• Nie Znaleziono Wyników

An unusual occurrence of the Dytiscidae (Coleoptera) in the siliceous, flowstone of the Upper Miocene cave at Przeworno, Lower Silesia, Poland

N/A
N/A
Protected

Academic year: 2022

Share "An unusual occurrence of the Dytiscidae (Coleoptera) in the siliceous, flowstone of the Upper Miocene cave at Przeworno, Lower Silesia, Poland"

Copied!
19
0
0

Pełen tekst

(1)

KOMITET GEOLOGICZNY POLSKIEJ AKADEMII NAUK

PAlllsTWOWEo WYDAWNICTWO NAUKOWE. WARSZAWA

Vol. 23, No. 3

KAZIMIERZ GALEWSKI & JERZY GŁAZEK

acta geologica polonica

Warszawa .1973

An unusual occurrence of the Dgtiscidae (Coleoptera) in the siliceous, flowst6ne of the U pper M iocene cave at Przeworno,

Lower Silesia, Poland

ABSTRACT: The discov,ery of we'll preserved fragments of Dytiscidae, including the extant species Hydaticus laevipennis ThoIXlSOlIl (Coleop1lera, Dytiscidae) in the Upper Miocene siliceous f.lowstone deposits at Przeworno, LO'W1er Siłesia, is discussed. These deposirts were foOrmed during a rapid precipitation 'Cif silica from hort spring water flowing through a bog areainto 'a karst slnk. Descriibing the site of discovery, the wrdters also ,give same notes on the ecology ,of the species found and on their

evolution.

INTRODUCTION

Remnants of a cave with siliceous flowstone deposits (cj. Głazek &

al. 1971), c~ntaining surprisingly well preserved imagoes of water beetles (cj. Głazek & al. 1972) of the family Dytiscidae were revealed, along with vertebrate fauna s, during geological investigations of the fossil karst phenomena in an old rrtarble quarry at Przeworno (Lower Silesia, SW Po- land, 17° 10' 40" of eastern longitude and 50° 41' 41" of northern latitude;

Fig. 1).

The fossil insects have never been described from such unsual depo- sits. Localities containing mor e than only single insect· fragments are

(2)

446 KAZlMl'ERZ GALEWSKI & J·ERZY GŁAZEK

knowneither from lacustrine and fluvial deposits (e.g. Heer 1847, 1862;

Pongnlcz, 1935; Statz 1939; Gersdorf 1969, 1971), or coastal, mostly deltaic or lagoonalones (e.g. Papp & Thenius 1954, Britton 1960; Zeuner 1962, Bek'ker-Mą.gdisova1964).Some insectswere aIs o reported from the Baltic and. Mexican am,bers.,In a11 suchoccurrences, strongly predominant are terrestrial iriseCts, while water beetles make up less than 100/0 of insect necrocoenoses (e.g. Zeuner 1962, Bekker-Magdisova 1964, Gersdorf 1971;

for necrocoenose .concept - see Davitashvili 1945, 1964).

The beetles in question are assigned to the faroily Dytiscidae, so far

ńever found in the pre-Pleistocene deposits of Poland, except for questio.., nable speciIIiens from the Baltic amber (ej. Helm 1896, Statz 1939).

About 50 dytiscid species have hitherto be en described from the Tertiary deposits of Europe and North America (ej. Handlirsch 1908, Gui- gnot 1931-1933, Statz 1939, Rodendorf & Ponomarenko1962). Recently;

a dytiscid larva of a genus supposedly related to Agabus Leach (Angara- agabus Ponomarenko) has also been reported on by Ponomarenko (1963) from deposits as old as the Lower Jurassie of Siberia (USSR).

The specimens here described are housed at. the WarsawUniversity Institute,of Geology,where they are numbered IGPUW-Gt P. 3.1-16.

Acknowledgement8. The writers' ·thanks are extended to Professor S. Dżułyński for suggesting a hot spri-ngorigin of silica; to B. DroZ'd, M. Sc., fur taking photos of the speci!mens; to T. Wesołowska, M. Sc.,Ł. Karwowski, M. Sc., and A. Kozłowski, M.

Sc. for the geochemical investi:gation.

GEOLOGICAL SETTING

The marble quarry at Przeworno is situated· on the slope of a meta- morphic-rock inselberg, 204.2 m above sea level. The marbies are dipping NNE under quartzite and sericite schists of the Jegłowa Formation (Fig.

2), their age being still debatable, ,but not younger than older Devonian (ej. Głazek & al. 1971, 1972). The metamorphic formations, strongly vary- ing in morphology, are covered with regoliths and clayey-sandy deposits of Miocene age and overlaid along' an erosional surface· by the clays asslgned tp the Poznań Formation (Upper Miocene through Pliocene, ej.

Oberc & Dyjor 1969, Dyjor 1970).

All the formations presented are pierced by basaltic necks (ej. Fig . . 1); the volcanic activity probably lasted her.ein from the Oligocene to .

the Pliocene (Jerzmański & Maciejewski 1968).

Numerous karst forms exposed at the Przeworno quarry, mostly widened fissures, are filled with clays, some of them containing vertebrate fauna described by Dr. A. Sulimski (in Głazek & al. 1971).

The older fauna (Przeworno l) ,oocurs in the kaolinite-illdte clay which fills a horizontalkarst .passage .. The following .animals were found In the bonematerial

(3)

DYTISCIDAE IN THE M:IOCENE ',SILICEOUS FLOWSTONE 447

transported by water: Mustelidae gen. et sp, indet., PS,eudailurus C;f. quadridęntat~s

,(B1:adnville), Acerath,erium silesiacum Sulimski, Hyotherium .aft. soemmer.ingi, v. Meyer, DOTcatherium ,d. crassum (Lartet), Castoridaeand ,tortoises. This faunaindicate~

a swampy WO'Od environment of the earIy M-iocene and corresponds in age (Głazek

& al. 1971) to the seoond Ibrown-coal measute (SciJIlawa measure =; 3 LausitzerFIoz) ..

'!'he younger fauna (przeworno 2) occUX'S in an illiite clay, slight1y cemented with amorphou:s śilica and whlch fi,Ils thefisSure~ The bane materia! includes f 'OI- - 100000gvertebrates: PseudailuTus lorteti Gaillaa:-d, Hyotherium''Simorremse (Lartet) and Euprox furcatus (Hensel), 'moreover; 50 f'ar undescribed Mastodontinae, Rhino- cerotida'e, $uidae and Pldopithecinae, along,withsmalJ, fragments olf tortoises, :lizards and birds.This assemlblage is iJIldicative ,od' a steppe-forest enViir'onment and awarm savanna' cUma<te of :the YOll'nger Vindobonian (Gł8zek & a'l. 1971,1972; Prolf. K. Ko- walski, letter cammunications in 1971-1972). It corresponds in time, ,to the uplift and erosion i,n this area, which was marked by a huge sequence ol detrital deposits of the third cycle ci brown-ooal sedimentation Wh.ich termina.ted in the Lusatiari

0 2 5 5 0 , ,

Fig. l

Geoilogical slketch mCllP ofLowe!r Silesia ('compiled f ToIn maps publi:shed by GeC>.- logical Survey CIf POland); inset s'hows location 'Of the disoctJiSlSed area in Poland l pre-voariscan subSt-rate oom,posed maionly of crystall1.ne rocks, z post-Variscan' cover (Upper Paleozole and iMesozoic), 3 Ter.tiary sedlments, 4 extent of Lower Tortonian marine deposits In the Wawrzyńcowree graben, s Tertiary ,basaLts, 6 major fa~t1I, 7 s;I.llceo).l~

depOSlts of hot BPrlngs (a'1'row -markś PIrozeworollO), 8 Ter1lia,ry (1) kaOllinized crystalline rocks

in lthe Vlicinlty ol Przeworno ' ,

Qua,ternrary depoSits omitted; NSG - North 'Sudetic Graben

(4)

448 'KAżtMIERZ GALEWSKI & JERZY GŁAZEK

'coal measure (Lausitzer Unterfl6z) further to the North (Oberc & Dyjor 1969; Gla- 'zek & al. 1971, 1972). I!Il thiS'thklk s.equence there occurirregularly so~called quar- tzites which really are s'andstonescemented 'by sUka; Accorwng toObel"c &' Dyj-or (1971), they are oonnected wtith fault Unes and may be iIiterpreted as a itesult of the acbivity ·of hot springs.

The secondary silica, forming flints in interbedding spaces and frac- tur es within marbIes, and impregnating greenish clays in fissures, abun- dantly occurs in the SW part ·of the quarry. Two fragments of cave with siliceous flowstone, identical with the silica which forms flints in mar- bIes and. impregnates clays, are' preserved in the southern wall of the quarry (Fig. 2).

DESCRIPTION OF. THE SITE

Cave with siliceous flowstone

The most interesting is the western remnant of the cave with the siliceous flowstone (3 in Fig. 2, Fig. 3; Pl. 2). It is a steep channel deeping into the quarry from the south iffidoóated with a tawny-brown silica flowstone. On the cave walls, silica' locally covers a thin layer of calcite crystals (see Fig. 10 in Głazek & al. 1971). The brown silica flowstone is compact with a dark lamination and spots paralleI to the wali. The lami- nation and, shape of flowstone indicates a downward direction of a sili- ca-bearing flow from SW. Pieces of surrotmding marble occur in the silica. An irregular, surface part of siliceous flowstone is white and po- rous .. This outer white crust cuts primary lamination (see Pl. 4, Fig. 1 in Głazek & al. 1971). As revealed by an X-:ray analysis, brown flints cOrlsist of an amorphous material with onlya trace of quartz (see Fig. nA in Głazek & al. 1971). According toan X-ray diffractogram,. the white matter consists of an amorphous materia l with an admixture of clay mi- neraIs of the smectite group and quartz (see Fig. llB in Głazek & al. 1971).

The investigation indicates that the white matter originated as a result of the etching Ol tawny silica. The etching solution brought a small amount of clay mineraIs into pores and enabled some-recrystallization of silica into quartz. According to recent experimental data of Harder & Flehming (1970) such recrystallization at low temperature may be a quick process if the solution is undersaturated with amorphous silica and if hydr.oxides of Fe, Al, Mn, Mg and other elements are present. .

Horizontally laminated dark olive clays occur in an about 30 cm thick layers in the lower part of the center of channel (Fig. 3). According to a thermal analysis (see Głazek & al. 1971, Fig. 9D) these clays are com ..

j:iosed of'-hydromica, smectite and organie matter. Three pollen analyses, made by Dr. A. Sadowska (see Głazek & al. 1971, Table 1), show that the

(5)

DYTIS·CIDAE IN THE M!OCENE SILICEOUS FLOWSTONE 449

g/-\'

ń

- . . / e

A. A. f A-

C

tr g

. ' d

...

a W

b

~

- - -

Fig. 2

Situa!tion of the beeble-containing deposits at the Prz'ewomo quarry

A sketch map of the qua-rry (after Oberc 1966, modified): a marbIes, b Jeglowa Formation, c karst forms filled with clays, d clays with vertebrate fauna s in the karst forms (loca- lities Przeworno 1 and 2), e area of silic·eous de.posits in joints and cavities in mar bIes or older clays, f remnants of the cave with siliceous flowstone (beetle locality Przeworno 3),

g tectonic {! ()II1ta et, h escarpments

B general view of the sou1herrn wall 'of the quarry; arrows indicate remnants of the cave with siliceol.'-l flowstone; reeotangled ,is a pa'rt of the oave presented in C

C close-up view of lhe {!ave with sil'iceous flowstone; arrowed is the collection site;

rec·tangled is a fragment of the flowstone presented in Pl. 2

(6)

450 KAZliMI'ERZGALEWISKI& JER'ZY GŁAZEK

Fd,g. 3·

o

1 - , _ _ _ _ _ . . . O,5m

\

o D 5 o .

@~. 4

\

~

3

/ 2 B:J

1

S'c'hematic seC'tion of the Miocene eave, and situation of the bee'tle necro'coenosLs l mal'bles, li· s1łiceolls flawlStOoIle, 3 clays, 4 beetles, 5 sampies for pollen analysis (et. Gła-

. .. zek & al. 3,m, Fig. ·10A) .

. clays are of the Tertiary and not older than Middle Miocene age (ej. Gła­

zek & al. 1971, p.485). The composition, appearance and pollen assembla- ge are simi1ar to those of the Poznań Formation (ej. Dyjor& al. 1968).

Oeeurrenee oj beetles

Further investigations revealed the occurrence af water beetles in brown compact silica (Głazek & al. 1972). Adozen or so beetles were found in the western, lower part of that cave. Some of them are. nearly com-' plete imagoes, most of them "- fragments only. The beetles are slightly compacted and partly empty.They are devoid of extremities and often - only thorax, or thotax with abdomen (ej. Pl. 1), or, at most isolated leg.

fragments are preserved. . . ' ...

'. The etching in H2F2 gave no satisfactory results since, like those found in amber, the bodies af bee'tles disintegrated in. solution to small pieces. To se:parate the insects from the surrounding rock, the writers chose a simple mechanical method, whereby either the upper. or 10wer surface of the body was exposed, and, to avoid damage, they gave up any further manipulation.

The beetles were found laying paralleI to the f1owstone lamination which suggests that they were washed with surface waters through the

(7)

DYTXSC!r.DAE IN THE MIOCENE SILICEOUS FLOWSTONE 451

sinkhole into thecav!,!, deposited near its bottom and subsequently cove- red with silica gel. In all probability, they were already dead. andpartly damaged when transported.

Three easily identifiable fragments were determined (Galewski &

Głazek 1973) as parts of Hydatieus laevipennis Thomson, Theexcelent preservation of the shape of beetles with distinct sutures, microsculpture and body coloring is suffiCient for their identification. Diving beetles of the genera:Aeilius Leach (ej. Pl. 1, Fig. 4), Hydroporus Clairv. and Can-..

thydrus Sharp were also found at the same sit e in addition to another Hydatieus species, whose identification requires a further study .

. AGE AND ORIGIN OF THE SITE

Stratigraphieal position

Since the clays containing the vertebrate remains. are slightly ce- mented-by silica, particularly so theirupper part (ej. Fig. 2; and Głazek

& al. 1971, 1972), the beetle-bearing silica deposits are younger than the Przeworno 2 fauna. On -the other hand, they are older than the clays which fill the cave and contain an Upper Miocene or Plioc'ene pollen as- semblage (ej. Fig. 3, and Głazek & al. 1971). The paleogeographical situ- atipn implies thatthe silica was deposited under the erosional regime prior to the sedimentation of the Poznań Formation. These premises sug.- gest the age of fossil beetles may be determined as Upper Miocene.

Eeologicalremarks

. All beetle genera found at Prz·eworno I'epresent living beetles. The Recent species Hydatieus laevipennis Thomson seems to prefer marshy , areas with grassy vegetation (grasses, sedges) andmosses. Much the same as other representatives ofthis genus (ej. Galewski' 1971), it was found in various kinds

01

small, temporary water-bodies andsporadically in smalI rivers with a slow current.

_ Origin oj the site

The age coinCidence of siliceous flowstone and "quartzites" in brown-coal deposits, as wellas the low alcaline environ1nent, in which silica was mobilized, have been pointed out inprevious papers (Głazek &

al. 1971, 1972). Further speculations were made, with respect to the youngerMiocene "paleogeographical conditions facilitating activation of silica on wst areas during weal1:hering" (Gła'zek & al. 1971, p. 494). Cur- rent investigations do not confirm the existence of such a great mobility

(8)

452 KAZl'MłEaZ GiALEW,SKI & JERZY GŁAZE'K

. of silica during weathering even in humid tropics (e.g. Douglas 1967, 1969).

Under such circumstances, adifferent model has to be adopted.

Harder & Flehming (1970) indicated that the amorphous silica pre- cipitated from a solution highly supersaturated with respect to the amorphous silica (i.e. much· more than c. 120 ppm --: cf.· Siever 1962, Harder & Flehming 1970). Such a great content of dissolved silica of na- tural surface waters was, stated only in alcaline hot springs water (e.g.

White 1957a, 1957b; Arnorsson & al. 1969). In the areas of alcaline hot springs siliceous sinter deposits, composed of entirely opaline silica,are most common (Allen 1934a, 1934b; Allen & Day 1934; Barth 1950). Usual- ly, these deposits are finely banded and when frequently moistened by spring water they remain dense and glassy (Allen 1934b). Such conditibns could have occurred at Przeworno.

Since the volcanic hot spring waters and the siliceous sinter they deposit are enriched with lithium, titanium and zirconium (Barth 1950, White 1957a, b), it was possi'ble to check up on the hypothesis of silica formation by spęctral emission analyses of silica fragments, which was done by T. Wesołowska. A relatively high content oJ the elements ment- ioned above (Li N 100 ppm,Ti N 10 ppm and Zr N 3 ppm:) confirmed· the hypothesisof the origin of silica from volcanic hot spring waters.

In the site under study the hot spring water which probably flowed through a marshy or bog area inhabited by various aquatic Coleoptera, could mix with peat water. The peat water drastically reduced solubility

~a

.

/-:::''Z/ó

~f

Fig. 4

SUIP~d environmental con-dittions of sd1ioca precipitation at the Pneworno cave a marbies, . b Jegława Formation (kiaolinized qua,rtzitdc schists), c vertebrate-bearlng k·arst

fillings (1 U,pper Burdigalian, 2 YQWlger Vindobonian), d ponds o~relate<j. wa,ter-bodies, e cave and crevices with· siliceous deposits,· f inferred trend of water fram a hot· spring

(9)

DYTISCIDAE IN THE MIOCENE S,LLlOEOUS. FLOWSTONE 453

of silica (according to Siever, 1962, the solubility of silica in peat wat er reaches 14-23 ppm only) and accelerated its precipitation. Althoughno siliceous sinter deposits on the surfaces are khown, such an explanation may be suggested for the situatitm observed (Fig. 4). Such fossil products are very hardly recognizableand, being superficial, they would be easily crushed and destroyed byglacial action and erosion even in such volcanie:

areas as Iceland (ej. Barth 1950). As far as the writel's know; the pre- -Quaternary siliceous sinter deposits are extremely rare, only one exam- ple being described by Cuvillier (1925, jide El Ramly 1969) from the envi- . ransof Cairo, Egypt.

The situation observed in which the siliceatis sinter· was deposited during the sinkingof a Supersaturated silica solution into karst holes and fissures may be e~lained if we keep in mirtd the"response time" (ej.

Roques 1964) of the precipitation. The depósition of silica sinter has to' be slower than the velocity of water flow before its sinking and the

"response time" had not been reached by the supersaturated solution before it sinks into karst holes and cracks. Similar conditions may cause the formation of silica sinter along streams at a . considerable distance from some hot springs (ej. Allen 1934b, Barth 1950).

Silica was probably precipitated after the cooling of water. This supposition can not be proven, because the siliceous flowstone does not contain any gaseous-liquid inclusions, which might be used to determine temperatures at which silica precipitates 1.

Paleogeographic situation

Since the silica-bearing solution was flowing down into the cave.

the deposition of silica sinterin the cave and fissures to ok place above the groundwater table in marbIes. Such conditions resemble those under which the Przeworno 2 vertebrate fauna was accumulated (ej. Głazek &

al. 1971, 1972). Thus, this process probably occurred not much later than theformation of this locality. A longer time interval might separate the formation of the siliceous flowstone and the deposition of clays with pol- lens which were subsequently deposited in the cave in a different chemi- cal environment.Such a coneIusion is in conformitywith Oberc's & Dy- jor's (1971) statement, and indicates another site

ot

a hot spring activity during theJate Miocene in the fore-Sudetic block.

Both sites of hot spring activity in the late Miocene are located in areas which the rigid fore-Sudetic block was downwarped then to the' North Sudetic Graben in the north-west and to the Wawrzyńcowice Gra- ben in the south-east. The locality described is situated in the latter of the two slopes, of the fore-Sudetic block, namely in its upper part, and

1 Search forsuch inc1usLons was made by L. Karwowski, M. Sc.

(10)

454 'KAZIMIERZ GALEW,SKI & JERZY GŁAZE'K

during its formation the subsiding Wawrzyńcowice Graben wa:s· invaded by the LowerTorloni'ansea fromthe fore-Carpathian depression (ej.

Krach 1958; Głazek & al. 1971, 1972). It is possible, that the hot spring activity coincided with an extensivehydrothermal. kaolinizationand rock·

-crystal fbrmation in the neighboring Jegłowa Formation (ej. Kozłowski

& Karwowski 1972, Szpila & al. 1972). Duringthe rock alteration caused

by acid and nearly neutral hot waters, the conditions wel'e suitable to the development of mineraIs of the kaolinite and montmorillonite groups (ej. Barth 1950).

Considering the recent area of volcanic and hot sprmgs activity with active faults and broad rock alterations, the rapid changes . in chemical composition of wat er in these springs, as well as the individual variability in chemical composition ofdissolved matter in the same group of sources (ej. Allen & Day 1934, Barth 1950) these supositions arenot contradiction- ary to each other. Moreover, considerable changes in the chemical cbm- position of solution were stated even during crystallization of a single rock crystal at Jegłowa, as such crystals were intermittenly etched during their growth (Kozłowski & Karwowski 1972).

SYSTEMATIC PIART

(by K. Galewski)

Class Insecta Linnaeus, 1758 Order Coleoptera Linnaeus,1758 Family Dytiscidae· ·Latreille, 1825 Genus HYDATICUS Leach, 1817 Hydaticus laevipemiis Thomson, 1867

(Figs 5--6 and Pl. 1, Figs 1-3)

Material. - A well preserved imago with a visib1e, nea!1'lycomp1ete upper part (No. IGPUW-Gl. P. 3.8) and fragments of the ventral.side of thorax (No. IGPUW-Gl.

P. 3.7a and 26); all specimens fu'om1ihe locaUty Przewomo 3;

Dimensions. - Body 1ength 15 mm, head length 1.3 mm, width 2.4 mm, prono- tum length 2.1 mm, width 2.4 mm (in the middle), elytra length 11.6 mm, wid·th 7.4 mm.

Description. - The visiblle pa!it of the beetleconsists of <the upper surface af head, a larger ;part of !Pl'onotum, an ailmost camplete1y preserved riJgh:t e1ybra and a [argerpart

ar

the Ieftelytra (Flg.5 'and Pl. 1, ~. 11.). Body sidesstreamGrined, pro- noturo and elytra form:inrg con<tinuOUiSline. HeaJd dirty-reddish wtitha faint dlH'ik obldque streak. Later·al. margins of pronotum stl'ongly arcuate, posterior ,ang1es pro":

mineD't, acuminate; their inner edJges s.inuous. PrbnO'tum· dirty-reddish, its base wi·bha dark band, relative1y narrow, hardly extending over a half

ar

pronotum lengthand havmg in thecenter an on1y small, blotch-like anterior protrusion. Mi- cr-osculpture of pronotum consisting of tiny meshes with dism,nct strong punctures between them.

(11)

DYTłSCIDAE IN TREMIOCENE Sn.1CEOUS FLOWSTONE 455

Elytra blacklish, witha fain~ ddrly-reddish streak at its bas e, relatively brOaq in distaJ. 'pa:rt and withirregular, excised margins; however, pOOte'l"ior processes

("fr~") of the streatk (Visd.'hle lin Recent specimens) are liłcking. Elytral "striae'"

distinct. Elytralmicrosculpture sjroilar to that of pr,onotum: The punctW"es, however.

seem to be laTger, deeper and more irregularly distrdbuted than i,h ,the Recentforms;

lar-ger punctures seattered amonlg the smaJler ones, den.ser and. stronger thaon in the latter. A general pattern of puncturation as unmistakably dliferent fr,om that in the closely related Hydaticus transversaZis Pontop. ·

Metasternum. The fragment 'Of the· ventral side of "th'Orax ·(Fdg. 6 'and Pl. 2, Flg. 3), found t<Jge'1lher with the UiPPeJ." part of the specimen described, .most probably beloongs to the species, hut 'the apices of metasternal wings are slightly broader than in typd.cal Recent fmms. The. differences mayat leastbe padiy due to the . displaoement of sutures resułting from compaction.

DisctlJS'sicm. - The conspicuous charaders of the upper part of tlhe insect suf- fice for its identification. Th'lls, the prOOlotum 'shape, body eontoUrs, microscułpture of elytra and 'body -colordng place th'e insect in theDytiscid genus Hydaticus Leach.

The ventral part ot tthe thorax wlithexcellently preserved metas~rnal wings and metacoxal pl<ates iound in the s'ame site also indioate thds genus, The size of body and its color ,patiern, faintly inddcated, relatively broad at sides and the pale streąk at the base of elytra suggest a male of Hydaticus Zaevipennis Thomson. '.Dh:is ds more stroogly corr<Jborated by the elytral sculpture, in partIcular the absence of irregular, str.ong, vermn.cular cuts at the sides of pron<Jtum and elytr'a, charaderdstic of females of Hydati:C'us Leach.

ECOLOG'ICAL REMARlKS AND SOME PROBLEMS OF INSECTEVOLUTION

Hydaticus laevipennis Thomson is a north and central European species (it occurs in the southern and central part of Scandinavia, in Den- mark, Holland 'and northernpart of Poland and Germany); it wasalso found in the taiga zone of Siberia. In Europe, it is rare and sporadic. In Poland,.only single specimens .have be en found (Galewski 1971) in the environs of Warsaw and .41 the .Białowie~a Forest(National Park, the

Hwoźna River). The species seems to prefer marshy areas with grassy vegetation (grasses, sedges), and mosses. It has been collected in' various kinds of small temporary water-bodies, rain-water pools and puddles, ditches, small ponds. A specimen was once found in a small river (the . Hwoźna) witha slow current. Most probably it was an immigrant from temporary pools nearby. In winter, the adults most probably hibernate in forest litter, much the same as other species of Hydaticus Leach.

The Miocene discovery in Lower Silesia (Przeworno, the Sudetes foreland) c. 300 km south-west of the nearest Recent site (Warsaw), indi- . cates a mor e southern distribution of the species than the actual one.

This may surprise if weconsider a warmer climate in the Upper Miocene.

However, since H. laevipennisThomson is associated with marshy and bog habitats which at the time covered wider areas in Central Europe due to the predominance of rain-forest vegetation, the species could well be at home in Southern Poland and might have ranged even further south.

(12)

456 'KAZIMłERZ OALEWSKI & JERZY GŁAZEK

Of interest is an extensive age of the species which remained practi- cally unchanged over approximately 10 million years (ej. Gabunia &

Rubinsteiń 1968, Berggren 1972) ~ a period marked by various climatic

I

,

I I l I I I

I

I

I

I I J

Fig. 5

Shetch-drawing <J<f Hydaticuslaevipennis Thomson; IPrzeworno 3, Upper Miocene;

speciroen No. IGP UW Gl. P.3.B, presen'ted in Pl. 1, Fig. 1

and environmental transformations. The geographical range of the spec- ies certainly fluctuated to a considerable extent during that period. Pe- . riodically retreating from certain sites, the species probably reoccupied

the abandoned areas as the conditions gradually improved. When the cli-

PLATE 1

1-3 - Hydaticus lae'vipenrnis Thomson; Przeworno 3, Upper Miocene

1 o- dorsal vdew ol ·speciJlllen No. IGP UW Gl. P.3.B, X 6; 2 ..:.. ventral view ol &"pecimen No.

IGP UW Gl. P:3.7a, X 11; 3 - ventral view ol specimen No. IGP UW Gl. P.3.2a, X 3

4a-;b - Ac·mus sp.; PrzeW'Orno 3, Upper Mlocene, X 4

a - ventral view of Specimen No. IGP UW Gl. p.3.la, b - imprint of the ventral side of specimen No. IGP UW G!. P.3.1b

. Al! photos taken by B. Drozd, M. Sc.

(13)

ACTA GEOLOGICA POLONICA, VOL. 23 K. GALEWSKI & J. GŁAZEK, PL. 1

(14)

ACTA GEOLOG.ICA POLONICA, VOL. 23 K. GALEWSKI & J. GŁAZEK, PL. 2

Siliceous flcwstone in the Miocene cave at Przeworno (ef. Text-figs 2 and 3; coin diameter 3 cm)

Photo taken by Dr. J. Głazoek

\

\

(15)

DYTISCIDAE IN TH:E M:IOCENE ;SILICEOUSF,LOWSTONE 457

mate grew colder and mor e arid at the end of the Miocene, and the for- ests disappeared from southern Europe, its distribution became probably restricted: During the Pleistocene glaciations, . the f1uctuations in range were probably conl!!iderabłe, the spedes being driven to the south each time as the. glaciersadvanced in Eurasia and moving north again as they gradually receded. S'till, despite its great agility (a11 Hydaticus Species are perfect flyers)· and an ability to change its doroicile,. it wasprobably a greatecological plasticity of the species which enabled it to survive for a period of over 10 million years in Europe.

.

,

The presence of a species of Canthydrus Sharp, a chief1y tropical and subtropical genus, in the fossil material indicates, moreover, diffe- rent fauna composition of Central Europe at the time. Most probably, it .. also contained - aside from temperate zone species actua11y found in Central Europe - tropical and subtropical elements, the distribution of which definitely shifted south as the climatic conditions deteriorated.

Sa far, over 50 dytiscid species, none of them extant, have been des- cribed from the Tertiary deposits, about· 30 of them found in Europe and about a dozen in North America. They belong to the genera Hydroporus Clairv., Potamonectes Zimm., Laccophilis Steph., Agabus Leach, Hybius Erichs., Colymbetes Clairv., Erates Cast., Hydaticus Leach, Graphoderes Thoms., Dytiscus L., Cybister Curtis and Megadytes Sharp (one species . described as Cybister CUl"tis). However, most of these species closely re-

semble - in the writ~rs' opinion- extant forma and one may wonder if they are not currently living species. Unfortunately, we have not seen

Fig. 6

Sketch-drawing of the ven,tral s.ideof Hydaticu8 laevipennis Thoms'on; PrZ'e- warno 3, Upper Miocene; specimen ·No. IGP UW Gł.P.3.7a, presented in Pl. 1,

F1ig. 2

(16)

458 'KAZJ.M1ERZ GALEWSKI. &.J'ER'ZY GŁĄZE'K.

the specime.ns described and it is difficult of course to judge' from the

availabłe desf;ription .•

The only Tertiary species of Hydaticus 2 Leach described so far ---'-H~

zschokkeanus' (Heer)3. :- was found inthe Upper Miocene deposits in, Oehriingen (He er 1847).Unfortunateljr, the descriptions contain insuf- Iident information to concłudeon thesystematic position of thespecies.

A new, careful examination of the Tertiary materiał seems to be necess- ary belote it could be definitely stated that the species described does not in fact represent an actually living form.

The evolution of insects, which display a fast generation turn-over.

could be eX!pected to be a 'swift process, particularly so during frequent and fast climatic changes in thfi!Tertiary and' Quaternary. However, nu- merous fossil insects belonging tci extant genera; and some of the even to actually living species', indicatea considerable "cbnservatism" during the Cenozoic. They seem to have undergone prineipal radiative evolution and differentiation in theLate Paleozoic and the Mesozoic, and appear to have changed relatively little in subsequent periods. The Dytiscidae (beetles belonging surely to this family) so far recorded. from the Ter- tiary deposits all belong to extantgen€ra and are described as closely related to the Recent forms. The currently living speeies have soleły

been reported only from the Quaternary deposits.

Institute of Zoology

ot

the PoLish Academy of Sciences 00-679 Warszawa, ul. Wilcza 64

and Institute at Geology ot the Warsaw UniveTSity 02-089 Warszawa, Al. ZWiTki i Wigury 93

Warsaw, JanUary 1973

2 Anather speoies described by Heer {1861, fide Hiindlirsch 1-908) as Dytiscus areolatws Heer, 1ater revised and rec1assified by tbis authQr (Heer 1862) as HydaticU3 areolatus .(Heer), does not belong to the genus Hydaticus Lea;ch but to Graphodere'S Thomson (cf. Gudgnot 1931-1933, Statz 1939), which seems to be born out by a "dot- ty" color paterIi dndicated in 1Jhe description as wen as ,by Heer's (1862 ,p. 40--41) sta- 'ement: "that thespecies resemJbles Hydaticus cinereus (L)" = Graphoderes cirnereus

(L.). .

s This species was desctibed by Heer (1847) as Dytiscus zschokkeanus sp.n., but later, in 1001, Il"eclassitfied by thisauthor as Hydaticus zschokkeanus (He er) - fide Hiindlirsch (1-900) and Guignot (1931---11933). . .

, 50 far on1y Gersdorf (1969, 197:1) fóund extant insect species in deposits 01- der than Pleistocene (but not belongdng to the f-amily Dytiscidae), namely inthe Plio- cene af West Germany.

(17)

DY'NSCIDAE IN THE MIOCENE SLLIC:Ę:OUS FLOWS'lIONE 459

REFERENCES

ALLENE. T. 1934a. Neglected factors in the develQpment of thermal springs.

Proc. U. S. Nat. Acad; Soi., vol. 20, no. 6. Washington.

1934!b. The ag'ency .of algae in' the deposition of trevertine and sdliea from thermal wa,ters. ~ Amer. J. Sci., ser. 5, vol. 21!, no. 167. New Haven. '

& DAYA. ,L. 1934. Hot soprings of the Yellowstone Natio~al P.ark. - Proc.

6Paci!fic Sci. Congr. Canąda, vO'l. 3. Victoria.

ARNORSSON S;, JONSSON J. & TOMASSON J. 1969. General aspectscxf the!l:'mal aati.'Vity in Iceland. - Intern. Gool. Congr., 23Sess. Czechoslovakia 196,8, Rep.

vol. 18. Prague.

BARTH T. F. W. 19150. Volcaruc geology, hot springs and geysers of keland. - Carnegie Inst.lPubl. 587. WashingtGn.

BEKKER-MAGDISOVA E., E. 1964. Tretitshnye ravnQkrylye Sta,vropolya. c- Trudy PalelOnt. Inst., vol. 104. Moskva.

BERGGREN W, A. 1972. A cenozOtic time-scale - some implications for regioŻlal ge- ology and paleo:biogoography. - Lethala, VQl. 5, no. 2. Oslo.

BRITl'ON E. B. 1960. Beetles from thEi London Clay (Eocene) Qf Bogno!l:' 'Regis, Sus- Sex. - BulI. Brit. Mus. (Nat. History), VQl. 4, no. 2. London.

DAVI'I'ASHV1LI L. S, H145. Cenozy zhivykh or,ga'Żlizmov i organichesi1cikh ostatkov (QPyt klassi!fikacii). -.,;", Bull. Acad: ScL Geo'l'gian SSR, VQl. 6, no. 7. Tbilisi.

1964. On the classification of ,assemblages Qf organisms and organie remains.

In: Obschye voprosy evolucyonnoy paleobioLogii. Inst. Paleobio1ogii Akacl.

Nauk Gruzinskoj SSR. Tbilisi.

DOUGLAS l. 1967. Erosion of granite terrains under t!l:'Gpical .rain forest dn Austra- lia, Malaysia and Singapore. - Symp., Rivet MO!I:'phology, General Assembly.

Bern. '

1,969. Th,e ed'ficiency ()f humid tl"opical d€nudation systems. - Trans. Inst.

Brit. GeGgr., no. 46. London.

DYJOR S. 1970. The Poznań series in West Poland. - Kwartalnik Geol., vol.

14;

no. 4. Wa!l'Szawa.

, BOGDA A.& CHODAK T. i 968. Pre1imdnary studies OD the mineral compo-' sition of the Poznańclays. - Rocz. P. T. Ge'o!. (Ann. Soc. Geol.Pol.)" val. 38, , no. 4. Kraków.

EL RAMLY LM. 1969. Recent rewew of investigations on the thermal and mineral 'Spring!) in the U.A.R. ~ Intern. Geol. Congr., 23 Sess. Czechoslovaild'a 1968, Rep. 'V01. 19. Prague.

GAlBUNIA L. & RUBINSTEIN M. 196'8. On the correlation of the Cenózoic deposits 'of Eurasia and North America based on the fossil mammals and absQlute

age data. - Ibidem, vol. Hl.

GALEWSKI K. 19'71. Keys to the derte!l"IIlinabion of insect Gf Poland; vol. 19, no. 7:

Dy1liscidae. Pol. Tow .. Entomol. Warszawa.

- & GŁAZEK J. 1973. Hyclaticus lae,vipennis Thoms. (Coleoptera, Dytiscidae) a

species over 110 million years old. - Nature {in press). London.

GERSDORF E. 1969. K8.fer (Qoleoptel"a) aus dem Jungtertiiir Norddeutschlands. - Geol. Jb., Bd. 87. Hannover.

- 1971. Weitere Kiiier (Coleoptera) aus dem Jungtertiiir NlQIl'ddeutS'ehlands. - Ibidem, Bd. 88.

GŁA'ZEK J., OBERC J. & SULIMSKI A.'l97/1. Miocene vertebrate faunas :f:rQm Przeworna (L ower Silesia) and thei'r geologicalJ. setting. - Acta Geol. Pol., vol. 21, no. 3. Warszawa.

, - & - 1972. Ddscovery of the Miocene vertebrate faunas at Ptrzeworno; Lower

Silesia. - Przegląd Geol., vol. 20, no. 2. Warszawa.

(18)

460 'KAZlMIERZ GALEWISIKI lir JERZY GŁAZEK,

GUIGNOT F. 1931-1933. Les Hydrocantbares de Franee. Frer. Doaladoure. Touluse.

HANDLIRSCH A. 1908. Die fos9ilen Insekten und die Phylogenie der rezenten Formen. Ein ,Handbuch fUr PaUionto1ogen und Zoologen~Textbd., H. 2.

Engelmann. Leipm,g.

HARJD:IDR H. & FLEHlMING W. '1970. Quarzsynthese bei tiefen Temperaturen.

GeocMm. Coomochim. Acta, vol. 34, noQ. 3. Oxford.

,HEER O. 1847., Die Insektenfauna der' Terhlarg·ebilde Vlon Oeningen und von

:s. . Raddboj iil Croatien, I Ktifer. - N. Denksehr. A1J.g. Schwefżer. q.es. Gesamt.

Naturwiss., Bd. 8. Neuenburg.

1862. Beitrage rrur lrusektenfauna Oeningerus. - Na1JUurkund. Verh. Holilan:d.

Maats'ch. Wetensch. Haarlem, Verz. 2, Doo116. Ha·a!1"lem.

HELM O. 1896. Mitteilung,en ii'berBernstein. ---' Schriften Natur.forsch. Ges. Danzig,

Bd. 9. Danzig. ,

JERZMANSKI J. & MACIEJEWSKI, 8. 1968. T·erliary basalts in Lawer Silesia. - Biul. Inst. Geol. 227. W:arszawa.

KOZŁOWSKI A. & iKARJW.Q!WISKiI Ł.' 1972. Hydrothermal origin of quartz iram

JegŁo·wa (Lower 811esia). - Bull. Acad. Pol. Sci., ser. Sci. de ila Terre, vol. 20, no. 2. Viarsovi'e.

KRACH W. 1'958. Strlati:graphy of the Miocene in the uppe·r Oder and upper Vis·tula Ibasins, and its coru-elahlon wdth theeastern area of PiOl·anQ. - Kwartalnik GooI., vOl. 2, no.!. W·arszawa.

OBERC J; 1966. Geologyof the crysta,liline l"'Odks al' the strzelin Hills, Lawet Si[esia.- Studii'a Geol. Pod., vol. 2(). WarS2awa.

& DYJOR S. 1969. Margmal Sudellic fault. - Biul. Inst. Geol. 236. Warszawa.

& - 1-971. Relation of quartzdtes fram the vicinity of Bolesławiec to Tertiary

tectonics 'and prO&pecting possibil:ities. - Przegląd Geol., V'OI. 19, no. 12. Wa'r-

szawa. ,

p A?P A. & THEN'IUS E. 1954. Vi:issendorf - ein Lelbensbild BUS dem Pannon des Wien·erBeckens. - Mitt. Grol. Ges., Bd. 46, SoOnderband. Wren.

PONGRACZ A. 1·935.Die eozane Ins:ektenfa'llna des qeis,eltales. - Nov. A!cta Leopold"

N. F., Bd. 2, H. 3/4, No. 6. Halle (Saa,le).

PONOMARENKO A. G . .1963. Early Jurassic waier-tigers in the Angara-river basin, Ust-Baley. - Paleont. Zhurnal, 1963, no. 4. Moskva.,

RODENDORF B. B. &PONOMARENlKO A. G. 1962. Otriad Coleoptera. In: ORLOV J. A. I(Ed.). Osnovy Paleontologii, vol. 9. T8H:IDRNYSHEVA H. E. (Ed.).

Tshłenisllonogye, 'trakheynye i khelicerovye. Akad. Nauk SSSR. Moskva.

ROQUES H. 11964. C.ontIiilbuhlon li l'etude statique 'et dnetique des systemes gaz carbonique-eau-carbonate. - Ann. Speleo1ogie, vol. 19, no. 2. Moulis.

SIEVER R. 1962. Silica solu'bility, 0°-200°C, and thediagenesis oi sillceous sedimentf.s. - J. Geol., vol. 70, IIlO. 2. Chicago.

8TATZ G. 1939. Gerad!fliigler und Wasser ikafer der oligocanen Ablagerungen v.on , Rottt, - Dedhenian·a, Bd. 99A. Bonn.

SZPILA K., WIEWIORAA. & GADOMSKI M. 1972. Preliminary investiga-tion aj'

kaolindte-smectite from Jegłowa, Lower Silesia. -- Bull. Acad.Pol. Sci., ser.

Sci. de :la Tenre,vol. 20, IIlO. 1. Varsovie.

WHITE D. E. 19'57a. Thermal waters of voicanic odgin . ....:. Bul. Geol. Soc. Amer.,

'V'Oł. 68, no. 12, part. 1. Baltimore;

- 1957'b. Magmatic, 'connate, and metamorphicwaters. - Ibidem.

ZEUNER F. E. 1962. Fossil 1nsectsfrom the Lower Lias of Oharmouth, DOl'set. --:- Bull. Brit. Mus. (Nat. His'tory), vol. 7, no. 5. London.

(19)

DYT.rSCIDAE. IN THE MIOCENE ,SLLICEOUS ~WSTONE

K.GALEWSKliJ.GŁAZEK

STANOWISKO GORNOMIOCEŃSKICH CHRZĄSZCZY WODNYCH (DYTISCIDAE - PŁYWAKOWATE)

W NACIEKACH KRZEMIONKOWYCH W PRZEWORNIE

(Streszczenie)

461

PrzedmIotem pracy jest opis unikalnego stanowiska !kopalnych chrząszczy wod- nych (Dytiscidae) zachowanych w naciekach krzemionkowych pokrywających ściany

jaskini w Przewornde na Dolnym Sląsku (fig. 1-3 oraz pl. 2). Wiek na.cie.k:ów za-

wierających chrząszcze olrreślono jako górny miocen (Głazek & al. 1971, 1972) .

.wśród znalezionych chrząszczy opisano gatunek Hydaticus laevipennis Thomson (por. fig. 5-6 .oraz pl. l, fig. 1-3) ora~ stwierdzono występowanie okazów reprezen-

tujących inny gatunek z r'oozaju Hydaticus LeaC'h, a także rodz:ajeAcilius Leach (por.' pl. l, fig. %-1:», HydrCYpOTUS Clairville i Canthydrus Sharp, których dokładniejsze

oznaczenie wymaga dals'zych badań. Szczątki wszystkich chrząszczy Odznaczają się

bardzo d.obrym stanem zachowania, przy czym zwraca uwagę zachowanie się ubar- wienia i mikrorzeŹby chityny. B1'ak kończyn oooz częste przypadki odpadnięcia gło­

wy (por. fig. 5 i pl. 1) ws.k:azują, że zespół ma charakter nekrocenozy (sernsu Daw- tash'Vili 1945, 1964).

W badanym' zespole na podkreślenie zasługuje pierwsze stwierdzenie w stanie kopalnym dz:iś żyjących rodzajów Acilius Leach i Canthydrus Sharp O'raz gatunku Hydaticus laevipennis 'Thomson, cO' potwierdza fakt ł!:ionserwatywności chrząszczy

w kenozoiku.

Współwystępowanie rodzaju Canthydrus Sharp, żyjącegO' obecnie w strefde tropi- kalnej i sięgająceg.o w obszar śródziemnomorski, z pozostałymi r:odzajami żyjącymi

obecnie w EUi"lopie Srodkowej (w tym w Polsce - par. Galewski 1971) wskazuje, że

pogorszenie warunków kldmatycznyclJ. w mrodszym kenozoiku wywlołało znaczne zmiany zasięgów geograficznych chrząszczy, a nie prowadziło natom~ast do :ich przemian ewolucyjnych.

W środowiskuo1acza'ją,cym w górnym miocenie obszar Pl'Z~WOTna rozważane

chrząszcze m!USla~y żyć w śródJleślJlych 7Jbiornikac'h wód sotojącycll, zaś do jaskin:i były napławliane post rmortem ·z wodą przesy·coną krzem~onką pochodżącą z wód gorących źródE7ł wua.'kanicznyrch I(.fig. 4). lWyst~owaniie gorących źródeł alkatieznych związane było z rozwojem trz'eciorzędowej :formacji bamltowej, co potwierdza stosunkowo wysoka zawartość litu, tytanu i cyrlmnu w na.cfeikach ki-~emionkowych {por. Barth 1950, White 195~a, b). W dz:iałalności ,gorących wód na obszarze bloku przedsudec-

• kiego (sygnaiizowanY'Oh już uprzednio, Obere & Dyjor 1971) widzieć należy także przyczynę hydrotermalnej kaolinizacji skał krystalicznych tego rejonu '(por. Szpila &

al. 1972, Kozłowski & KarwoiW\Ski 1972).

Instytut Zoologiczmy Instytut Geologii Podstawowej PoLskiej Akademii Nauk Uniwersytetu Warszawskiego 00-679 Warszawa, ul. Wilcza 64 02-089 Warszawa, Al. Zwirki i Wigury 93

Warszawa, w styczniu 1973 r.

2

Cytaty

Powiązane dokumenty

two newly recognized sections (jamna dolna 2 and wola Czudecka) of the Lower Oligocene Menilite shales (Menilite Formation) in the Polish Outer (Flysch) Carpathians have

Vialov (1965) pro posed that the tran si tion be tween the Dobrotiv and the Stebnyk for ma tions is grad ual and the bound ary is con ven tion ally pro posed at the base of the

Fluctuations of the faunal composition are shown by the species spectrum of the animal remains from the Polish cave sediments, mainly caves situated in the Polish Jura Chain..

Tak ing into ac count the cur rent state of knowl edge on the Pre cam brian base ment in the east ern part of the Up per Silesian Block, Bu³a and ¯aba (2008) as sumed that the

radiata; Niederleis, Lower Austria; Badenian, Lower Lagenidae Zone 8 - Apertural view of a specimen (presented in PI. 2) with an asymmetric test shape; short marginal

Gonera M (2013) Globorotaliid in ter vals of the sub-evaporite Badenian (Mid dle Mio cene) in the Up per Silesia Ba sin (Cen tral Paratethys, Po land). decoraperta Zone alias

The lower bound ary of the Wielician substage lies at change from the Mid dle Mio cene Cli mate Op ti mum to the Mid dle Mio cene Cli mate Tran si tion, at the point where a nor - mal

ABSTRACT: Remains of Suidae, Conohyus simorrensis (Lartet) and of Tayassuidae, Taucanamo sansaniense (Lartet), from the Middle Miocene karst localities at ITzeworno