• Nie Znaleziono Wyników

Data Report of Current, Temperature and Pressure Observations: Stratified Central North Sea 1980-1982

N/A
N/A
Protected

Academic year: 2021

Share "Data Report of Current, Temperature and Pressure Observations: Stratified Central North Sea 1980-1982"

Copied!
121
0
0

Pełen tekst

(1)
(2)

'. t, -,:,:' '1

.i~·

, t--: • --I'•- ...~ ._I .~" :..;' r ",~ • • t "." -",1

.-

....

(3)

DATA

REPORT

OF CURRENT,

TEMPERATURE

AND

PRESSURE

OBSERVATIONS

STRATIFIED

CENTRAL

NORTH

SEA

1980

-

1.982

July

1986

Leo

Maas*

and

Hans

van

Haren*

*Present

adiess:

(4)

Introduction

During

springs,

summers

and

autumns

of

1980,1981

and

1982 a

collaborative

study

on

the

seasonal

stratification

of

the

Central

North

Sea

was

performed

by the

Netherlands

Institute

for

Sea

Research,

the

Institute

of

Meteorology

and

Oceanography

Utrecht

and

the

Royal

Netherlands

Meteorological

Institute.

Table

1 lists

mooring

positions

(shown

in fig. 1), local depths, meterdepths, operational periods and

samplingperiods of current meters, pressure gauges and thermistor

chains. Additional current meter datasets on periods not covered in

this datareport exist with the Royal Netherlands Meteorological

Institute, the periods shown here being characterized by the existence

of simultaneous current, temperature and pressure records.

Hydrographic surveys are described by Maas (1981) and van Aken (1981

,19~3a). A description of the meteorological circumstances can be

found in Kleverlaan (1982) and van Aken

(1983b).

The dataprocessing

All instruments were deployed at approximately toe same time (within

one day). A mutual origin of time was adopted,

dictated by the latest

starting instrument. By simple time-averaqing

,

current, pressure and

temperature data were reduced to hourly values, which datasets formed

the basic timeseries to be presented here.

Four types of standard analyses were used to produce

:

1) Low-fre

-quency fields, 2) Tidal Harmonie series, 3) (Tidal band

) residual

signals and 4) Fourier Spectra.

1) Low-frequency fields

In order to produce low-frequency fields we performed a "50 hour

running mean procedure" twice. This procedure is best demonstrated by

focussing on the processing of the temperature signals in

1980.

Consider the original timeseries of the eleven temperature sensors in

fig

.

2a

.

After applying a 50 hour running mean

,

corresponding to

averaging over four semidiurnal periods, figure 2b shows that the

semidiurnal tidal signal is strongly reduced, but still present. A

(5)

2

Table

1 Positio

n

s,

de

p

t

h

s,

local

sea

dep

th,

op

e

rat

i

o

n

al

perio

d

s

and

sampl

i

ng

periods

of current

met

e

rs

,

pressure

gauges

and

thermistocha

i

ns

i

n

1980-1982.

CUrrent

met

e

rs

N

A

54°46'

B

54°46'

C

54°41'

D

54°41'

E

54°30'

F

.

54°35 '

G* 54°27'

H

:'

54°28'

'

;

'1

54°30'

::

J

~

~

4

°

35,

:K

:5

4°27'

"

L

"54

°

21'

''

'

E

depth

s

(

m_>

" 01-'"

3

°

3

8

.

'

"

..

J 6

.

.

'

4

1

.

3° 47 ,'

.

'

.

14

28,

~

1

.

1~;:..

4

r

27

0

'

',;~

41

'

.

40

3tÇ:'.:

13,19,31;38,45

4

::3'1 ,

-

1

3

-;

2

9"

;

4

S

4°22'

13,29,45

*

4°38'

'2-,

28,

42

4°30'

á~

24,

ClO

,3

7

1.~

'

~,

\

:

~::

44

12,43

1

2,27~

:

~

4

12,27;A2

e-«.

wat

e

r

d

e

pt

h

(

m

)

4

6

46

46

46

50

5

0

50

47

49

4

8

.

'

49

! .'

47

;_.!, )

a

t

a

:

~

1981

/'

t

h

e

bottom

curren

t~

eter

compass

f

a

i

lure.

("-p

re

ss

:u

r

e

g

~

i\

~

.

ges

p

e

ri

ód

:

yea

r

(da

~

n

r

)

.

2

4

0

"

28.

9

,

:_

.

"

J

.

98

0

24

0-2

1

5

240

-

3

5

"_~-~--"'

-24

0'

-275

>

240

-

275

240-273

24Q-273

~

~

240-27

4

>;

13

3

-155

1

9

a1

dt

(

min)

10

10

10

1

0

1

0

10

.

'(

'1:0

10

2

5

5

5

1

0

1

0

1

0

10

10

10

.~

'

,

0

;

°

:

i,

~;

\:

,~ M~;." :~'J. ' {-.··i·

P

l

'

540°0'

-

3038'

~

.

r,

23

t

~

s:.

2

5

5

":19

8

0

6

0

,,~: ,.. ,..

P2

;5

4 4

Q.

.'

_

..

3 3ÇJ"

2

4{)

';"

3

05"

60

-

54046~' "

"

4

°

4

7

'

'.< '<'

P3

:-

',-_

.

24

0

-

3

0;5

60

'

54°46

'

4

Q4

7'

.

~.

-

P4

..

2

4

0

-3

'

U5

60

.,

P5

'

'-

5

3039

~

'

:

i)30'

..."" ...

1

3

3

~

ç.

175

;1

98

1

60

P

6

,

5

4°30"

:4°13'

..

1

33-

1

74

60

,

"

P7

5

4°30'

,,

30'

... -,\

"

,

133

-

17

4

60

"..

..

.

54°30'

r-, :

5Q54

I' ,

_..

-

0-P8

I'.~

1

33'

:"

1

=7

-4

6

0

~~

P9

:

54°3

0

'

-

5

d

,

,

'

,

-;

'

·t.

2

1

4-252

198

2

1

5

PlO

~

4

°

2 ° '

.4 °3

0

'

"

'

,. "

21

4-2

5

2

1

5

'~"",.~.

..,--'l:

Therm

J

,

s

t

o

r c

h

a

!-.D

ê..

...

_

_

..

...

.

__ ._

.

.

_

-

-

,

-

_.

-._~

_

.

.."

.~4046'

::g-O

J8

'

c

"

A

12":32

.

E

54°30'

'

4°30 '

12-32

I

54°30

'

4°30'

11-31

K

54°27'

4°22'

11-31

L

54°27'

4°38'

9-29

13

3-155

133-155

133

~

5

5

215

~

-'5

2

215-i

::i:

9

2

1

5-240

215-252

215-2

,

52

215-

2

52

1

982

wa

s

é

l

i;

m

ii:la

ted

d

ue to

~

.

" .

,

,,-.' '_,e' _I

~

.

.

-

_._

-

-

,._,..

_-

-...

.

...

i

239-

~

n

198

1)

'

.

1

5

"'.

133-

'15

5

O' , l.

1981

,15

215

-

253

1982

15

215-25

3

1

5

215-2

5

3

15

(6)

r

-~

')

'

:

:19B2~.

" ':. .~.; :.j ..

,

"'

~7

r+:"

I

j-,;;_,., I

I

,-,", ) i:' ,_/

,

.

(

".,p

~

_"

...

--",.,

"

.

)

• /' C) (\

'-:>

-

.

"

(

T~

'

.

ei, ol '(

'\l

,p~-j

.,/-'-')

"

)

,

l

-

,

' "

,

, "." ~ ") (,

"

l ,_""l',

,

~'

,

,

"

"

'.

.,

'

..

C ••, "':

'

QO

I

Î?,

~

(".

.

:

')

t

»

.,

"198

:

"

0'"

I ,.".. ~

r

ü

~--_

.

~-

t";.." ," I,'

I..

<_

' ,

,'

;

,

'

I

;

.

.

• ".".;

:

'

iJs"

'

:

,

:

'.

", ,',

: '

,~ ,/ 6

'1I1:!...J

lp..

.p' "

L_,

__

~

/

.:»:

I ~

~'An'

p.

C'

,:

"~'

~

•9.

r-"--'----'

'"

10 j

t

"'

-40

.

...

-

----

-

);.-...-..=»

t:;-"'''

,--)

!:J.

'

'''

'

'

,,,,"e:»

r

\

f

,_,-

::::>

l -) /" j,.'.' ~'.

~

t98l

l~:~,

i/ -.',

,

I.." •• I.'I '

'Figu

re

l

'

a) Map

o

'

fvt

he North S

~

a with 4'0m

Lsob'atih ,

c

e

ntral

'

-~

41

~

,

(")

I;;t

o

0(") C") :'

A{9

'1. ...;

BJ-

',;

-

r, ,.J

~54P

:. .

46'

N

.! " I

10km

-

"

"~ »Ó ',

!;

~

~

:

'

'i I'~" , .~

7

:

,

,'"

~..

D+

..

·

,

- .rt.:,._, -- -.. q

A

.

4

1 N

• :." 'I. .• i .'• , :-', ~ .); " , :"111.:,

,.

.

.

1,-, i'

A

tl'

Lw

,

.

'

0J

, (\j 0'l;t

Lw

_

Lw

<b

(")

16

km

'

.~

'

.

.:

~GH

:>

\

.

_

G~K

Hrdi

.

J

B

,

:

.

ri">'

-pqsiti

,

ans

,

afmoaring netwarks in 198

'

0

'(A)and'1981,1982

(B)

.~ J .:; (

and maaring positians af press~regauges ~

(j=1,2,•••,10)

h) Current meter

(+) and thermistarchain (a) maaring

positians within the areas A and B.

v .•.• " :j :j c' !',i .~.' -', :') "

.-.'>, ,t· .r

~

.' ": ,_, IN

·

5

4

0

3S'

N

~.'

54

°

j

o'N

5

2

iN

(7)

;

" !

.

,

i98Ó R·

4

.}:.;: '.-",C' }' lSO 2'lS

c

e

2·~~~~

~~

~~~

~~

~

~~~

~

~~~~~~~

m

~~~~~

OIITNII 260

'

00

lil !!! !!

~

~

~

'"

~

~

1980

15

=

d

260 ORTNR 26S

Figure

2 Temperature

( °C) at the eleven sensors for the original

(a),

filtered

(b) and twice filtered

(c) timeseries. From the

latter graphs inverse inte~pàla

t!

~n g

i

ves timeseries of

I

depths of iso

t

herms (

i

n

°C)

(d).

(8)

5

second applicat

i

on of this 50

h

our running mean operation yields

figure 2c, from w

h

ich the tidal signal is virtually absent. This

procedure corresponds to applying a spectr

d

l tr

i

angular Bartlett

....<'.

window

(Jenkins and Watts,

.

1968) to th

~

'

d

ata~ Note t

h

at a 50 hour

ruiming mea

n

'

pzocedtrr

e in pr

i

nciple gives a dat;

a

Loss of 25

h

ours at

bat

h

the

.,p

eginning

and

'~

~d

of the timeser

i

es

.

F

ox t

.

~i

sreaso

n

a

correction procedure was performed over these points in that the first

and last 25 datapoints were subjected to a 25 hour running mean, of

which the first and last 12 points were treated with a

12 hour running

mean, of which, finally, the first and last 6 points were kept

constant.

In

our

op.i.nLon

t,hisstill gives ~

Lnf

ormati.i.o

ns

-

although

I I.

!

the errors introduced will increase towards the endpoints

'

an,d

'

some

I. .

discontinuities result at the matchingpoints

(see fig. 2c).

·,

rf it is

....~.I.

preferred, the reader may.just drop the information conta

l

ned in"the

",

first and last 50 h.ours (50, because of the repeated runni

n

a mean

"j

l.;

procedure) •

"

~

"

,

.

'.

...

-

'2}

-<ridal

H

'

armonic Ser

i

es

The

·

ö

r

igihá:l

·

times

e

riesof currents and pressp,re

s

were subjected to

a Harmonie Analysis (Dronkers, 1964) with

.

,.

_

]

"

frequencies

(table 2), of

,

,

f

·

Table

2 Tidal and inertial:frequencies used in

t

he harmonic analysis

.

o

The inertial frequency is taken at a latitude 54 30

'N

.

Symbol

frequen

cy

(x10 -4

S-

1)

f

1

.

184

0,

0

.

675977

Kl

O

.

792116

;.,

,

.

N

2

1

.

378797

~2

~

1

.

405189

!';~

S2

'

.

454441

.

J' .,

M4

2

.

810378

1 .... r:', ~:: '-1.

-

-

..

'\ " .

~

1

,

,

4.

215

~

;

5J

6

i:

.

'

';;;2"" :.~ ·:':'l·q~·

r:

»

l!' ~";'_

(9)

A 16 A 41 B 14

B

28 B 41

C

13 C 41

o

27

o

41

E

13

E

19 E 31

E

38

E

45 F 13

F

29

F

45

G

13 G 29

H

12 H 28 H 42 1 12 118 I 24 I 30 I 37 1 44 J 12 J 43

K

12 K 27

K

44 L 12 L 27 L 42 P,1

P2

P3 P4 PS P6

P7

P8 P9

P

l

O

o

1 K

6

f S 2 M 4

UIpVIp UIpVIp UI/V" UIpV" UI{IV'I UI{IVIp UI{IVIp

u

v

u

v

u

v

u

v

u

v

u

v

u

v

.5 256 1.6 112 1.2 259 1. 5 121 .7 243 1.5 129 .5 230 2.0 121 1. 2 263 1. 2 113 .5 234 2.1 114 1.2 256 1.4 118 .4 255 1.7 124 1. 3 259 1. 6 122 1.2 305 1.8214 1.3 282 1..4 225 1.2 293 1.2 222 1.2 293 1.3 220 1.0 294 1.2 229 .8 324 1.6 211 .6 314 1.6 232 .8 304 1.5 226 .8 341 1.6 214 .6. 310 1.4 231 1.4 321 1.6 204 1.4 286 1.6 241 1.1 317 1.3 231 .63592.1299 .8 13 2.3 299 1.1 27 1.4297 1.0 61 1.5 291 1.2 62 1.7296 1.7571.6300 1.172.2297 1.5 57 1.5 293 .6 11 2.2 302 1.1 64 1.8287 1.6 54 1.3 298 .6 326 2.1 300 1.4 53 2.0 293 1.4 51 1.4 301

o

Z(cm) 4.4 3.4 3.7 3.5 6.5 4.1 3.5 4.5 5.2 5.5 .3 67 1.5 247 1.0 38 1.2 262 .5 51 1.3 253 .3 336 1.8 275 .9 37 1.0 264 .4 47 1.7256 .9 44 1.3 266 .3 56 1.8 276 1.0 33 1.5 265 N 2· M 2 1.2 158 1.0225 4.5 126···~~3.i55"_tet98'_194.F.4,).?~._7~~~ 94'1.7 57 .7350.6781.11391.52213.02176.3864.91Ü-2-.-9"·20 .7 177 .5 202 3.8 126 .2 289 20.6 194 2.2 81 7.5 94 1.8 48 .9 307 1.1 68 3.9 104 .4 122 19.9 194 1.8 67 7.3 97 .7 56 .5 329 ';6 60 '''6 139 1.7 3'12.S :217 5'.5"19,,4.4· U,9 2.6 '22 .7155 .8224 3.5 108 .332620.5 193 .9 88 7.4 90 1.7 55 1.0 325 .6 '56 2.0 157'2'.7"'24 15.8 214'6~0 .80'

'

S.?

·

10?2.~5. 15 .5356 .6 82 4.1123 .5 1118.7202 1.8 73 6.3101 .7 12'" .5·339 .5 64 '2.2 14,1 1.3 ;156.14.32-08 5.6

;

'

n

~4e-

!I

.

i

os

h

8

.

.

1

6.

.8 119 1.8281 2.0263 2;0 357. 5.7 l40:2,8 284 23.·9 268,'~O 75 7•.5 ,?7 .4354 1.1 40 1.6 305 1.7 94 1.4 179 5.6 121 .4 218 25.1 267

2.3

275' 8.3 98 1~3

"

$

'

.8 38 1.7 '300 ... 7

.73

:103 143 5.6 ·109 .8,45,,25.8472 ",3. ~6 8.3 98 .3276 .9 37 1.9296 .7 68 1.0 173 5.9 113 .4304 2j.6 279 2.9 123 '7.3:'108''';7':

ti

..·

.9 38 '~4·298 ",.4 :44 1.0 173,4 •.6 136 1.6,342 '2.7.289

~.8

..

14~..<6 •.2 113.1,.4359 .2271.82902.72642.33506.2124.9'234'24.6268 ·."72817;11·02··".7·,0", .9 35 1.9299 1.2 68 1.5 183 5.5 lIS 1.0 134 24.9 273 1.3 145 8.1 102 .8 145 1.0511.2303.6357.11273.91442.4020.42865.51436.2110.9 29 .4 91 1.8 290 2.6274 2.5 347 5.5 124 .3 270 23.9 267 2.0 274 7.0 101 1.2 69 .8 8 1.5 313 2.3 101 2.0 189 8.0 139 1.4250 25.8277 1.4 28 7.9 98 1.1 113 .8 106 1.9289 1.8273 1.5 358 6.9 12'5 .8 261 27.3 270 1.6"'319 8.7 105 1.1 174 1.0 15 1.2 307 1.0 80 1.0 128 6.7 121 .1 314 28.1 272 ';.8' 355 8.8 96 1.5 105 .9 37 1.3 303 .5 63 .4 155 4.7 136 1.3 121.8288 6.3: 1l?4 6.5 119 1.9344 e-._':- "",.. • 2 228 .6 116 .3 250 .6 139 .0 247 .8 95 .2 266 .9 103 .1308 .7144 .3 244 .6 109 .3 203 1.1 122 .3 225 .9 107 .3 226 .7 134 .4 163 .9 239 .0 143 .9 269 .4 193 1.4 294 .3 58 .9 268 .2 91 .9 284 .2 307 .9 284 .0 124 .8 257 • 1 190 1. 1 290 .13221.0274 .6 42 1.2 287 .1192 .9256 .2 103 1.0 259 • 1 270 1.2 302 .4 99 1.4 141 .4 71 1.7 147 .33471.6145 .2 6 1.1 141 .1791.5129 .2 317 1.2 137 • 1 38 1.2 138 .1 16 1.3 91 • 1 156 1. 5 140 .3 68 1.2 120 .22411.1143 .2 118 1.1 118 • 1 28 1.2 122 .3 72 1.3 119 M 4 I{I

z

Z(cm) 1.2 332 2.3 251 1.2 4 2.3 261 .6 47 2.9 256 .2 37 2.5 257 .5162.5256 1.1 211.8254 1.2 352 1.9 248 1. 2 12 1.8 263 1.4 348 2.4 243 .1 322.3261 .9 1 1.9 264 1.3 345 1.4 251 .2 49 2.6 261 1.0 2 1.7 261 K Z(cm) z 218 239 248 225 2.6 2.8 2.4 1.9 2.32'01 1.3 279-',.3:·'l-nS-""-';"if"·J7"23.6l~5'

:

.8'

285 7.5 80 1.2 9 1.2256 1.4 352 4.4 116 .3,52 23.0 6 1'.4349 8.0 72 1.6 61 1.7353 1.9 84 3.9 117 .6 9424.0 72.0 3 7.7 78 1.1 88 .7 22 1.3 135 4.1 135 .1 17? 25.1 13 1.4 150 8.1 82 .7 154 .777 .914si 3.11441.635222.5132.72207.682.2245 .8 36 .8 116 2.2 13,1 1.3 26 17.2- 25 6.4 25" 6.4 85 1.0 333 2.8 219 1.9290 4.2 122 .5 3{ 22.7 .,"'1.2 317 7.1 80 1.3 39 .7109 .71a6 1.915.81.5 1818.1205.32546.6961.4334 1.7228 1.9 309 2.9 119 1.2 56'22.7 8 2.1 342 7.2 83 1.4 35 2.0 19 1.9 1~1 3.9 123 .5 180 24.3 11 .4 " 7.7 84 .7 70' .6 89 .3,.138 3.0 140 .8 )45 11;.,~ 26

-.!I

.

8 ~53 5.9 90 1.7 1 2.3 1S6'·2:·~-Z77-·3':7..t3->r-1':'0'''"23-24-...'6-,·6-·;.2. 58 7.2 78 1.2 83 .L~tO ...9 103 4.512's· .3264 26.6 82.0 103 7.7 75 1.6 72 .4 47 .4 122 2.6 ,;26 1.2 40 19.5 18 5.6245 6.9 90 1.5326 N ,2' '.' '~.'''.:'' M2 S 2 z 4.0 3.8 4.1 5.3 115 158 127 132 300 311 306 268 8.7 5.1 4.6 5.6 Z(clIl) z 53 4.3 4.6 4.4 4.2 331 278 282 268 358 32 329 2 Z(cmT Z(cm) 3.9 5.0 116 138 ':, .

z

l~:~..

Table

3

Ampl

).

tudes

and

phaae s

from Harmpnic Analysis

of

a)

East

(u)

and Nort

h

(

v

)

veloeities

(cm/s)

b)

surface

elevation

(cm)

17 49 62 40 273 22 300 222 .5 .3 .2 .4 6.6 8.3 7.8 4.8 154 178 168 147 34.3 36.7 34.2 23.7 244 255 239 212 11.3 13.2 11.9 7.3 160 171 151 118 34 44 36 7

,

11.5 7.7 6.6 7.5 .1 .3 .3 .3 192 142 244 182 124 139 131 64 37.2 218 8.6 ~..~

.

..

.3 .3 292 19 23 ·10.1. 5.3 6.1 92 155 34.7 317 25 9.4 ·12...·1 , .,

(10)

t:_-ó.:.

_

'

,-,' f,. : ,:..' :'. ; .t t'•

7

wh

ich only t

h

e loca

l

inertial frequency is of a non-ti

d

al nature.

Resul

tin

g ampl

i

tude? and p

h

ases have been tabulated

(

table 3),

w

h

e

re

phases ref

e

r to

1 Janua

r

y 00.00 of

t

he correspond

i

ng year.

3

)

'

(t

i

dal b

a

nd

)

r,

e

s

i

duals

i

gnals

,

.

~

he

lów-

f

requency

,

fields a

n

d

,

harmonie t

i

meseri

e

s

(for curren

t a

nd

:

:-

v

·

.

.:'

pr

e

ss

ur

e:

f L

é

Ldä )

a

r

e s

~

bt

~

acted f

,

roin

t.

h

eoriginal timeseries

t

o

.

...

.

.

_

:. ,. " . '.:" .

p

r

od

Ü

ce

'

I:

e

si

d

ti

à

l

s

'l'

.

·

l

l'

Fourier spectr

e

:

,

Um

of

s

+

9:n

a

1

~

t

he

~

?

~n

:

d

~

s

~

ed

'

fi

l

ter

:e

d,

with a

this

'

high frequency, no

i

sy

e

os

i

ne hell window

(f

i

g. 3)

i

~~

o

*

po

r

at

i

'

ngth

~

se

m

iq

-t

urnal frequency b

a

nd, w

i

th half width po

i

nts

..

a

i

,'

1

~

'i

2,x

:

1

ö

*~

:

(

.

-

fi

$

~

-

~*

J

.i

'1)

'

and

1

.

S

·

SX 10**(

~

:

4

'-

5**

(

-1) •

.

.

.

..

..

,~. .,-

~

:~,. I :.;'. .:. :,

i

~

.

r

,

L

j. , ,I p: ,(. '::~,

,

'

,

Oi

5

'

..

..

..

J ,..

Figure 3 Bandpass filter, i.e. aspectral

weighting factor as a

func-tion of frequency. Labels Land

M give the width of the

.

.sLoping:

reg

i

on and

,plateau in units of the fundamental

fre-quency bandwith.

~

..

4) Four

:i;;

e

spe

r

_çt

r

a

.')'.

Both the original as well as residua

l

signals we

r

e

Four

ic

rtr

a

nsformed.

'

Th

e

r

av

sp

e

ct

ra

(

2

d

egrees

o

f

f

r

ee

dorn)

a

r

e

presented in the dimensional magnitud

e

s, allowi

n

g a direct

determination of amplitude values

(

i

nstead of giving the power

spectrum,

'

from which the energy contained

iri

'a

frequency bái1d can be

derived) •

Each of the physical fields requires some specif

i

c analyses

w

hich

will now be described:

(11)

8

Current

field

a} The low-frequency current vecto

r,

s

-

are presented as stick-plots,

in which the direction corresponds to the obse~ved current direction

and the length of the stick is determined by the key given at the top

of each plot e.g. fig.

10.

b} In

1982 the currentvectors hav~ been proj~c!ed into a specific

direction

(33

T,

the inferred frontal qirection) and a correspondfriq

perpendicular

direction (303

T). I? these pl~ne? velocity contours

(isotachs) have been determined

(e~g. fig. 59).

c} Currentspectra

for V

(North compo~ent}h

,

ay.~_peen displaced two

orders of magnitude for clarity. CUrrents are sometimes better

described by separating the ellipsoidal motion into two counter

rotating circular current components

(fig. 4). The corresponding

timeseries hàve been analyzed

·

to

:

9ive

'-

rotary:speètrà

(e

~

;

~g

'

fig.

.

I

"l7).

"

..

'

.

-

.."

at

-t=O

(If)

;'f" .'

+

"

,

Figure 4 Decomposi tion of tidal current ellipse

(frequency

0- )

specified by the four ellipse parameters

(long axis U,

excentricity e

=

V/U

I

inclination

't

and phase angle

q>

- :- 1 • •~. .'" -: ~_~•• ''_

into two counterrotating circular currents of constant

magnitude

R± and phase angles

e:!:.~

d) The low-frequency current fields, obtained at different vertical

positions, have been separated in a shearing and advecting current

field, a separation suggested by the thermal wind relation

(Holton,1919). Note in figure 5 that th~ separation is not complete in

...A ~..Jo.

t.hes~nse

t.hat;

VIA.

and

-

('\0

-

vI.

'

)do no

t;

allow a reproduction of the

original

V

o

and

"I .

The velocity -<liffeI\ence

.

(v

o

- v )

.\

-

has been

'

(12)

9

COld Worm (a) Cold J. !.-.~-:__"::.', .

~

;-_-. ".\~ c ::,.~.--~ .

Ta. S

T

;.: Worm (ti) ...-

-

~

-....

Figure ?

~

Rela

~

ion between turning of geostrophic cur

r

ent

(bottom

V

o

surface ~

) and temperature advection: a) cold advection

\

b) warm a<;lveçtion.

The shearing "thermal" current vector has

warm water

'

at

,

its

·

"

r

ight hand side (on the No

r

thern

Hemisphere) •

.

~ter

Holton (1979).

""

...

~

e) The tidal harmonie series of current amplitudes and phases have

been combined into i) current ellipses, e.g. fig. 93, and ii) vertical

_,

graphs showing the vertical profiles of these variables, e.g. fig. 98•

.

,

In the latter graphs phases were taken relative to

the surface

"r '

-current meter phase válue of the same mooring.

An

alternative way to

display the information is by forming the amplitude and phase diagrams

of the counter rotating circular velocity components. The physical

advantage and meaning of the theoretical curves in these figures is

discussed in Maas and van Haren (1986).

Pressure field

The pressure fields are converted hydrostatically to elevations.

These, however, have no fixed datum,

'

i.e. the cO'rresponding

'

elevations

are accurate up to an additional constànt

..

This means

'

i

hat

'

an unknown

mean spatial gradient may

'

e>Eist.

(13)

10

Temperature field

The observed temperature at each of the sensors of the thermiptorchain

can either be displayed directly as a function of time or as vertical

d

ä

sp.Lecement.s

to which they can be converted.

This conversion

process, performed by an inverse cubic spline interpolation, is

illustrated

in fig. 2c and 2d, applied to the low-pa~sed temperature

observations.

By subtract

i

ng the low-passed temperature

,

field fxo~ t

,

he0HigipaJ_.

data, the temperature fluctuations at the aenso

r

,

.

d~pths are

obt.a

.

i.n

ed

and may be readily compared to the low-passed eLevat.Lon

.

field itself.

.. •: ~'J:

"-;',." r;:..:'

" ..;

'

-:.

Acknowledgements

We are happy to thank captain Blok and his crew, of

R.

V..

~rq;l

.

,

.

.tor

the pleasant cooperation during the hydrographic cruises

~:

in

,

1981and

1982.

Thanks are also due to Oick Riepma of the Royal Netherlands

Meteorological

Institute, to Hendrik van Aken of the Institute for

Meteorology and Oceanography Utrecht and to the Hydrographic Service

of the Royal Navy for providing us with current, temperature and

pressure data respectively.

The financial support from the Netherlands Council of Sea Research

is gratefully acknowledged.

(14)

11

Reports

on

the

strat

i

f

i

ed

N

orth

Sea

Pro

j

ec

t

an

d

References

Aken,

H

.M.

van,

19

8

1

.

Project

gelaagde

N

oordzee

CTD-

w

aarne

m

i

n

ge

n

1

9

81

,

IMOU-i

nt

ernal

report

V

81-33.

Ake

n

,

H

.

M

.

van,

1983a. Project "gelaagde

Noordzee 81/82"

CTD-waarne-mingen

1982, IMOU-internal

report V 83-8.

A

kén

,

'

,

H.M. vàn

'

,

'

1983b. Project "gelaagde

Noordzee 81/82"

meteorolo-gische

'

waarnemingen

1982, IMOU-internal report

V 83-18.

'

:

Aken,

'H

.M'.

,

van,

-

1984.

·

A one-dimensional mixed-Iayer model

for

stratified shelf seas with tide- and wind-induced mixing,

ot. Hydrogr.

Z., 37, 3-27

Aken, H.M. van,

1986. The onset of seasonal stratification in shelf

seas

due to differential advection in the presence of a salinity

gradient, Conto Shelf Res., 5, 475-485.

Aken,

H.M.

van, G.J.F. van Heijst and L.R.~1.Maas,

1986. Observations

of fronts in the North Sea (in preparation).

Haren, J.J.M. van,

1985. Verwerking en analyse van getijsignalen in de

seizoensgelaagde centrale Noordzee, IMOU-internal report V 85-7.

Haren, J.J.M. van and L.R.M. Maas,

1986. Temperature and current

fluctuations due to tidal advection of a front (in preparation).

Kleverlaan, E.J.A.,

1982. Meteorologische omstandigheden tijdens

projekt gelaagde Noordzee,

1981, D10U-internal report V 82-20.

Maas, L.R.M.,

1981. Inwendige getijden in de Noordzee & onderzoek

naar overgangsverschijnselen tussen gelaagd en ongelaagd water,

IMOU-internal report V 81-3.

Maas, L.R.M. and J.J.M. van Haren,

1986. Observations on the vertical

'

.

st.ruct\}re

of t.Lda

L

and inertial

currents

i

n the North Sea, submitted

to J. Mar. Res.

Dronkers, J.J., 1964. Tidal computations

in rLvers and coastal waters,

Amsterdam.

Holton, J.R.,

1979.

An

introduction to dynamic meteorology,

Inter-national Geophysics Series, vol.

23, New York.

Jenkins, G.M. and O.G. Watts,

1968. Spectral ~nalysis and its

(15)

12

Contents

of

figures

---

Current

fields---1.U

(East)

and

V

(North)

velocity

components

of

hourly

timeseries

of

stations

listed

in

table

2.Low-frequency

stickplots

and

,when

available,

advection

and

shear

graphs

3.Residual

band-passed

U and

V timeseries

4. (Raw)

spectra

of

U and

V

5. (Raw)

rotational

spectra

---

Pressure

fields---

·

--

·

1.Hourly

timeseries

of

surface

elevation

field

at

each

station

2. Low-passed

pressuresignals

3.Residual

band-passed

elevation

series

4.(Raw)

spectra

of

the

elevations

---

Temperature

fields---1.Original

timeseries

2.Low-passed

timeseries

3.Corresponding

low-passed

internal

elevation

field

Figure

1980

1981

19~

,

~

.:

"_._,. : \

;

;

6-9

27-

45-1•

31

54

10-

32-

55-11

34

61

-12-15 35-39 62-71

16-17

72-76

"

_-

-

..

,

.

.'.-...

-.~

,

77

:-

8

"

'2

..

,

18

40

83

:-

.

19

41

83

20

41

21

42

84

22

23

23

43

43

89-91

85

.

86,

4.Temperature de:viations (unfiltered and filte

r

ed

'

) 24-2-5

'

,

4

4

'

:

·

:87

....;

88

5.(Raw) spectra of the temperature deviations, the

resulting values being displaced by an order of

magnitude for clarity.

To eompress the bulk of information not all of these

graphs are shown for all stations.

These figures

a

re followed by some

g

rap

h

s showing

eombined information for the three years, sueh as:

4) Current ellipses following from Harmonie Analysis

5) E

l

lipse parameters, of original eurrent ellipses as

weIl as of their rotary eomponents, as a funetion of

depth.

26

93 - 97

98 - 109

(16)

1980

D

E

PTH=

16 M

19

8

0

D

E

PTH= 41 M

a

1980

D

E

PTH

=

16 M

1

9

8

0

A

D

E

PTH

=

41 M

b

Figure 6 Timeseries of hourly current veloeities in East (al and

N

orth

(hl direetion at position A,

1980.

N

ot

i

ee

t

he different

(17)

1"9

80

+-.,

D

EP

TH=

14

M 0

B

CD (/) <, :Co (J ::J 0 CD t

1

9

8

0

D

EP

TH=

2

8

M

B

1

9

80

B

DE

P

TH

=

'it

M

Q

lil

t~~t,O~~~2t.~S~~~2~SO~~~~2S~S~~~2i60~~~2~6S~~~2~7no~-L~2d7~S~-L~~-L~~~~~~~-L~~~~~~~-Ld

D

A

YN

R

oapTlh'

1'1

1'1

1

980

B

D

E

P

T

H=

2

8

M

>

1

9

80

B

D

E

P

T

H

=

4

1

M

>

b

Fi

gure 7 As

fig.

6

a

t B.

(18)

1980

C

D

E

P

T

H=

13 M

V1

5

°~~~~~~~~WW~~~~~~~~~ruw~~ww~~

1

9

8

0

C

D

EP

TH=

4

1

M

a

<.

1

9

8

0

C

DE

P

T

H

=

1

3 M

>

1

980

C

DEP

T

H-=

41

M

b

Figure 8 As f

i

g

.

6 at

c

.

,

,

:-

.. ', !; .-~

(19)

1980

o

DEPTH=

27 M

lil

I

1980

o

DEPTH=

41 M

a

lil

1~~~O~~~~~S~~~~~O~-L~~~S~~~~~O~~~2~6S~~~2~70~~~2d7~S~_L~~-L~~~~~~~-L~~~~~~~~

DAYNA

1980

o

DEPTH=

27

M

>

1

980

o

DEP

T

H=

41

M

g

1~2+'40~~~2~4S~~~2~S~OLJ-L~25~5~LL~~~O~~~2~65~~~V~OLJ-L~27~5~~~~-L~~~LJ~~~-L~~~LJ~~LL~

DAYNA

b

Figure 9 As fig. 6 at D.

(20)

16 M

1980 A

.

=

"

,

·

4

10 ClVS "'''"

'il

M

24.00 24.50 25.00 25.50 26.00 26.50 27.00

OAYN

R

(

..

10

1) 27.50 28.00 28.50 29.00

l'i M

28 M

B

es

,J/iIt.w ..iUJiil\\\{« 41 M 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00

OAYN

R

(

.<\0

1) 28.50 29.00 29.50 30.00 30.50

A

~U

2

'01111 13 M

c

lUl/1/1A

.

""

rlllllfl

JlIII/lUll!!hl/

.tdll!!lfi&.-:

_#

'i

l M

24.00 24.50 25.00 25.50 26.00 ~.50

OAYN

R

(

.. 10

1) 27.00 27.50

.

~

27

M

o

11!!!t«e, ,i/I11\\\« 41.M 24.00 24.50 25.00 25.50 26.00 26.50

OAYNR

(

"10

1) 27.00 27.50

Figure 10 Stick plots of low

-

frequency currents in

1980

.

(21)

1980

B

21 M

;;

"",

*,,-,

qp

34 M

-SHEAA 10••(-21 S.. (-II

24.

00 27.00 27.50 2B.00 OAYNR (,.10 I) 29.00 25.00 25.

sa

26.00 26.50 24.50

1980

B

w

21 M 34 M .""wwlmliliOUIII"! 2B.50 AOVEC 10CM/S 24. 00 25.00 25. <;0 26. 00 26.50 27.00 27.50 2B.00 OAYNR (,.10 1) 2B.

sa

24. <;0

(22)

1

980

A

L

=9 M=

4

OEP

TH

=

1

6

M

19

8

0

A

L=

9 M=

4

O

EP

TH

=

41 M

'"

ï~~~O~~~~b5~~~~~~-L~~~5~-L~~~-L~~~~-L~~2~70~~~V~5~

OA

Y

NR

1

980

A

L=9 M=4

OEPTH=

16 M

1

980 A

L

=9 M=4

OEP

TH

=

41

M

'"

ï~~~O~~~~b5~~~~~~-L~~~5~-L~~~-L~~~~5~~~V~O~~~2d75~

OAYNt\

.

.

Figure

12 Bandpassed semidiurn

a

l residual currents at position A,

1980

.

Labels Land

M refer to their use in fig. 3.

(23)

19

8

0 B L=9 M='i

DEPTH=

1'1 M

1980 B L=9 M='i

DEPTH=

2

8

M

1

980 B

L=9

M=

'i

D

EP

TH=

'11

M

111

ï~~~O~~~~~5~~~~~~-L~~~5~~~2~ro~~~~~5~~~2~7~O~-L~~h5~

DAYNR

19

80

B L=9 M='i

DEPTH=

1'1 M

1980 B L=9 M='i

D

EP

TH=

28 M

1

980 B L=9 M='i

D

EPTH=

'11

M Figure

13 As fig.

12 at

B.

111

ïL~~O~~~~~5~~~~~O~-L~~~5~~~2ro~-L~~~*'5~~~2~7zLo~~2~7~S~

(24)

1

98

0 C L

=9 M=

'+

OEP

TH

=

1

3

M

~

I

1

980

C

L=

9

M=

'+

O

EP

TH

=

'+1

M

lil

ï

·~~~O~~~

~

~S~~~

2

~SO~~~~d;S~~~

2

~~~~~~~S~~~V~O~~~VdS~

OAYNR

.

1

980

C

L

=9

M

=

'+

O

EPTH=

1

3 M

1

980 C

L

=9 M

='+

OEP

T

H=

'+

1 M

> lil

ï

~~~O~~~

~

~S~~~

~

~O~~~~~S~~~~~~-L~~d;~~~V~O~~~V;5~

OA

Y

NR

Figure

14 As fig.

12 at C.

(25)

1980 0

L

=9 M=

4

DEP

T

H

=

27 M

1

980 0

L=9

M=4

DEPTH=

41

M

OJ'I Î~~~O~~~~~5~~~~~~~~~=5~~~~~~~~~~5~~~~~O~~~2~75~

DAYNR

1980 0 L=9 M=4

DEPTH=

27 M

1

980 0 L=9 M=4

DEPTH=

41 M

OJ'I Î~~~O~~~~~5~~~2~~~~~N~~5~~~~~~-L~~~5~~~2d7~O~-L~27~5~

OAYNR

F

i

gure

1

5 As f

i

g.

12 at

D.

(26)

1980 A 16 tV\

I

I

I

I

I

I

I I I I

1980

A 4

1

m

/

'"

:zo

~

o~-

3

~-+3~5~B~

I

~~~

3

~

5

~B~

I

~~I~-

3

~~5~B~

'QO

F

(

CPH

J

(27)

r--- ._-._._._-_._-'- --_. 1980 B 14,.",

u

~.t~r--L-~3L_~~~~

I

~~

I

~I~~2--~~3~

1

-L1~~-L1

1

~18~

!'

~I~~I--~--~A~~5~1~1~~UI

\

~O

F

[

CPHI

..

_

.

__

..

---,

1

980

B 28

..".

u

LIl

I

I

'"

zr

,

10-3 3 5

8

IIr2 3 5 8 IIrl 3 5

8

1

0

0

F

[C

PH

I

Figure

17 As fig.

16 at

B.

(28)

1

980

i:

....J W :> W ....J

a:::

w (/')

1

980

Pi

72'10 250 255 280 285 290 29S 300 30S

1980

1

98

0

P3

72'10 2'15 250 25S 260 265 270 27S

OAYNR

280 285 290 29S 300 30S

F

i

gure

18 Hourly pressure timeseries converted to sea level

(29)

x:: c.J

N

_._

~

-.

.

1960

Pl

1960

:c

c.J

N

(30)

1

980 PI

L

=5 M

=

2

1

980 P

2 L

=9 M=4

O

E

P

T

H

=

50

~i

O

E

P

T

H=

50

M

~l_l~~~~~5~LJ~~~~-L~~~5LJ~~2m~-L~~2~~-L~~V*'O~~~V~5~

OAYNA

19

80

P

3

L

=

9 M

=4

O

EPT

H

=

50 M

19

80 P

4 L

=9 M

=4

OEPTH

=

50 M

lil ~~~~O~~~~~5~~~~~-L~~~~~~~2~ro~~~~~~-L~~V~O~~~V~5~

OAYNA

Figure 20 Bandpassed residual elevation fields. Labels Land

M

refer to their use in fig. 3.

(31)

r

~

[

~

~

~:~

Nl

1

1

I

1

';

~

~

""

",,'

~~~

,

"",'

""

"

,,'

I

: :

~

I J . ..

L:

~

f

I 1111111 1 J 10- 3 5 10-2 3 5 10-1 J 5 iO0

,,_u

3 5 10-3

F

(

C

p

H

)

_______ __:__ . .. ...J . _

-

-

--

_

-

-

_

.

__

.-

--

_

.

_

-

-

_

.

_-

--

-

-

-198

0 P

1

1

1

~

""

l

I I I I 1111I --1..'--:!1~1_:!1!_'UI~I.!Jd'_;__-L-::_'~1 .1..1,-;''!-W" 3 5 810

2

3' 5 810-1 5 8100

F

(

C"')

-

---

---

--

-

--

---'

198

0

P3

1980 P2

_j CT') IJ') I ! I Ilitl I 1IIIId 3 5 url 3 5 100

:

1

I I1 Ilid .0-4 3 5

la-1

980 P4

11

I II!tti I I I! Ilid I I I ! I" d 5 10-5 3 5 "rl 3 5 100

F

(

C

P

H

.

_

.

_

---

-

-

-

---

-

-

-

-

(32)

T

crr---~

T

--

---

-

~

---

---

---

--,

Figure 22 al Original timeseries of temperatures at

11 sensor depths.

h) Timeseries after applying a 50 hour running mean.

(33)

ZIMl

Figure 23 a) Temperature timeseries after applying the 50 hour running

mean twice.

b) Inverse interpolation of

(a) yielding depths of

i

sotherms

(34)

T

T

T

T

T

T

T

T

T

T

T

10121012101210121012101210121"12101202

Cl

~

0

~

UI

:g

Dl

UI Cl ::D -< Z::lj :00

8i

N

...

0 N

...

UI

-

-

-

-

-

-

-

-

-

-1 1 -1 0 1 2 'I I I I I I I I I I I I I I I I I TT I I I I I I I I I I I I

~--::;;;;

~

~

..

1I

~

.~

~

F'

--==

~ _i

~

~~

-

r-=;j

~

-

~

.J-

~

~

~]

~

~

~

i

~

~

~ ~

~~

1

~

~

~

::>

-=

W

.~

r

r

~

l

~

< e I

~

~

~

Cl

~

PI

~

T

T

T

T

T

T

T

T

T

T

T

er

10121012101210121012101210121012101210121012

~

o

-

-

-

-

-

-

-

-

-

-

-T

T I I I I I I I I T I I I I I I I I I I I I I I I I I I T l

~

~!;

~

~

;p

c

~

;

;~

..;

~

::

~

~~

~

~

:.c

~

-

;:;;

;:;;

~

~

~

tQ

l;:;;

t;:;;

I-

I;:;;

(0 (0 Cl

p

J5

lP

lP

Cl Cl Cl Cl Cl Cl :0

t:o

~

~

::D ::D ::D :0 :0 ::D ::D

~

~

~

~

WCl

~

~

~

!

~

~

~

-N

...

UI

Figure 24 Temperature variat

i

ons

(

0

Cl at the

11 sensordepths

of A,

(35)

12

11 11

I

1111 I 111

i

j

ij

"

:

i '

i

'

i'

I

' ~

"

,

I III I 11,1 I I I ~ , , " ", ""I II ~. , I , •• ,11 I 11,1 I I lil I \ 111 1'1 I :111' ,I I I

1

1 III I 11,1 II I I I .1. I ',11 .,. I I I I . I ·,11 I :"" ,I: I

!

I I I 111 I ",, " I I I I 111 I :""

1.

:

I I I I 11. I ,11,' I I I I I I '11 I ~,',I I " ~. , III I IIIIII I

'

I

t

!

I I

f

"

I I" ,I I I

r.

I I 11 ,,: ,,,, ,

'

I "

,

,

::

11:::

,:

~ "

:

:

I

,

J

ti

::

,

,,

,

1

I

1', ~ I '11 '; I I ~ I '~ I, I I

I'

'I " '"

141

I

11

r

ij

I

li

l

I'

i

I

1

~,I ," I I III I

I

':

'

I

:

'

!

"

I II

,

~

,

.. I I I •• I

Z

(

m)

32

"

I'

25Z

254

259

Z60

Z4Z

Z43

255

256

D

:

P, YNR

:

Z44

24-5

Z4-6

Z47

Z48

Z49

250

251

253

F

i

gu

re 25 Inv

e

rse int

e

r

polat

i

on of th

e

or

i

ginal t

e

mperature timeseri

e

s

in fig. 2

2

a

d

i

r

e

ctly y

i

elds a times

e

ries of the

int

e

rnal

e

l

e

v

a

t

i

on f

i

eld of isotherms

o C).

(36)

-

-1980 OT

u

cr:

I-...J W('l'1 Cl /.-

-/

/

/ I I I !I I

I

T

«(ph)

I I I I I I I I I I

I

3

5

8

II

r

2

3

5

3

5

8

10

0

F

i

gure 26 Spectra of the residual temperature timeseries (

T

-iT

(37)

60

o

1 981

DEPTH=

13

M

::::::)

-60~~~~~~~rr~~~~~~~~~~

130

1 35

1 40

60

Cf)

<,

L

(.)

o

60

Cf)

<,

L

(.)

o

::::J

1 45

1 50

155

1 60

DAYNR

165

1

70

1

98

1

.

DEPTH

=

19

M

1 981

DEPTH

= 31

M

1981

O

E

P

T

H

=

3

8

M

198L

O

E

PTH

=

'15 M

Figure

27 Hourly timeseries of East vel

oe

ities

(u) at p

o

sition E,1981

/"fc>

,

,,,

'

so

OA

Y

NA

(38)

>

1

98

t

D

EP

TH

=

1

3 M

1

98

1

DEP

TH

=

19 M

1

98

1

D

EP

T

H=

31

M

1

981

D

E

PTH= 38 M

1

981

D

E

PT

H=

4

5

M

>

Figure 28 As fig. 27 for North veloeities

(v). Notice difference in

(39)

>

1

981

DEPTH=

13 M

1

98

1

DEPTH=

29

M

1981

DEP

T

H

=

45

M

l::HH

DEP

T

H=

13

M

1

98

1

DEPTH=

2

9 M

1

981

DE

P

TH=

45 M

Figure 29 As fig. 27-28 at

F.

(40)

OJf'TI1

=

I

J

,.

1

98

1

DEP

TH= 2

9

M

liS

'~13~O~~7.13~5~~~1~40~~~1~4S~~-Ll~5~O~~~~~~~~~~~~~~

D

A

YN

R

1

9

81

DEPT

H=

4S

M

1981

D

EP

TH

=

13

M

1981

D

E

PTH

=

29 M

~I

>

~t

1

98

1

DEPTH

=

4S M

Figure 30 As fig. 27-2

8

at G.

>

(41)

~

>

1981

DEPTH=

12 M

1

98

1

DEP

T

H=

2

8

M

1

981

DEPTH=

42

M

1

98

1

DEPTH=

12 M

19

8

1

D

EPT

H

=

2

8

M

1

9

8

1

DE

P

TH=

42

M

Figure 31 As fig. 27-28 at H.

(42)

1

981

E

AftIllIl.

\

~~\IIWIU

IUlnn".

:;:in

7flI\\\~~-la CM/S 13

M

19 M 31 M

38

M

4S M ~I 13.30 13.BO 1~.30 14.80 15.30 15.80

D

A

Y

N

RI~I

D

I)

1

98

1

F

la

c

v

s

1981

G

la CM/S

rl/dl"

13

M

13 M

...

~

"

..

'

...

~~

2

9

M

~

~

%-

W\\\Ul/

wz

d

2

9

M

Ä.~\\\\I\\\l\\\\,\\~h

?\

4S M I I i I I I 1 I I -1 13.BO I~.30 I~.80 15.30 15.80

DAYN

R

(

~

l

D

I)

Figure

32

St

i

ck plots of low

-

frequcncy currents in

1

9

81

.

_)f/dIIIP I I I I I I' I I I , ) 13.80 14.30 14.80 15.30 15.80

DA

Y

NR

(

"

10

II

198

1

H

~.

AIJII!

",

A\\\\~\IIIIl\\

~

,

4$»n;I/1I~

\\'

,.---,r--..,-...,.--.---.----r--~I 13.30 13.80 I~. 30 I~.80

DAY

N

R ("

1

0

I)

(43)

1

98

1

E

_

_

___.

A:

!JJI11

/J1DHIU

IUUH/

J1#l

A

~

,,, '" WMf!""~""-

j

U/!

'!

s»:

"'

»},

,

\\

'II

L..

"-»"»\\\\111,,

'm11\\wP

AOVl~ 10LM/S 16 M

25

M

3Y M

Y

I

M

I .----T-13.10 13.80 14.10 14.80 15.10 OAYNR [MlO IJ

1

98

1

F

10CM

_~"""",p,

~

~III

IIIIIA

~ll

.

~

\IUI

/

.

MIJ/Illil

~

r---,---,---,---,----,---,---,-, ,

13.30 13,80 14.30 14.80 15,30

OAYNR ['tl0 I)

F

igu

r

e

33

Stick plots of advection in

1981

.

1

98

1

G

~

I

\

_

'

"

.~ ••

JJ!JI/~

/11

3

'7

,«fAn

"

I\\\WAIIIlIUU/lu

,#/

.

IIIM"

AOVEC 10CM/S

2

1

M

37 M

1

98

1

H

10CI';

Ml

A

,

\

&e

JlI!!!!&

~

WA~

.

__

.4-"

,

13.30 13.80 14.30 14.80 15.30 15.80 OAYNR [,,\0 1)

,

13.80 14.30 14.80 15.30 OAYNR (,,\0 I)

(44)

1

98

1

E

5'1EAR IO.."!··2J S..../·-I) lG M ,-*,\\\\\\Wm, ,., _ ,..._

25

M

- ~. ,.... '<t 34 M

~

!m\m!)!!!>.. .&)\\\IIIIlIW&

.A

\

IllJ

~

'11 M

,---,---,----,---r---.----, I 13.60 14.30 14.60 15.30

DA

Y

NR

(

'd

O

I)

1

98

1

F

5HERR 10••1-21 S'.(-I) <.\.t..(W

CC

'/I\~ 21 M \\\\11--. ...""'''~~'''\\\,,,,~

37

M

r ---~---,----r---r---r---.--_, 13.30 13.80 14.30 14.80 15.30 15.<

DA

Y

NA

(M

\0

I)

Fig

u

r

e

34 St

i

ck plots o

f

shear

i

n

19

8

1.

1

98

1

G

.

.

~\.\\\\\\\\~

..

_

---

-_.-

-

--

-

---Alt....

---SHERR t0,."(-21

s...

t...

l

21 M

3

7 M

r---,---r---r---r---r---r--,r--,,--,r---I 13.30 13.60 14.30 14.80 15.30 15.8

DA

Y

NA

(

,.10

I)

1

98

1

H

... ",,,, ",\\'1\".. GUl...

-IUU

tUIII_IIII!!!!le;;;;;..,

..

____,

,

13.30 13.80 14.30 14.60 15.10

DA

Y

NA (MlO

I)

(45)

1981 L=6 M=2 1981 L=6 M=2 1981 L=6 M=2 DEPTH= 13 M DEPTH= 19 M DEPTH= 31 M

1'18

DAYNR

t

5]

1981 L=6 M=2 1981 L=6 M=2

,sJ

DEPTH= 38 M OEPTH= 4S M

tH

1'13 DA

Y

NR

1

53

Figure 35 Bandpassed

sernidiurnalresidual East veloeities

(u) at

position E,

1981. Labels Land

M refer to their rneaning

(46)

1

96

1

L=

6

M=

2

D

EP

TH=

1

3

M

196

1

L=

6

M=2

D

EP

TH=

1

9

M

~

IJl <, :1:0 c.J > U'I

r

1

96

1

L

=

6

M

=

2

DEP

TH=

3

1

M

>

{'rl, DA

'f

NR'

5.3

1

96

1

L

=6 M

=

2

DEP

TH=

36 M

~

Vi

<, :1:0 U >

~

,

198t

L

=6 M=

2

J

EPTH=

45 M

> ,-•A,.

..

.

'VVV

'vv

,

IJl <, :1:0 U /1.(3 J

v

3

D

A'f

NR

15'3 (

s-,g

(47)

1981 L=6 M=2 1981 L=6 M=2 DEPTH= 29 M DEPTH= 45 M 1981 L=6 M=2 1981 L=6 M=2 1981 L=6 M=2 >

-,Ah

'

v v

L..l-L...L. (J) <, :Co u

'"

,

/'

13

DEPTH= 13 M DEPTH= 29 M

DEPTH= 45 M

Fi

gur

e 37 A

s

f

ig. 35-

3

6 at

F.

(48)

1981 L=6 M=2 1981 L=6 M=2 1981 L=6 M=2 DEPTH= 13 M DEPTH= 29 M DEPTH= 45 M 1981 L=6 M=2 1981 L=6 M=2 1981 L=6 M=2 DEPTH= 13 M DEPTH= 29 M DEPTH= 45 M

Figure 38 As fig. 35-36 at G.

(49)

1981 L=6 M=2 1981 L=6 M=2 1981 L=6 M=2 DEPTH= 12 M DEPTH= 28 M DEPTH= '12 M I

v

,s

DAYNR

I .,

J

19

8

1

L=6 M=2

19

8

1

L=

6

M=2

19

81

L

=6 M=

2

>

-,AAAnA

IftA

'V,/VVVV

1'1

V

V1 <, ~O U

(

~8

1

4l

DEPTH= 12 M

D

E

PTH= 28 M

DEP

T

H= 4

2 M

Figure

39

As

fig

.

35

-

36

at

H

.

Cytaty

Powiązane dokumenty

The cases concerning restrictions of passive sales and online distribution in selective distribution can be divided into two categories: the first category concerns

Nie pominął jego samoświadomości jako historyka, którą Wojciechowski ujawnił w wykładzie „Co to jest historia i po co się jej uczymy?”, choć uznanie historii przez niego

stitutive relations depend on gradients of the strain rate, (ii) particle migration modifies the predictions of local models, but cannot account for the observed stress profiles,

By using the predicted reel-out speed the overshoot of the tether force of a kite power system can be reduced by a factor of two which can improve the average power output at high

Analiza porównawcza siły oddziaływania zmian stopy procentowej na po- szczególne wskaźniki stabilności sfery realnej strefy euro oraz jej gospodarek człon- kowskich

Teoria poznania w ujęciu bpa Jana Stepy. Studia Philosophiae Christianae

Kończąc te krótkie refleksje dotyczące faktycznej potrzeby wprowadze­ n ia do system u kontrolnego KE nowego w aru n k u dopuszczalności skargi w arto może choć

Co więcej, szeroki m argines swobody ocen w spraw ach dotyczących m oralności nie przeszkodził Trybunałowi stw ierdzić złam ania Konwencji, gdy przedm iotem skargi