagittal plane on the third day after

The table below shows the frequency distribution of the number of dental fillings for a group of 25

(5) (e) State whether the line AB is perpendicular to the line BC showing clearly your working..

coordi~ate transformation) among the various dispersion curves, even for related substances, and unfortunately, information on the oscillator strengths for a