• Nie Znaleziono Wyników

Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions

N/A
N/A
Protected

Academic year: 2022

Share "Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions"

Copied!
10
0
0

Pełen tekst

(1)

Geo chem is try of Mid dle Ju ras sic mudstones (Kraków–Czêstochowa area, south ern Po land): in ter pre ta tion of the depositional re dox con di tions

Patrycja SZCZEPANIK, Magdalena WITKOWSKA and Zbigniew SAW£OWICZ

Szczepanik P., Witkowska M. and Saw³owicz Z. (2007) — Geo chem is try of Mid dle Ju ras sic mudstones (Kraków–Czêstochowa area, south ern Po land): in ter pre ta tion of the depositional re dox con di tions. Geol. Quart., 51 (1): 57–66. Warszawa.

Mid dle Bathonian iron-bear ing dark grey mudstones and claystones from the Kraków–Czêstochowa Up land (south ern Po land) were sub - jected to geo chem i cal and min er al og i cal study in or der to eval u ate palaeo-re dox con di tions of their de po si tion and diagenesis. They are mainly com posed of kaolinite, with smaller amounts of other clay min er als and de tri tal quartz. Or ganic mat ter is com posed of type III and/or IV kerogen and its d13C is be tween –23 and –24‰, sug gest ing a mainly terrigenous source, with a pos si ble ad mix ture of ma rine in - put. Most geo chem i cal pa ram e ters: (to tal or ganic car bon) TOC/S, U/Th, Ni/Co, V/Cr, (Cu+Mo)/Zn ra tios, authigenic ura nium con tent, and Fe-TOC-S re la tion ship, in di cate de po si tion un der ox y gen ated bot tom wa ter con di tions. By con trast, DOP (de gree of pyritization) and V/V+Ni in di ces sug gest a dysoxic en vi ron ment. How ever, DOP prob a bly re flects re dox con di tions in the sed i ment dur ing diagenesis rather than in the over lay ing wa ter col umn. The com po si tion of the or ganic mat ter and the dom i na tion of py rite euhedra over framboids in di cates that the V/V+Ni ra tio may not be re li able for de ter mi na tion of re dox con di tions in the rocks stud ied. There is no sig nif i cant dif - fer ence be tween the geo chem i cal in di ces of host rocks with nod ules and those with out them.

Patrycja Szczepanik, Magdalena Witkowska and Zbigniew Saw³owicz, In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Oleandry 2a, PL-30-063 Kraków, Po land; e-mails: szczep@ing.uj.edu.pl, witko@ing.uj.edu.pl, zbyszek@ing.uj.edu.pl (re ceived:

March 6, 2006; ac cepted: No vem ber 6, 2006).

Key words: Mid dle Ju ras sic, Czêstochowa Clay For ma tion, palaeoenvironment, geo chem i cal pa ram e ters, re dox con di tions.

INTRODUCTION

Many ma jor and trace el e ments and their ra tios can be used for rec og ni tion of palaeo-re dox en vi ron men tal con di tions and chem is try of bot tom wa ter and sed i ment (e.g. Condie, 1981;

Lewan and Maynard, 1982; Jones and Man ning, 1994;

Quinby-Hunt and Wilde, 1994; Vetö et al., 1997). We eval u - ated sev eral widely used in or ganic geo chem i cal in di ces (U/Th, V/V+Ni, V/Cr, Ni/Co, (Cu+Mo)/Zn, FeTot, S, TOC — to tal or - ganic car bon, DOP — de gree of pyritization, TOC/S), in an at - tempt to in ter pret re dox con di tions dur ing de po si tion of dark-col oured epicontinental ma rine mudstones. The or i gin of or ganic mat ter in the de pos its stud ied was de ter mined us ing Rock-Eval and 13Corg anal y ses.

This pa per forms part of multidisciplinary stud ies that have been per formed on the Mid dle Ju ras sic rocks from the Kraków–Czêstochowa Up land (see Gedl et al., 2006). The aim of this study was a re con struc tion of palaeoenvironmental con di - tions dur ing de po si tion of the Bathonian mudstones, us ing geo - chem i cal and min er al og i cal meth ods, and their com par i son with

sedimentological and palaeontological data. We also at tempted to eval u ate the pos si ble in flu ence of com mon sid er ite nod ule ho - ri zons on the en vi ron men tal geo chem i cal in di ces of the host rocks. The Gnaszyn sec tion, which be longs to the lower part of the Czêstochowa Ore (Fe)-bear ing Clay For ma tion (the ab bre vi - ated term Czêstochowa Clay Fm. will be used through out the pa - per), was cho sen for study due to its rep re sen ta tive char ac ter.

This is the first study of its kind on these de pos its.

GEOLOGICAL SETTING

The Mid dle Ju ras sic in the area be tween Wieluñ and Kraków rests upon the Lower Ju ras sic and is cov ered by thin Qua ter nary sed i ments or out crops at the sur face (Dayczak-Calikowska and Kopik, 1976). Sig nif i cant dif fer - ences in strati graphi cal and fa cial de vel op ment on the Kraków–Czêstochowa Up land were the ba sis for dis tin guish - ing two dif fer ent units: a north ern unit (Wie - luñ–Czêstochowa–Zawiercie) and a south ern one (Ogrodzie - niec–Kraków; Ró¿ycki, 1953). The stud ied area of the

(2)

Czêstochowa Clay Fm. be longs to the north ern unit which is char ac ter ized by low fa cies vari abil ity and rel a tively thick de - pos its re sult ing from mo not o nous and rapid sed i men ta tion.

The For ma tion rests on the Koœcielisko Beds (Aalenian-lower Bajocian; Ró¿ycki, 1953) be ing sep a rated by a hi a tus (the low - er most up per Bajocian; Dayczak-Calikowska and Kopik, 1976). De pos its of the Czêstochowa Clay Fm. were de pos ited in a large epicontinental ba sin dur ing the Mid Ju ras sic trans gres - sion. It is rep re sented by a suc ces sion of dark grey claystones, mudstones and sand stones with sev eral interbedded sid er ite nod - ule lev els (Ratajczak, 1998). Sid er ite ho ri zons and nod ules of the Czêstochowa Clay Fm. were used as a source of iron and ex - ploited from the Mid dle Ages up to the early 1980’s (Ró¿ycki, 1960). Fa cially and stratigraphically this for ma tion is com pa ra - ble to the fa mous iron-bear ing Ju ras sic de pos its of Lorraine and Al sace (the “Mi nette” de pos its; Guilbert and Park, 1986).

The Gnaszyn sec tion be longs to, and is typ i cal of, the lower part of the Czêstochowa Clay Fm. With ref er ence to its strati - graphi cal and fa cial de vel op ment the area stud ied be longs to a north ern unit of the Mid dle Ju ras sic de pos its of the Kraków–Czêstochowa Up land and it com prises the east ern most part of the Fore-Sudetic Monocline (Ró¿ycki, 1953). It rep re - sents the south ern mar ginal part of the epicontinental ba sin ex - tend ing dur ing the Mid Ju ras sic through out nearly the whole Pol ish Low lands area (Dayczak-Calikowska and Kopik, 1976).

The palaeoenvironmental con di tions dur ing sed i men ta tion of the de pos its in the Gnaszyn clay-pit were dis cussed by Gedl et al. (2003, 2006), mainly from a palaeontological point of view.

Sed i men ta tion took place in gen er ally oxic con di tions. It was char ac ter ized by in creased in put of ter res trial ma te rial into the ba sin, lead ing to some changes both in the bot tom wa ter en vi ron - ment (op por tu nis tic ben thic as sem blage tol er ant of lower ox y gen

Fig. 1. The Gnaszyn sec tion — lo ca tion and samples

A — Geo log i cal map of Po land with out Ce no zoic cover (sim pli fied af ter Dadlez et al., 2000); B — geo log i cal set ting of the stud ied area (af ter Majewski, 2000); C — lo ca tion of the Gnaszyn clay-pit (af ter Matyja and Wierzbowski, 2003); D — three-part sec tion of mudstones ex posed in Gnaszyn clay-pit and its cor re spon dence to ammonite zones (ac cord ing to Matyja and Wierzbowski, 2006): a — co or di nates N 501 48’ 03.8’’, E 191 02’ 36.9’’, b — co or di nates N 501 48’ 04.7’’, E 191 02’’ 44.3’’, c — co or di nates N 501 48’ 12.8’’, E 191 02’ 25.4’’; the sec tion orig i nally drawn by P. Gedl, pub lished with per mis sion

(3)

con tent) as well as in the sur face wa ter (stress- in di cat ing plank - ton as sem blage). These changes were con se quences of vari able ter res trial in put into the ba sin (a high fre quency of land-de rived phytoclasts and “sunken-wood” as so ci a tions) and may have been caused by sea level fluc tu a tions. The cli ma tic ev i dence is con flict ing. The clay min eral as sem blage, which is largely of de - tri tal or i gin, in di cates rather cool (and/or dry) cli ma tic con di tions fa cil i tat ing me chan i cal ero sion of the source rocks. By con trast, the fre quent oc cur rence of Araucariaceae pol len grains points rather to a warm cli mate. The com mon in ter vals with sid er ite nod ules co in cide with pe ri ods of rel a tively slower and more quieter sed i men ta tion, which is re flected in more di ver si fied ben thic and plank tonic fos sils (Gedl et al., 2006).

The sam pled sec tion in Gnaszyn Dolny, fur ther sim pli fied to Gnaszyn, is owned and mined by the Wienerberger Cegielnie Lêbork Com pany and sit u ated at a west ern sub urb of Czêstochowa, Po land (Fig. 1A–C). The three-part open pit ex - poses ca. 30 metres-thick se quence of ma rine claystones and mudstones, interbedded with eleven sid er ite nod ule lev els and one sil ica nod ule level (Fig. 1D). The dark grey de pos its are bioturbated and con tain an abun dant and vari able fauna of ammonites, bel em nites, foraminifera, bi valves, sca pho pods, gas tro pods, and microfossils rep re sented by foraminifera, ostracods, small gas tro pods and frag ments of echinoderms (Gedl et al., 2003). The biostratigraphy is based mainly on the ammonite fauna sug gest ing a mid dle-up per Bathonian age (Matyja and Wierzbowski, 2003, 2006).

MATERIALS AND METHODS

The ma jor ity of sam ples from the ver ti cal sec tion stud ied are dark grey and mac ro scop i cally uni form, ex cept for the pres ence of nod ules at some ho ri zons. The sam ples from the high est part of the sec tion (Gns 27–31) are yel low-red. Min er al og i cal study sug gests that they are weath ered and there fore they have not been taken into ac count in the palaeoenvironmental eval u a tion.

The mineralogical com po si tion was stud ied us ing X-ray pow der dif frac tion (XRD Philips X Pert ADP PW 1830, In sti - tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity).

Con cen tra tions of ma jor (Al, Ca, Mg, Na, K, Ti, Fe, P) and trace el e ments (Mn, Cr, Rb, Sr, Y, Nb, Cu, Zn, Pb, Co, Ni, V, and REE) were de ter mined by INAA and ICP-AES (ACTLABS, Can ada).

Con tents of to tal or ganic car bon (TOC) and to tal sul phur were ob tained us ing a LECO an a lyzer. Rock-Eval py rol y sis was per formed on a Rock-Eval II an a lyzer and was used to iden tify the type and ma tu rity of or ganic mat ter con tained in the rock sam ples stud ied.

The de gree of pyritization (DOP) was cal cu lated ac cord ing to the for mula de scribed by Raiswell and Berner (1985, 1986) and Leventhal and Tay lor (1990): DOP = FePy / [FePy + FeHCl], where FePy is the per cent of py rite iron (cal cu lated by mul ti ply - ing to tal S [%] ´ 0.871 and FeHCl is the per cent of re ac tive iron).

Re ac tive iron (FeHCl), rep re sent ing the Fe that has the po ten tial to re act with dis solved sul phide to form monosulphides and py - rite (Berner, 1970; Raiswell et al., 1988), was ex tracted from 100 mg of pow dered sam ple by 1N HCl dur ing 24 hours in

room tem per a ture (Leventhal and Tay lor, 1990) and mea sured by F-AAS (Philips 9200C).

The d13Corg val ues were de ter mined on the whole-sed i ment sam ples. The car bon ate-free sam ples were oxi dised with CuO at 900°C and the re sul tant CO2 was sep a rated by frac tional sub li ma - tion and an a lyzed iso to pi cally for d13Corg with a ThermoFinnigan 252 mass-spec trom e ter (Uni ver sity of Erlangen).

CHARACTERISTICS OF INDICES AND RESULTS

MINERALOGY

The sam ples stud ied are gen er ally uni form through out the lithological col umn (Fig. 2) and rep re sent dark grey claystones and mudstones. They are mainly com posed of clay min er als (dom i nant kaolinite, with smaller amounts of illite/mus co vite and chlorite) and de tri tal quartz. Sub or di nate amounts of feld - spars (orthoclase), py rite and sid er ite are pres ent. Eleven lev els of sid er ite nod ules and one level of si li ceous nod ules oc cur within the sec tion stud ied.

GEOCHEMISTRY

For the palaeoenvironmental in ves ti ga tion nu mer ous use ful geo chem i cal re dox pa ram e ters have been cho sen. The val ues are given in Ta ble 1 and Fig ure 2.

ORGANIC MATTER

To tal or ganic car bon (TOC = Corg) var ies from 0.01% to more than 10% Corg in sed i ment (Romankevich, 1984).

Rock-Eval py rol y sis is a method to eval u ate the ther mal ma tu - rity (Tmax) of the rocks, and the qual ity and or i gin of the or ganic mat ter. The re sults of Rock-Eval py rol y sis are usu ally dis - played in a van Krevelen-type di a gram of HI vs. OI val ues which roughly cor re spond to the H/C vs. O/C atomic ra tio. The hy dro gen in dex (HI) val ues pro vide in for ma tion about the type and pres er va tion of or ganic mat ter and the ox y gen in dex (OI) value informs about the ox i da tion de gree of or ganic mat ter.

These el e men tal pa ram e ters can also be used to de ter mine the terrestial, lac us trine or ma rine or i gin of the or ganic mat ter (Espitalié et al., 1973; Orr, 1983; Leventhal, 1986).

Re sults of the Rock-Eval py rol y sis show that the or ganic mat ter in the sam ples stud ied is de pleted in hy dro gen and en - riched in ox y gen (Ta ble 2). Hy dro gen in dex (HI) val ues are very low, rang ing be tween 11 and 34 (mg HC/g TOC). The ox y gen in dex (OI) ranges be tween 40 to 157 mg CO2/g TOC . The to tal or ganic car bon con tents of the sam ples stud ied ranges from 1.5 to 2.5 wt. %. Max i mum Rock-Eval py rol y sis tem per a tures (Tmax) vary from 388 to 435°C. These data were plot ted on a HI/OI di a - gram (Fig. 3) and sug gest the terrigenous or i gin of the or ganic mat ter (kerogen type III and/or IV) dom i nated by plant re mains (Espitalié et al., 1973; Tissot et al., 1984; Leventhal, 1986).

STABLE CARBON ISOTOPES

Or ganic car bon iso topes can be used to de ter mine the source/or i gin of dif fer ent types of or ganic mat ter in sed i men -

(4)

tary rocks (e.g. Meyers, 1997). The dif fer ences in d13C val ues of or ganic mat ter may re sult from diagenesis, vari a tions in plank ton taxa, at mo spheric CO2 con cen tra tion, global sea wa ter d13C, se lec tive pres er va tion or CO2 source (see Ar thur et al., 1985; Dean et al., 1986; Meyers, 1997). It is im por tant to note that the iso to pic sig na ture of or ganic car bon in the an cient rocks is sub stan tially dif fer ent from that in mod ern sed i ments.

Ac cord ing to the re sults pre sented by Hofmann et al.

(2000) from Mid-Cre ta ceous black shales, iso to pi cally light kerogen (d13C val ues around –29‰) con sist mainly of ma - rine-de rived liptinite, while iso to pi cally heavy kerogens are dom i nated by land-de rived vitrinite (d13C val ues around –23.3‰). Langrock et al. (2003) ob served that de pos its rich in ma rine or ganic mat ter are char ac ter ized by d13C val ues from –25 to –30‰, whereas the se quences rich in ter res trial or ganic com po nents show val ues from –20 to –25‰. The vari a tion in car bon iso tope val ues may re flect a mix ing be tween ma rine and terrigenous end mem bers.

The or ganic mat ter of the rocks stud ied show gen er ally uni - form d13C val ues around –23.3 to –24.4‰ PDB (Ta ble 1), in di - cat ing mainly in put of terrigenous ma te rial, pos si bly with some ad mix ture of ma rine or ganic mat ter.

TOC/S (C/S) RATIO

In most ma rine en vi ron ments the amount of TOC, not iron or sul phate avail abil ity, is the fac tor lim it ing the for ma tion of sulphides. Or ganic car bon vs. sul phur (TOC/S) plots can be use ful in char ac ter iz ing mod ern and an cient depositional en vi - ron ments (Leventhal, 1983, 1987). They have been used to dis - tin guish nonmarine vs. ma rine en vi ron ments or oxic vs. anoxic or euxinic depositional en vi ron ments (ma rine 0.5< TOC/S <5;

non-ma rine TOC/S >10; Berner and Raiswell, 1984; Raiswell and Berner, 1985, 1986; Raiswell and Al-Biatty, 1989;

Leventhal, 1987). Shal lowly bur ied nor mal ma rine mudrocks have TOC/S val ues of 2.8 ±0.8, and this value de creases dur ing

Fig. 2. Vari a tion of geo chem i cal data in the lithological col umn from Gnaszyn Ex pla na tions as in Fig ure 1

(5)

Sam ple num ber

TOC [%]

S

[%] TOC/S DOP DOP/TOC FeTot

[%] FeHCl

[%] U/Th Ni/Co V/Cr V/V+Ni Cu+Mo/

Zn d13Corg

[‰]

Gns 1 1.97 1.06 1.84 0.58 0.29 3.4 0.66 0.24 3.8 1.25 0.69 0.28 –24.04

Gns 2 nd 1.06 nd nd nd 2.32 nd 0.49 3.7 0.51 0.66 0.39 nd

Gns 4 2.55 1.39 1.83 0.65 0.25 3.37 0.62 0.21 3.8 1.29 0.68 0.34 –23.75

Gns 7 nd 0.78 nd nd nd 2.26 nd 0.25 3.9 1.20 0.71 0.51 nd

Gns 9 2.43 1.30 1.86 0.61 0.25 3.25 0.72 0.22 3.9 1.29 0.71 0.33 –24.05

Gns 11 0.79 0.64 1.23 0.54 0.68 2.35 0.54 0.30 3.75 1.04 0.71 0.21 –23.64

Gns 12 1.62 1.01 1.59 0.73 0.45 2.62 0.31 0.26 3.7 1.41 0.74 0.23 –24.33

Gns 13 1.51 0.92 1.63 0.61 0.40 2.38 0.55 0.25 3.36 1.22 0.73 0.20 –24.31

Gns 14 nd 1.66 nd nd nd 2.87 nd 0.25 3.0 1.24 0.73 0.19 nd

Gns 14A 1.66 0.90 1.85 0.63 0.38 2.37 0.63 nd 3.13 1.03 0.77 0.35 nd

Gns 15 nd 0.86 nd nd nd 2.69 nd 0.43 3.61 1.13 0.69 0.22 nd

Gns 16 2.02 1.24 1.62 0.39 0.19 3.64 1.63 0.23 3.7 1.42 0.71 0.23 –24.04

Gns 16A 2.00 1.14 1.75 0.65 0.32 2.70 0.59 0.24 3.85 0.41 0.42 0.18 nd

Gns 20 2.17 1.29 1.68 0.56 0.25 3.43 0.87 0.25 4.2 1.20 0.72 0.27 –23.81

Gns 23 nd 1.03 nd nd nd 2.87 nd 0.31 3.64 0.98 0.70 0.18 nd

Gns 26 nd 0.66 nd nd nd 2.12 nd 0.43 4.11 1.14 0.70 0.22 nd

Gns 27 0.60 0.13 4.61 0.33 0.55 1.80 0.22 0.22 3.7 1.11 0.75 0.28 –23.75

Gns 28 0.97 0.61 1.57 0.53 0.54 2.10 0.47 0.26 3.8 1.11 0.73 0.27 –23.21

Gns 30 1.06 0.03 33.12 0.09 0.08 3.91 0.19 0.23 4.46 1.36 0.69 0.30 –23.82

Gns 31 1.27 0.15 8.69 0.28 0.22 2.53 0.14 0.19 3.3 1.42 0.72 0.27 nd

Gns 32 1.53 0.98 1.57 0.72 0.47 2.51 0.34 0.31 3.15 0.88 0.71 0.19 –23.65

Gns 33 2.46 1.12 2.19 0.77 0.31 2.95 0.28 0.35 4.17 1.15 0.70 0.25 nd

Gns 34 2.04 1.40 1.45 0.35 0.17 2.86 0.65 0.35 3.67 1.25 0.73 0.22 nd

Gns 35 2.01 1.06 1.90 0.63 0.31 2.94 0.55 0.31 3.83 1.10 0.71 0.30 nd

Gns 36 2.10 0.98 2.14 0.62 0.29 2.42 0.53 0.49 3.58 1.03 0.70 0.35 nd

Gns 37 1.74 0.84 2.08 0.56 0.32 2.32 0.57 0.27 3.54 1.09 0.71 0.26 nd

Gns 38 2.37 1.20 1.97 0.53 0.22 3.58 0.94 0.30 5.28 1.33 0.66 0.31 –24.03

nd — not de ter mined

T a b l e 1 Se lected geo chem i cal pa ram e ters char ac ter iz ing the palaeoenvironmental con di tions at Gnaszyn

Sam ple num ber Tmax

[°C] S1 S2 S3 Pl Hl Ol

Gns 1 423 0.12 0.52 0.95 0.19 33 61

Gns 4 421 0.02 0.42 0.72 0.05 23 40

Gns 9 422 0.04 0.35 0.69 0.10 26 50

Gns 11 401? 0.05 0.08? 0.72 0.38 17 157

Gns 13 421 0.04 0.28 0.56 0.13 34 67

Gns 20 422 0.06 0.50 0.92 0.11 30 56

Gns 28 435? 0.04 0.03? 0.75 0.57 11 278 Gns 30 388? 0.10 0.14 ? 0.99 0.42 22 152

? — de fines un re li able de ter mi na tion

T a b l e 2 Re sults of the Rock-Eval anal y ses of Gnaszyn sam ples

Fig. 3. Rock-Eval re sults for Gnaszyn sam ples

(6)

burial due to or ganic mat ter mat u ra tion (Raiswell and Berner, 1987). In ma rine de pos its un der ly ing oxic wa ter, py rite is formed in the sed i ments dur ing early diagenesis (Goldhaber and Kaplan, 1974; Berner, 1984). An cient mudstones from an oxic (nor mal ma rine) en vi ron ment show a good cor re la tion be - tween or ganic car bon and sul phur be cause py rite pro duc tion is usu ally lim ited by the avail abil ity of bi o log i cally me tab o liz able or ganic mat ter (Berner, 1984), and sul phide re ten tion and car - bon pres er va tion are of ten cou pled (Berner and Westrich, 1985). In ter sec tion of the S axis on the TOC-S plot and the curve of the slope may also char ac ter ize a palaeoenvironment (Berner and Raiswell, 1983; Leventhal, 1983). Mudstones de - pos ited un der oxic con di tions tend to have a TOC-S plot with re gress through the or i gin. The TOC/S ra tio for sam ples de pos - ited un der euxinic (anoxic-sulphidic wa ter col umn) con di tions de creases (with a pos i tive S in ter cept; Raiswell and Berner, 1986; Leventhal, 1983, 1987, 1995).

The sam ples stud ied show a gen er ally pos i tive TOC-S cor - re la tion and fall in the re gion of nor mal ma rine en vi ron ments on the TOC/S plot (Fig. 4; Wignall, 1994; and ref er ences cited therein). The low TOC/S ra tios found in this study (1.57–1.86) in di cate ma rine en vi ron ments (Leventhal 1983; Raiswell and Berner, 1985). A pos i tive cor re la tion be tween TOC and py ritic sul phur and the in ter cept on the or i gin rep re sents nor mal ma - rine con di tions (Berner, 1984), and thus may sug gest or ganic mat ter as the lim it ing fac tor for py rite for ma tion.

DOP

Py rite mor phol ogy and de gree of pyritization (DOP) are of - ten ap plied for eval u a tion of palaeo-depositional re dox con di - tions in ma rine en vi ron ments. DOP is de fined as the pro por tion of py rite Fe (FePy, frac tion of iron as so ci ated with py rite) rel a - tive to py rite Fe plus acid-sol u ble Fe (FeHCL frac tion of iron that eas ily re acts with dis solved sul phide to pro duce iron monosulphides and py rite; Berner, 1970; Raiswell et al., 1988).

Ac cord ing to Raiswell et al. (1988) in fine-grained sed i ments DOP val ues of <0.46, 0.46–0.75 and >0.75 in di cate aer o bic,

dysoxic or re stricted, and anoxic sed i ments with dis solved H2S in bot tom wa ters, re spec tively. DOP dem on strates also iron or sul phur lim i ta tion in py rite for ma tion. DOP val ues aproaching unity in di cate iron-lim it ing con di tions, which com monly oc - cured in acient euxinic or semi-euxinic sed i men tary environments (Raiswell and Berner, 1985).

DOP val ues for sam ples from Gnaszyn vary be tween 0.53 and 0.73 (ex cept Gns 16 = 0.33), in di cat ing dysoxic con di - tions (Raiswell et al., 1988). A low DOP in dex for Gns 16 sam ple may re sult from in cor po ra tion of iron into the sid er ite con cre tions (the sam ple was taken from mudstones be tween sid er ite lev els).

TOC-Fe-S RELATIONSHIP

Raiswell and Berner (1985) sug gested a re la tion ship be - tween TOC vs. Fe vs. S as use ful to dis tin guish en vi ron ments of py rite for ma tion, where lim it ing fac tors are or ganic car bon or iron. In nor mal ma rine en vi ron ments or ganic mat ter may be a fac tor re strict ing bac te rial sul phate re duc tion (BSR), which is re - flected in a pos i tive cor re la tion be tween TOC and py rite sul phur (Berner and Raiswell, 1983; Berner, 1984; Raiswell and Berner, 1986). On the other hand, re ac tive iron may be a re strict ing fac tor for py rite for ma tion in euxinic en vi ron ments (Raiswell and Berner, 1985) where H2S pro duc tion is much higher than Fe avail abil ity. The rel a tively high DOP val ues of sed i ments and the ab sence of a re la tion ship be tween DOP and or ganic car bon con - tents may sug gest iron lim i ta tion in py rite for ma tion (Raiswell and Berner, 1985; Ly ons and Berner, 1992).

The data for the sam ples stud ied are plot ted on a TOC-Fe-S ter nary di a gram (Fig. 5). The di a gram dis plays the lim it ing fac - tors for py rite for ma tion to eval u ate the depositional con di tions (e.g. Berner and Raiswell, 1983; Berner, 1984; Brumsack, 1988; Dean and Ar thur, 1989; Hofmann et al., 2000). For ma - tion of py rite be low the stochiometric py rite ra tio line (S/Fe = 1.15) is lim ited mostly by re ac tive iron and re flects anoxic con - di tions. Above the line, py rite for ma tion is lim ited by the amount or spe cific com po si tion of or ganic mat ter.

The TOC-Fe-S di a gram shown on Fig ure 5 pro vides in - sights into the con trols on py rite for ma tion in the Gnaszyn sec - tions. Most points plot within a rel a tively nar row field (Fig. 5), re flect ing a low vari abil ity be tween the pa ram e ters. The Gnaszyn sam ples clus ter along a line with a con stant TOC/S ra - tio of 2, in di cat ing de po si tion in nor mal ma rine en vi ron ments, un der oxic or suboxic con di tions (Berner and Raiswell, 1985;

Dean and Ar thur, 1989). The po si tion of the sam ples above the S/Fe = 1.15 line (Fig. 5) sug gests that the py rite for ma tion was prob a bly lim ited by the avail abil ity of la bile hy dro gen-rich or - ganic mat ter (comp. Hoffman et al., 2000).

Sam ples from the high est part of the sec tion re veal TOC/S ra tios above 4.6 (ex cept GNS 28; open cir cles on Fig. 5) which would cor re spond to a fresh wa ter en vi ron ment (Berner and Raiswell, 1984). How ever, this pa ram e ter is not use ful here be - cause the sam ples are weath ered.

PYRITE

Py rite framboid size dis tri bu tion has been shown to be a suit able in di ca tor of an cient ox y gen lev els, with euxinic con di - tions hav ing a par tic u larly di ag nos tic size dis tri bu tion (Wilkin

Fig. 4. Or ganic car bon vs. py rite sul phur plot (from Wignall, 1994) for se lected sam ples from Gnaszyn

Typ i cal fields for nor mal (oxic) ma rine, euxinic wa ter col umn and fresh - wa ter set tings are in di cated; other ex pla na tions as in Fig ure 3

(7)

et al., 1996; Wignall and New ton, 1998). Py rite is com mon in the sam ples stud ied. It oc curs in var i ous mor pho log i cal forms;

the ma jor ity as euhedra, with ag gre gates and framboids in mi - nor amounts, both in the de pos its and in microfossils. Most py - rite is found in side shelly microfossils and this can not be used for the in ter pre ta tion of the depositional palaeoenvironment be cause its for ma tion strictly de pends on the chem is try of the microenvironment in side the or ganic-rich skel e tons. The size of py rite framboids in the de pos its stud ied is gen er ally be tween 5 to 25 mm, oc ca sion ally reach ing 50 mm. The wide range of py rite framboid sizes sug gests that they did not form in a euxinic wa ter col umn.

TRACE ELEMENTS

The V/Cr ra tio has been sug gested as an in dex of palaeo-ox - y gen a tion in many stud ies (e.g., Ernst, 1970; Dill, 1986; Dill et al., 1988). This pa ram e ter may be de pend ent on grain size and on car bon ate con tent (Ernst, 1970). Val ues of V/Cr >2 in di cate anoxic depositional con di tions, with H2S pres ent in the wa ter over ly ing the sed i ment, whereas val ues of <1 in di cate nor mal oxic con di tions (Ernst, 1970; Krejci-Graf, 1975; Dill, 1986). On the other hand, Jones and Man ning (1994) sug gested a V/Cr ra - tio of ~4.25 as in di cat ing the dysoxic to oxic tran si tion. The V/Cr ra tio of the sam ples stud ied is be tween 1.1 and 1.4, and sug gests rel a tively ox i diz ing con di tions.

The Ni/Co ra tio has of ten been used as a re dox in dex (e.g.

Dypvik, 1984; Dill, 1986). In mudstones de pos ited be neath an oxic wa ter col umn the Ni/Co ra tio is usu ally <5, with val ues of 5–7 in dic a tive of a dysoxic wa ter col umn. A Ni/Co ra tio around 7 in di cates a tran si tion from dysoxic to suboxic and anoxic wa ter col umn con di tions (Jones and Man ning, 1994). Sam ples from Gnaszyn have Ni/Co val ues be tween 3.3 and 4.46, in di cat ing de - po si tion be neath a rel a tively oxic wa ter col umn.

The whole-rock V/Ni+V ra tio has been used as a pa ram e ter dis tin guish ing oxic and anoxic bot tom wa ters by Hatch and Leventhal (1992). It is de pend ent on pH, Eh and sul phur con - tents (Lewan, 1984). Va na dium ac cu mu lates in strongly re duc - ing en vi ron ments (Lewan, 1984; Em er son and Huested, 1991), be ing con cen trated usu ally in or ganic mat ter but oc ca sion ally also in de tri tal sil i cate min er als (Glikson et al., 1985). As va na - dium is as so ci ated with or ganic mat ter it cor re lates with TOC.

Ni con tent is con trolled by the sul phide con tent (e.g., Ni re sid - ing in framboidal py rite) and co-var ies with sul phur (Jones and Man ning, 1994), but oc ca sion ally can re side in or ganic mat ter as nickel por phy rins (e.g. Saw³owicz, 1986). Ac cord ing to Hatch and Leventhal (1992) a high V/V+Ni ra tio (>0.84) in di - cates the pres ence of H2S in the wa ter col umn (euxinic con di - tions); a ra tio be tween 0.54 to 0.82 and 0.46–0.60 rep re sents anoxic and dysoxic wa ter con di tions, re spec tively. In sam ples from Gnaszyn the V/Ni+V ra tios are gen er ally uni form and rel - a tively high (0.68–0.75), sug gest ing anoxic en vi ron ments.

Tho rium and ura nium con tents and the U/Th or Th/U ra tios have been used as a mea sure of re dox con di tions in the depositional en vi ron ment. Ac cord ing to Jones and Man ning (1994) the U/Th ra tio is gen er ally a more re li able re dox in di ca - tor than the V/Cr and Ni/Co ra tios. Ura nium is com monly as so - ci ated with the or ganic car bon frac tion (e.g. Leventhal, 1981;

Ham mer et al., 1990; Jones and Man ning, 1994). There fore, the U/Th ra tio has been ap plied as a re dox in di ca tor, with low val ues (<0.75) typ i cal of more oxic set tings and high val ues re - flect ing dysoxic (0.75–1.25) and suboxic-anoxic (>1.25) depositional con di tions (Jones and Man ning, 1994). Nor mal ma rine mudrocks de pos ited be neath ox y gen ated bot tom wa ters typ i cally have Th/U ra tios be tween 3 and 5, and lower ra tios (Th/U <2) gen er ally co in cide with dysaerobic biofacies (Myers and Wignall, 1987; Wignall and Myers, 1988; Wignall, 1994).

Authigenic U (Uaut = Utot – Th/3) is a suit able in di ca tor of ben - thic re dox con di tions. Its val ues be low 5.5 to 12, and above 12 in di cate an ox y gen ated, dysoxic, and suboxic to anoxic wa ter col umn, re spec tively (Myers and Wignall, 1987; Jones and Man ning, 1994). Th/U (3.7–5.2) and U/Th (0.19–0.49) ra tios and the lack of authigenic U in the Gnaszyn sam ples sug gest oxic con di tions of mudstone de po si tion.

The ra tio (Cu+Mo)/Zn has been pro posed by Hallberg (1976, 1982) and Dypvik (1984) as an in di ca tor of the ox y gen - a tion of bot tom wa ters. The val ues of this pa ram e ter in crease un der re duc ing con di tions and de crease when the en vi ron ment is more ox i diz ing (e.g., a range be tween 0.1 and 6 was re corded for the Bal tic Sea; Hallberg, 1976, 1982). The ra tios (Cu+Mo)/Zn for the sam ples from Gnaszyn are low (0.23–0.34) and sug gest ox y gen ated bot tom wa ters con di tions.

DISCUSSION

The suc ces sion ex posed in Gnaszyn is rel a tively uni form and mo not o nous in re spect to min er al ogy, with the no ta ble ex - cep tion of sid er ite and sil ica nod ule lev els.

The geo chem i cal pa ram e ters are also rel a tively sim i lar through out the lithological col umn and sug gest lit tle re dox change dur ing de po si tion and early diagenesis. De ter mi na tion

Fig. 5. Fe-TOC-S ter nary di a gram (based on Dean and Ar thur, 1989) from Gnaszyn sam ples

Ac cord ing to Berner and Raiswell (1984) area be tween 0.5 <TOC/S <5 rep re sents ma rine en vi ron ments (with TOC/S = 2 for nor mal ma rine Up per Cre ta ceous shale); the TOC/S = 5 line is the bound ary be tween fresh vs.

ma rine sys tems; dashed line rep re sents a stoichiometric py rite ra tio (S/Fe = 1.15)

(8)

of palaeoenvironment is not easy, es pe cially when the dif fer ent groups of pa ram e ters give con flict ing results. In our case the ma jor ity of the en vi ron men tal in di ces: TOC/S, Ni/Co, V/Cr, U/Th, (Cu+Mo)/Zn ra tios, con tent of authigenic ura nium, and re la tion ship be tween TOC-Fe-S, point to oxic con di tions dur - ing de po si tion. The geo chem i cal data span a rel a tively large range but al ways fit well with de po si tion un der ox y gen ated wa - ters and their po si tion is never close to the dysoxic bound ary.

Com par i son with sedimentological and palaeontological ob - ser va tions on the same Gnaszyn sec tion (Gedl et al., 2003, 2006) sug gests that al though the lat ter also in di cate oxic con di - tions they are more pre cise than geo chem i cal in di ces in de ter - min ing sub tle changes in temporarily stressed en vi ron ments.

On the other hand, the DOP and V/V+Ni in di ces point to a dysoxic/anoxic en vi ron ment. The lat ter in di ces were prob a bly in flu enced by diagenetic pro cesses. Gen er ally, con di tions in the sed i ment dur ing diagenesis change to wards more re duced, com - pared with the over ly ing wa ter col umn. In the en vi ron ment of the Ju ras sic rocks stud ied where py rite forms only diagenetically, the DOP would re flect re dox con di tions in the sed i ment dur ing diagenesis rather than in the over ly ing wa ter col umn. This also agrees with the con clu sion of Roychoudhury et al. (2003) who stated that DOP val ues re flect the chem is try of the sed i ment and its pore wa ters rather than con di tions in the wa - ter col umn dur ing de po si tion and py rite for ma tion. The sig nif i - cance of the V/V+Ni ra tio for de ter mi na tion of re dox con di tions in the rocks stud ied is dis put able. The V/V+Ni ra tio works well mainly when va na dium is ac cu mu lated by or ganic mat ter as vanadyl-por phy rins (Lewan, 1984) in an anoxic en vi ron ment and the Ni con tent is rel a tively sta ble and in de pend ent of re dox con di tions. A high V/V+Ni ra tio orig i nates ei ther from high V or low Ni con tents. When the nickel con tent is rel a tively low the high V/V+Ni ra tio will show a false pic ture of re dox con di tions.

Two nickel car ri ers are im por tant in dark sed i ments: or ganic mat ter (Ni-por phy rins) and py rite. In the rocks stud ied Ni prob a - bly did not ac cu mu late as por phy rins be cause of their low pres - er va tion po ten tial in an en vi ron ment where mainly terrigenous or ganic mat ter is pre served. Korolev (1958) showed ex per i men - tally that coarsely crys tal line py rite in con trast to fine-grained and framboidal py rite had only mi nor amounts of Mo due to its loss in the ag ing pro cess and sug gested that a sim i lar pro cess would be im por tant for Ni and Co. In the sam ples stud ied py rite euhedra dom i nate and we ex pect a low con tent of Ni in py rite. A low con tent of Ni in the rocks stud ied is con firmed by geo chem i - cal data. The av er age con tent of Ni is 46 ppm (V = 115 ppm), be - ing lower not only in com par i son to the At lan tic Cre ta ceous black shales (av. Ni = 186 ppm, av. V = 822 ppm; Brumsack, 1980) but also to the “av er age” shale (av. Ni = 68 ppm, av.

V = 130 ppm; Wedepohl, 1970). In con clu sion we doubt in the sig nif i cance of the V/V+Ni ra tio for de ter mi na tion of re dox con - di tions in the rocks stud ied.

The py rite framboids gen er ally show large di men sions and a wide size range. This sug gests that they did not form in a euxinic wa ter col umn but dur ing early diagenesis. For ma tion and ac cu mu la tion of py rite dur ing early diagenesis is con - trolled by a num ber of en vi ron men tal fac tors in clud ing the avail abil ity of iron, sul phate, or ganic car bon, and py rite ox i da - tion rate (e.g. Berner, 1970, 1984; Raiswell and Can field, 1998). In a nor mal ma rine en vi ron ment the main fac tor limiting

py rite for ma tion is or ganic mat ter (Berner, 1984), as is also con firmed by the low val ues of the TOC/S ra tio and the TOC-S cor re la tion, and also TOC-S-Fe re la tion ships in the sam ples.

The or ganic mat ter pre served in the rocks stud ied is char ac - ter ized by a low H/C ra tio and gen er ally high O/C val ues rep re - sent ing type III and/or IV kerogen. The type III or rem nant IV kerogen can accumulate un der oxic and up per dysoxic con di - tions, whereas types I and II are thought to re quire anoxic/suboxic con di tions (Wignall, 1994). The d13C com po si - tion of or ganic car bon also re flects mainly terrigenous, though per haps with some ad mix ture of ma rine, in put of or ganic mat - ter. An or ganic geo chem i cal study of car bon ate nod ules from com pa ra ble Mid dle Ju ras sic rocks from the Kraków–Czêstochowa Up land also showed gen er ally well ox - y gen ated con di tions of de po si tion in the sed i men tary ba sin and a pre dom i nantly ter res trial type of or ganic mat ter (Zatoñ and Marynowski, 2004).We can not ex clude pri mar ily higher amounts of ma rine or ganic mat ter which is gen er ally less re sis - tant to de com po si tion than the terrigenous or ganic matter, es pe - cially in ox i diz ing con di tions.

We at tempted to eval u ate the pos si ble in flu ence of the com - mon sid er ite nod ules ho ri zons on en vi ron men tal geo chem i cal in di ces of the host rocks. There is a sig nif i cant dif fer ence in the type of nod ules be tween ho ri zons. Their min er al og i cal com po - si tion var ies be tween sid er ite, sid er ite and py rite, and sid er ite, ap a tite and py rite. How ever, we have not found any sig nif i cant re la tion ship be tween geo chem i cal in di ces of host rocks with nod ules and those with out them. Al though the val ues of the geo chem i cal pa ram e ters of palaeoenvironment are gen er ally sim i lar through out the sec tion (note the ex panded scale of con - cen tra tions and ra tios of el e ments on Fig. 2), some of in di ces, es pe cially those re lated to diagenesis, could have been in flu - enced to some ex tent by the nod ule ho ri zons. An ex am ple could be the mudstone sam ple Gns 16, orig i nat ing from the ho - ri zon with sid er ite nod ules, which has a lower DOP value. This value was prob a bly mod i fied by in cor po ra tion of avail able iron in sed i ment into the sid er ite nod ules. A de tailed study of the re - la tion ship be tween the nod ules and the Ju ras sic host sed i ments of the Kraków–Czêstochowa Up land is un der way.

The sam ples from the high est part of the lithological sec tion show dif fer ent val ues of geo chem i cal in di ces in com par i son to those in the lower part of the sec tion. These val ues are typ i cal of ox i diz ing con di tions, though, the rusty col our and pseudo - morphs of iron ox ides af ter py rite sug gest sec ond ary pro cesses of ox i da tion in these sam ples. The weath er ing pro cesses blurred the pri mary depositional sig nals and thus eval u a tion of the depositional con di tions of the up per part of the sec tion can not be per formed. These sam ples will be de scribed in de tail else where.

CONCLUSIONS

Most of the geo chem i cal en vi ron men tal pa ram e ters stud ied from the Czêstochowa Clay Fm. ex posed at Gnaszyn point to de - po si tion un der ox y gen ated bot tom wa ter con di tions. We sug gest that geo chem i cal in di ces are less pre cise than palaeontological data cou pled with sedimentological ones in de ter min ing sub tle changes in tem po rarily stressed en vi ron ments.

(9)

DOP and V/V+Ni in di ces point to a dysoxic/anoxic en vi ron - ment. We as sume that when py rite forms only diagenetically, DOP would re flect re dox con di tions dur ing diagenesis. High V/V+Ni ra tio prob a bly shows a false pic ture of re dox con di tions be cause of the rel a tively low nickel con tent.

The type III kerogen and its d13C re flect mainly terrigenous, with some ad mix ture of ma rine, in put of or ganic mat ter.

There is no sig nif i cant dif fer ence be tween the geo chem i cal in di ces of the host rocks with nod ules and of with out them.

Ac knowl edge ments. The au thors wish to thank P. Gedl for his en cour age ment to un der take this study, help with sam ple col lec tion; and per mis sion to use his un pub lished geo log i cal sec tion draw ings and the sec tions co or di nates. We greatly ac - knowl edge the use ful re marks and lan guage im prove ment by the re view ers M. Narkiewicz, S. Oszczepalski and P. D.

Wignall. The research was partly fi nanced by MNiSW grant PB 2P04D 030 26 (M. Witkowska).

REFERENCES

ARTHUR M. A., DEAN W. E., CLAYPOOL G. E. (1985) — Anom a lous 13C en rich ment in mod ern ma rine or ganic car bon. Na ture, 315: 216–218.

BERNER R. A. (1970) — Sed i men tary py rite for ma tion. Am. J. Sc., 268:

1–23.

BERNER R. A. (1984) — Sed i men tary py rite for ma tion: an up date.

Geochim. Cosmochim. Acta, 48: 605–615.

BERNER R. A. and RAISWELL R. (1983) — Burial of or ganic car bon and py rite sul phur in sed i ments over Phanerozoic time: a new the ory.

Geochim. Cosmochim. Acta, 47: 855–862.

BERNER R. A. and RAISWELL R. (1984) — C/S method for dis tin guish - ing fresh wa ter from ma rine sed i men tary rock. Ge ol ogy, 12: 365–368.

BERNER R. A. and WESTRICH J. T. (1985) — Bioturbation and the early diagenesis of car bon and sul phur. Am. J. Sc., 285: 193–206.

BRUMSACK H. J. (1980) — Geo chem is try of Cre ta ceous black shales from the At lan tic ocean (DSDP Legs 11, 14, 36 and 41). Chem. Geol., 31: 1–25.

BRUMSACK H. J. (1988) — Rezente, Corg-reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer. Hab. the sis.

Göttingen Univ. Ger many.

CONDIE K. C. (1981) — Archean greenstone belts. Elsevier.

DADLEZ R., MAREK S. and POKORSKI J. (2000) — Geo log i cal map of Po land with out Caino zo ic de pos its, scale 1:1 000 000. Pol. Geol. Inst.

Warszawa.

DAYCZAK-CALIKOWSKA and KOPIK J. (1976) — Mid dle Ju ras sic. In:

Ge ol ogy of Po land, Stra tig ra phy, I, Me so zoic, 2 (eds. S. Soko³owski, S. Cieœliñski and J. Czermiñski): 241–334. Wyd. Geol. Warszawa.

DEAN W. E. and ARTHUR M. A. (1989) — Iron-sul phur-car bon re la tion - ships in or ganic-car bon-rich se quences. I. Cre ta ceous West ern In te rior Sea way. Am. J. Sci., 289: 708–743.

DEAN W. E., ARTHUR M. A., CLAYPOOL G. E. (1986) — De ple tion of

13C in Cre ta ceous ma rine or ganic mat ter: source, diagenetic, or en vi - ron men tal sig nal? Ma rine Geol., 70: 119–157.

DILL H. (1986) — Metallogenesis of early Pa laeo zoic graptolite shales from the Graefenthal Horst (north ern Ba varia — Fed eral Re pub lic of Ger many). Econ. Geol., 81: 889–903.

DILL H., TESCHNER M. and WEHNER H. (1988) — Pe trog ra phy, in or - ganic and or ganic geo chem is try of Lower Perm ian car bo na ceous fan se quences (“Brandschiefer Se ries”) — Fed eral Re pub lic of Ger many:

con straints to their palaeo ge ogra phy and as sess ment of their source rock po ten tial. Chem. Geol., 67: 307–325.

DYPVIK H. (1984) — Geo chem i cal com po si tions and depositional con di - tions of Up per Ju ras sic and Lower Cre ta ceous York shire clays, Eng - land. Geol. Mag., 121: 489–504.

EMERSON S. R. and HUESTED S. S. (1991) — Ocean an oxia and the con cen tra tions of mo lyb de num and va na dium in sea wa ter. Mar.

Chem., 34: 177–196.

ERNST T. W. (1970) — Geo chem i cal Fa cies Anal y sis. Elsevier.

ESPITALIÉ J., DURAND B. and ROUSSEL J. C. (1973) — 1. Etude de la materie organique in sol u ble (kerogene) des argiles du Toarcian du ba - sin de Paris. 2. Etude en spectrometrie infrarouge, en ana lyse thermique differentielle et en ana lyse thermogravimetrique. Rev. Inst.

Franc. Petrole, 28 (1): 37–66.

GEDL P., BOCZAROWSKI A., DUDEK T., KAIM A., KÊDZIERSKI M., LEONOWICZ P., SMOLEÑ J., SZCZEPANIK P., WITKOWSKA M.

and ZIAJA J. (2006) — Stops B1.5–B1.7: li thol ogy, fos sil as sem - blages and palaeoenvironment. In: Field trip guide book of 7th In ter na - tional Con gress on the Ju ras sic Sys tem (eds. A. Wierzbowski, R.

Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B. A. Matyja, G.

Pieñkowski and A. Uchman): 151–156. Sep tem ber 6–18, 2006, Kraków, Po land.

GEDL P., KAIM A., BOCZAROWSKI A., KÊDZIERSKI M., SMOLEÑ J., SZCZEPANIK P., WITKOWSKA M. and ZIAJA J. (2003) — Rekonstrukcja paleoœrodowiska sedymentacji œrodkowojurajskich i³ów rudonoœnych Gnaszyna (Czêstochowa) — wyniki wstêpne. Tomy Jurajskie, 1: 19–27.

GLIKSON M., CHAPPELL B. W., FREEMAN R. S. and WEBBER E.

(1985) — Trace el e ments in oil shales, their source and or ganic as so ci - a tion with par tic u lar ref er ence to Aus tra lian de pos its. Chem. Geol., 53: 155–174.

GOLDHABER M. B. and KAPLAN I. R. (1974) — The sul phur cy cle. In:

The Sea (ed. E. D. Goldhaber), 5: 569–655. Wiley-Interscience.

GUILBERT J. M. and PARK C. F. Jr. (1986) — The ge ol ogy of ore de pos - its. W. F. Free man and Co. New York.

HALLBERG R. O. (1976) — A geo chem i cal method for in ves ti ga tion of palaeoredox conditions in sed i ment. Ambio, Spec. Repts., 4: 139–147.

HALLBERG R. O. (1982) — Diagenetic and en vi ron men tal ef fects on heavy-metal dis tri bu tion in sed i ments: a hy poth e sis with an il lus tra - tion from the Bal tic Sea. In: The Dy namic En vi ron ment of the Ocean Floor (eds. K. A. Fan ning and F. T. Manheim): 305–316. Lexington Books. Lexington. Mass.

HAMMER J., JUNGE F., ROSLER H. J., NIESE S., GLEISBERG B. and STIEHL G. (1990) — El e ment and iso tope geo chem i cal in ves ti ga tion of the Kupferschiefer in the vi cin ity of “Rote Faule”, in di cat ing cop per min er al iza tion (Sagerhausen ba sin, GDR). Chem. Geol., 83: 345–360.

HATCH J. R. and LEVENTHAL J. S. (1992) — Re la tion ship be tween inferred re dox po ten tial of the depositional en vi ron ment and geo chem - is try of the Up per Pennsylvanian (Mis sou rian) Stark Shale mem ber of the Den nis Lime stone, Wabaunsee County, Kan sas, USA. Chem.

Geol., 99: 65–82.

HOFFMANN P., RICKEN W., SCHWARK L. and LEYTHAEUSER D.

(2000) — Car bon-sul phur-iron re la tion ships and ä13C of or ganic mat - ter for late Albian sed i men tary rocks from the North At lan tic Ocean:

palaeoceanographic im pli ca tions. Palaeogeogr. Palaeoclimat.

Palaeoecol., 163: 97–113.

JONES B. and MANNING D. A. C. (1994) — Com par i son of geo chem i cal in di ces used for the in ter pre ta tion of palaeoredox con di tions in ancient mudstones. Chem. Geol., 111: 111–129.

KREJCI-GRAF K. (1975) — Geo chem i cal fa cies of sed i ments. Soil Sc., 119: 20–23.

KOROLEV D. F. (1958) — The role of iron sulphides in the ac cu mu la tion of mo lyb de num in sed i men tary rocks of the re duced zone. Geoch. J., 4:

452–463.

LANGROCK U., RUEDIGER S., LIPINSKI M. and BRUMSACK H. J.

(2003) — Late Ju ras sic to Early Cre ta ceous black shale for ma tion and palaeoenvironment in high north ern lat i tudes: Ex am ples from the Nor -

(10)

we gian-Green land Sea way. Paleoceanography, 18 (3) 1074, doi:10.1029/2002PA000867.

LEVENTHAL J. S. (1981) — Geo chem is try of trace el e ments and ura nium in De vo nian shales of the Ap pa la chian Ba sin. U.S. Geol. Surv. Open File Rep., 74: 81–778.

LEVENTHAL J. S. (1983) — An in ter pre ta tion of car bon and sul phur re la - tion ships in Black Sea as in di ca tors of en vi ron ments of de po si tion.

Geochim. Cosmochim. Acta, 47: 133–138.

LEVENTHAL J. S. (1986) — Roles of or ganic mat ter in ore de pos its. In:

Organics and Ore De pos its (ed. W. Dean): 7–20. Den ver Re gion Ex - plo ra tion Ge ol o gists Sym po sium, Wheat Ridge, Co, USA.

LEVENTHAL J. S. (1987) — Car bon and sul phur re la tion ships in De vo - nian shales from the Ap pa la chian Ba sin as in di ca tors of en vi ron ments of de po si tion. Am. J. Sc., 287: 33–49.

LEVENTHAL J. S. (1995) — Car bon-sul phur plots to show diagenetic and epigenetic sulfidation in sed i ments. Geochim. Cosmochim. Acta, 59:

1207–1212

LEVENTHAL J. S. and TAYLOR C. (1990) — Com par i son of meth ods to de ter mine De gree of Pyritization. Geochim. Cosmochim. Acta, 54:

2621–2625.

LEWAN M. D. (1984) — Fac tors con trol ling the pro por tion al ity of va na - dium to nickel in crude oils. Geochim. Cosmochim. Acta, 48:

2231–2238.

LEWAN M. D. and MAYNARD J. B. (1982) — Fac tors con trol ling en rich - ment of va na dium and nickel in the bi tu men of or ganic sed i men tary rocks. Geochim. Cosmochim. Acta, 46: 2547–2560.

LYONS T. W. and BERNER R. A. (1992) — Car bon-sul phur-iron sys tem - at ics of the up per most deep-wa ter sed i ments of the Black Sea. Chem.

Geol., 99: 1–27.

MAJEWSKI W. (2000) — Mid dle Ju ras sic con cre tions from Czêstochowa (Po land) as in di ca tors of sed i men ta tion rates. Acta Geol. Pol., 50 (4) : 431–439.

MATYJA B. A. and WIERZBOWSKI A. (2003) — Biostratygrafia amonitowa formacji czêstochowskich i³ów rudonoœnych (najwy¿szy bajos-górny ba ton) z ods³oniêæ w Czêstochowie. Tomy Jurajskie, 1: 3–6.

MATYJA B. A. and WIERZBOWSKI A. (2006) — Stop B1.7-Gnaszyn clay pit (Mid dle Bathonian-low er most Up per Bathonian), Ammonite biostratigraphy. In: Field trip guide book of 7th In ter na tional Con gress on the Ju ras sic Sys tem (eds. A. Wierzbowski, R. Aubrecht, J.

Golonka, J. Gutowski, M. Krobicki, B. A. Matyja, G. Pieñkowski and A. Uchman): 154–155. Sep tem ber 6–18, 2006, Kraków, Po land.

MEYERS P. A. (1997) — Or ganic geo chem i cal prox ies of paleoceanographic, paleolimnologic, and paleoclimatic pro cesses. Or - ganic Geochem., 27: 213–250.

MYERS K. J. and WIGNALL P. B. (1987) — Un der stand ing Ju ras sic or - ganic-rich mudrocks — new con cepts us ing gamma-ray spectrometry and palae on tol ogy: ex am ples from the Kimmeridge Clay of Dorset and the Jet Rock of York shire. In: Ma rine Clastic Sedimentology (eds.

J. K. Leggett and G. G. Zuffa): 172–189. Gra ham and Trotman.

ORR W. L. (1983) — Com ments on pyrolytic hy dro car bon yields in source-rock eval u a tion. In: Ad vances in Or ganic Geo chem is try (eds.

M. Bjorrj, P. Albrecht, C. Comford, K. deGroot, G. Eglin ton, E.

Galimov, D. Leythaeuser, R. Pelet, J. Rullkötter and G. Speers):

775–787.Willey. Chichester.

QUINBY-HUNT M. S. and WILDE P. (1994) — Ther mo dy namic zonation in the black shale fa cies based on iron-man ga nese-va na dium con tent.

Chem. Geol., 113: 297–317.

RAISWELL R. and AL-BIATY H. J. (1989) — Depositional and diagenetic C-Fe-S sig na tures in Pa laeo zoic nor mal ma rine shales.

Geochim. Cosmochim. Acta, 53: 1147–1152.

RAISWELL R. and BERNER R. A. (1985) — Py rite for ma tion in euxinic and semi-euxinic sed i ments. Am. J. Sc., 285: 710–724.

RAISWELL R. and BERNER R. A. (1986) — Py rite and or ganic mat ter in Phanerozoic nor mal ma rine shales. Geochim. Cosmochim. Acta, 50:

1967–1976.

RAISWELL R. and BERNER R. A. (1987) — Or ganic C losses dur ing burial and ther mal mat u ra tion of nor mal ma rine shales. Ge ol ogy, 15:

853–856.

RAISWELL R. and CANFIELD D. E. (1998) — Sources of iron for py rite for ma tion in ma rine sed i ments. Am. J. Sc., 298: 219–245.

RAISWELL R., BUCKLEY F., BERNER R. A. and ANDERSON T. F.

(1988) — De gree of pyritization of iron as a palaeoenvironmental in di - ca tor of bot tom-wa ter ox y gen a tion. J. Sed. Petrol., 58 (5): 812–819.

RATAJCZAK (1998) — Ha³dy po górnictwie rud ¿elaza w rejonie czêstochowskim — stan aktualny i mo¿liwoœci zagospodarowania.

Inst. Gosp. Sur. Min. Ener. Pol. Sc. Acad. Kraków.

ROMANKEVICH E. A. (1984) — Geo chem is try of Or ganic Mat ter in the Ocean. New York. Springer-Verlag.

ROYCHOUDHURY A. N., KOSTKA J. E. and VAN CAPPELLEN P.

(2003) — Pyritization: a palaeoenvironmental and re dox proxy re eval - u ated. Est. Coast. Shelf Sc., 57: 1183–1193.

RÓ¯YCKI Z. (1953) — Górny dogger i dolny malm Jury Krakowsko-Czêstochowskiej. Pr. Pañstw. Inst. Geol., 17: 1–412.

RÓ¯YCKI Z. (1960) — Eco nomic de vel op ment of the Czêstochowa Re - gion and its re la tion with the his tory of geo log i cal in ves ti ga tions (in Pol ish with Eng lish sum mary). Prz. Geol., 8 (8): 401–406.

SAW£OWICZ Z. (1986) — Sig nif i cance of metalloporphyrins for the metal ac cu mu la tion in the cop per-bear ing shales from the Zechstein cop per de pos its. Miner. Pol., 16 (2): 35–42.

TISSOT P. B. and WELTE D. H. (1984) — Pe tro leum For ma tion and oc - cur rence. Springer-Verlag.

VETÖ I., DEMENY A., HERTELENDI E. and HETENEYI M. (1997) — Es ti ma tion of pri mary pro duc tiv ity in thr Toarcian Tethys — a novel ap proach based on TOC, re duced sul phur and man ga nese con tents.

Palaeogeogr. Palaeoclimat. Palaeoecol., 132: 355–371.

WEDEPOHL K. H. (1970) — En vi ron men tal in flu ences on the chem i cal com po si tion of shales and clays. In: Phys ics and Chem is try of the Earth (eds. L. H. Ahrens et al.), 8: 305–333. Pergamon Press. Ox ford and New York.

WIGNALL P. B. (1994) — Black Shales. Clar en don Press.

WIGNALL P. B. and MYERS K. J. (1988) — In ter pret ing the ben thic ox y - gen lev els in mudrocks: a new ap proach. Ge ol ogy, 16: 452–455.

WIGNALL P. B. and NEWTON R. (1998) — Py rite framboid di am e ter as a mea sure of ox y gen de fi ciency in an cient mudrocks. Am. J. Sc., 298:

537–552.

WILKIN R. T., BARNES H. L. and BRANTLEY S. L. (1996) — The size dis tri bu tion of framboidal py rite in mod ern sed i ments: an in di ca tor of re dox con di tions. Geochim. Cosmochim. Acta, 60: 3897–3912.

ZATOÑ M. and MARYNOWSKI L. (2004) — Konzentrat-Lagerstätte-type car bon ate con cre tions from the up per - most Bajocian (Mid dle Ju ras sic) of the Czêstochowa area, SW Po land.

Geol. Quart., 48 (4): 339–350.

Cytaty

Powiązane dokumenty

XRD stud ies of the Lower and Mid dle Bathonian rocks along the northeast ern mar gin of the Holy Cross Moun tains re - veal the pres ence in the clay frac tion of

The main factors affecting mineral composition, abun- dance, and the structure of the diagenetic concretions within clay-rich sediment are: effectiveness of isolation from oxygen

Gradziñski (1962) con sid ered that the clays, con tain ing Late Cre ta ceous fos sils that oc cur within the lime stones in the area of Kraków, come from ero sion of marls and

In the present paper, the conodont fauna recoverd from the spiculitic limestone unit exposed in this quarry as well as in the Przy Granicy Quarry (near the village

In case of the lens-shaped habit every axis lying in the plane of flatness of the lenticular crystal (b is only one of them) is in the same degree favored in radial

They con sti tuted the back ground for other sed i men ta tion types but are re corded only by some in ter vals of col our band ing. The fine-grained sed i ment form ing

The glassy gyPsum is built of vertical, juxtaposed giant crystalS,up to 3.5 m in height, joined together in pairs along flat surfaces oriented perpendicularly to

Di.agnosis: A new species of the genus Dorippe which differs from othet species by the following features: prominent ridge on mesofmetabranchial region;