• Nie Znaleziono Wyników

BCY70

N/A
N/A
Protected

Academic year: 2022

Share "BCY70"

Copied!
5
0
0

Pełen tekst

(1)

BCY71/BCY72

SGS-THOMSON

[M © ^ © [iL [M M © iO © S

GENERAL PURPOSE APPLICATIONS

DESCRIPTION

The BCY70. BCY71 and BCY72 are silicon planar epitaxial PNP transistors in Jedec TO-18 metal case.

AB SOLU TE MAXIMUM RATINGS

S ym bo l P a r a m e t e r V al ue

Unit

B CY7 0 BCY71 B CY7 2

VcBO Collector-base Voltage (Ig = 0) - 50 - 45 - 25 V

VcEO Collector-emitter Voltage (Ib = 0) - 40 - 45 - 25 V

Vebo Emitter-base Voltage (lc = 0) - 5 V

1cm Collector Peak Current - 200 mA

P.O. Total Power Dissipation at T amb < 25 =C 350 mW

Tstg < Tj Storage and Junction Temperature - 65 to 200 °c

* Pulsed : pulse duration = 300 us. duty cycle = 1 %.

October 1988 1/5

(2)

BCY70-BCY71-BCY72

T HERMAL DATA

°th j-case Thermal Resistance Junction-case Max 150 °C/W

Rth j-amb Thermal Resistance Junction-ambient Max 500 =C/W

ELECTRICAL CH ARACTERISTICS (Tamb = 25 Y2 unless otherwise specified)

S ym bo l P a r a m e t e r T e s t C o n d iti o n s Min. Typ. Max. Unit

Ices Collector Cutoff Current> CD UJ II o For BC Y7 0

V CE = - 2 0 V - 10 nA

VCE = - 50 V For BCY71

- 500 nA

VCB = - 2 0 V - 100 nA

VCB = - 45 V For BC Y7 2

- 10 uA

V CB = - 20 V - 100 nA

VCB = - 25 V - 10 uA

Iebo Emitter cutoff Current (lc = 0 )

>inIii

CD

>

- 10 uA

VcE(sat)* Collector-emitter Saturation lc = — 10 mA l B = - 1 mA - 0.25 V

Voltage lc = - 50 mA Ib = - 5 mA - 0.5 V

VBE(satl* Base-Emitter Saturation Voltage lc = - 10 mA |B = - 1 mA

For B C Y 7 0 and BCY71 Only - 0.6 - 0.9 V

lc = - 50 mA Ib = - 5 mA - 1.2 V

h F E * DC Current Gain For BC Y7 0

lc = - 0 . 1 mA VCE = - 1 V 40 lc = - 1 mA VCE = - 1 V 45 lc = - 10 mA VCE = - 1 V 50 lc = - 50 mA

For BCY71

VCE = - 1 V 15

l c = - 0.01 mA VCE = — 1 V 60

lc = - 0.1 mA VCE = - 1 V 80

l c = - 1 mA Vce= - 1 V 90

| c = - 10 mA VCE = — 1 v 100 600

lc = - 50 mA For BC Y7 2

Vce= - 1 V 15

lc = - 1 mA VCE = — 1 V 40

lc = - 10 mA Vce= - 1 V 50

h i e Small Signal Current Gain lc = — 1 mA < O m II I I O <

100 400

(for BCY71 only) f = 1 kHz

fr Transition Frequency l c = - 0 . 1 mA VCE = - 20 V f = 10.7 MHz

For BCY71 15 MHz

lc = - 10 mA VCE = - 20 V

f = 100 MHz

For B CY7 0 250 MHz

For B C Y 7 0 and B CY7 2 200 MHz

Cebo Emitter-base Capacitance lc = 0 f = 1 MHz

< CD II I <

8 pF

C c B O Collector-base Capacitance Ie = 0 f = 1 MHz

Vqb = - 10 V

6 PF

* Pulsed : pulse duration = 300 ps. duty cycle = 1 %.

/ r r SGS-THOMSON

^ 7/ RgDcnissuEcnrnraisiica

2/5

(3)

ELECTRICAL CH ARACTERISTICS (continued)

S ym bo l P a r a m e t e r T e s t C o n d it io n s Min. Typ. Max. Unit

NF Noise Figure l c = - 0.1 mA V C E = - 5 V

R g = 2 k£2 f = 10 to 10 000 Hz

For B C Y70 and B C Y72 for BCY71

6 2

dB dB hie Input Impedance

(for BCY71 only)

lc = - 1 mA V C E = - 10 V

f = 1 kHz 2 12

kU

hre Reverse Voltage Ratio (for BCY71 only)

l c = - 1 mA VCE = - 10 V

f = 1kHz 20x10“^

^oe Output Admittance (for BCY71 only)

l c = - 1 mA VCe = - 10 V

f = 1 kHz 10 60

pS

to Delay Time

(for B C Y70 and B C Y 72 only)

lc = - 10 mA Vee = 3 V

IB1 = - 1 mA 23 35

ns

t r Rise Time

(for B C Y70 and B C Y72 only) CDO II '! i -*■o 33 >> < i mm II CO <

25 35

ns

ts Storage Time

(for B C Y 70 and B C Y 72 only)

l c = - 10 mA V Ee = 3 V

I s • = — I b2 = — 1 mA 270 350

ns

tf Fall Time

(for B C Y 70 and B C Y 72 only)

l c = - 10 mA Vee = 3 V

I b1I b2 = — 1 mA 50 80

ns

ton Turn-on Time

(for B C Y70 and B C Y 72 only)

lc = - 10 mA Vee = 3 V

|B1 = - 1 mA 48 65

ns

t o f f Turn-off Time

(for B C Y70 and B C Y 72 only)

l c = - 10 mA Vee = 3 V

I b 1 = - I b2 = - 1 mA 320 420

ns

* Pulsed : pulse duration = 300 ps. duty cycle = 1 %.

TEST CIRCUIT

Test Circuit for Switching Times.

SCS-THOMSON

3 > ::3 s ? rj3 ? s r*:n

3 5

(4)

BCY70-BCY71-BCY72

Collector-emitter Saturation Voltage. Base-emitter Saturation Voltage.

G- 2018

2 t M 2 4 I I 2 I I I 2 4 6 8

K)-2 K>*’ 1 10 - I c (mA)

Collector-base Capacitance.

10 ’ 1 10 - l c (mA)

G-1851

4/5

T SGS-THOMSON

^ 7# R30(£lH®IlL[lGir^©[i!!Q(Si

(5)

Equivalent Input Noise Current (for BCY71 only).

W * X)-' 1 K) JO2 f (kHz)

Countours of Constant White Noise Figure (for BCY71 only).

G-165S

£ jl SCS-THOMSON

M OW SLSM BSW OCS

5/5

-MR

Cytaty

Powiązane dokumenty

Dzi´ki jego inicjatywie Cushing otrzyma∏ honorowy tytu∏ profesorski w Yale po przejÊciu na emerytur´ w Harvard w 1933 roku i przeniós∏ si´ do New Heaven.. Fulton zosta∏

door het College van Dekanen aangewezen, op dinsdag 5 september 1995 te 13:30

Collector-emitter Saturation Voltage (PNP types)..

The magnitude of convective heat transfer coefficient describing the resistance to heat flow across the water-pipe interface, k w−p , vary in time and in dependence on

• We also think about your social life, at Accenture you will be able to take part in different initiatives like Book Club, International Cuisine Club, Accenture Runners Club,

The results for a wide range of phase equivalent potentials scatter about the line AB, known as the Coester line, and most certainly do not account for the semi empirical

During the evaporation process, latent heat is drawn from the atmosphere, and the final temperature, referred to as the wet-bulb

The amount of water condensed in a rising adiabatic parcel increases with the height above the cloud base and increases with increasing temperature at the cloud base. For shallow