• Nie Znaleziono Wyników

Deposition of modified nanolimes within calcareous substrates

N/A
N/A
Protected

Academic year: 2021

Share "Deposition of modified nanolimes within calcareous substrates"

Copied!
25
0
0

Pełen tekst

(1)

G.  Borsoi,  B.  Lubelli,  R.  van  Hees,  R.  Veiga,  A.  Santos  Silva

Giovanni  Borsoi:    G.Borsoi@tudelft.nl

Deposition  of  modified  nanolimes  

within  calcareous  substrates

(2)

Nanolime

Use:  (Pre)consolidation  of  historical  porous  materials

Recover  the  lost  cohesion

Spraying Brushing

(3)

Calosil, IBZ,  Germany Nanorestore, CTS,  Italy

Nanolime

Advantages

Good  compatibility  with  calcareous  materials

High durability  

High  active  surface,  reactivity,  colloidal  stability  

and  calcium  content  

Operator  and  environmental  friendly

Limits:  

Limited  in-­‐depth  effectiveness

Superficial  whitening

Controversial  results  &  few  documented  

case  studies  on  stone  consolidation

(4)

Research  aim

Possible  reasons  of  limited  in-­‐depth  deposition  

??  Limited penetration,  

back-­‐ migration,

fast  carbonation,  

colloidal stability ??

Understanding    transport  and  deposition  of  

nanolime is  necessary  for  improving  

its  effectiveness

(5)

Substrate:  Maastricht  Limestone

Lost  of  cohesion  (e.g.  powdering)

90-­‐95%  CaCO

3

Model  material  (unimodal)

Widely  used  in  Limburg  (NL  and  Belgium)

Materials  &  Methods

Nanolime:  Calosil E25

Opal  alcoholic  dispersions  of  lime  

nanoparticles

Nano  to  submicron  dimension  

(<50  to  400nm)  

Methods:

Materials  characterization (MIP,  XRD,  Uv-­‐Vis,  SEM-­‐EDS)

Transport  (absorption-­‐drying  kinetics)

(6)

Characterization   of  Maastricht  limestone

Moisture  transport:      Absorption/Drying  kinetics  of  water

MIP XRD

WAC=  1,94  g/cm2s1/2 ≈  96/120  h  

Step  I   drying

(7)

Characterization of Nanolime   E25

30  mins ultrasonic  bath  (minimize  aggregation  phenomena)

Colloidal  stability

Stable/homogeneous up  to  >  1  week

Liquid  phase Liquid  phase Dried

(8)

Fast  absorption (<  5mins):  

water  faster  then  EtOH  and  E25  à differences  in  the  surface  tension  and   viscosity  (presence  of  nanoparticles)

(9)

Transport  of  nanolime

:  drying  kinetics

Evaporation  rate:

48-­‐72h  for  E25  and  EtOH,  step  I  drying  ends  at  24h:  then,  transport  by  vapour,  (  à nanoparticles  can  not  be  transported  anymore)

I  stage  ≈  24h

(10)

1. Limited  penetration  during  absorption?

2. Fast  carbonation  hindering  the  transport?  

Nanolime:  cause(s)  of  limited  in-­‐depth  deposition

(11)

Absorption

1. Limited  penetration  

during  absorption??

Cross  section:  Phenolphthalein   test

(12)

Drying  in  N2atmosphere

2.  

Fast  carbonation

hindering  the  transport?  

❌ The  distribution  of  nanolime  is  similar  in  N and  in  air

0.5mm in  depth

Drying  in  air  (50%  RH,  20oC)

Drying  in  N2atmosphere

8h

8h

24h

(13)

Partial  back  migration  

is  the  main  reason  of  the  limited  

Setup

(14)

3.  

Distribution  of  nanolimes at  different  depths

ü Nanoparticles  are  present  in  depth  -­-­>  confim penetration  in  depth  during  

absorption.  

(15)

3.  

Transport  back  to  the  drying  surface

?

(16)

3.  

Transport  back  to  the  drying  surface

?

Setup

G.  Borsoi,  B.  Lubelli,  R.  van  Hees,  R.  Veiga,  A.  Santos  Silva,  2015.  

(17)

How  to  

avoid  the  back-­‐migration  

and  accumulation  at  the  drying  

surface  and  improve  effectiveness?

The  transport  and  deposition   of  the  dispersions  should  be  adapted  to  

the  transport  properties  of  the  substrate

(18)

a)

New  Nanolime  

-­‐ colloidal  stability  and  drying  rate

Dispersed  Ethanol,  isopropanol,  butanol,  water      

E25 200 250 300 350 400 450 500 550 600 650 700 0 24 48 72 96 Me an  p ar ti cl e   si ze  (n m ) t  (h) B25 E25 IP25 0 10 20 30 40 50 60 70 80 90 100 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 Re la ti ve  K in et ic al  S ta bi lit y   % Time  (h) H25 E25 IP25 B25 Uv -­‐Vi s DL S 2  weeks 0,5 1 1,5 2 Ev ap or at ed  li qu id  /  A re a   (c m 3 /cm 2 ) EtOH_MA IpOH_MA H2O_MA BOH_MA Drying  rate

(19)

Depending  on  the  pore  networks:  

‘Coarse  pores’:  

moderate  (kinetical)  stability  for  a  proper  absorption,  fast  

drying  rate  for  a  deposition  in  depth  (without  nanolime  back-­‐migration)

‘Thin  pores’:  

high  (kinetical)  stability  for  a  proper  absorption,  

slower  drying  rate  to  enhance  the  deposition  of  the  nanoparticle  in  

depth.

Solvent  properties

(20)

Conclusions

• The  main  reason  of  limited  in-­‐depth  deposition  of  nanolime  in  coarse  porous   substrates  as  Maastricht  limestone  has  been  identified  in  the  back-­‐migration  of   nanoparticles  during  drying.

• The  high  kinetical stability  of  nanolime dispersed  in  ethanol favors the  back-­‐ migration  of  nanoparticles  in  coarse  porous  substrate

• à Modifying  the  transport  and/or  the  kinetic  stability  of  nanolimes according  to   the  properties  of  the  substrate might  improve  the  deposition   in  depth

• The  modification  of  the  solvent  is  a  possibility   to  control  transport  and  kinetic   stability  of  nanolime  in  order  to  favour  in-­‐depth  deposition.

(21)

Thanks  for  your  attention!

Barbara  Lubelli,  Rob  van  Hees  

Rosário Veiga,  António Santos  Silva

(22)
(23)

Publications

Maastricht  limestone:

G.  Borsoi,  B.  Lubelli,  R.  van  Hees,  R.  Veiga,  A.  Santos  Silva,  2015.  

Understanding  the  transport  of  nanolime  consolidants  within  Maastricht  

limestone,  Journal  of  Cultural  Heritage,  In  press,  

http://dx.doi.org/10.1016/j.culher.2015.07.014  

Lime-­‐based  mortars:

G.  Borsoi,  M.  Tavares,  R.  Veiga,  A.  Santos  Silva,  2012.  Microstructural  

characterization  of  consolidant  products  for  historical  renders:  an  innovative  

nanostructured  lime  dispersion  and  a  more  traditional  ethyl  silicate  limewater  

solution,  Microscopy  &  Microanalysis  18,  1181–1189.  

(24)

Application  methodology:  

protocol  and  strategies

NEXT STEP: OPTIMIZATION OF THE APPLICATION METHODOLOGY

(25)

Synthesis  of  new  nanolime  

(bottom-­‐up  fabrication)

1.  

‘Metallic  calcium  method’

(2006):  solvothermal reaction

2.  The  ‘Baglioni-­‐Giorgi-­‐Dei  method’ (2000) 3.  ‘Dispersant  method  (TX100)’  (2012)  

4.  ‘Salvadori  method’  (2011)

CaCl2 +  NaOH

Cytaty

Powiązane dokumenty

While the purpose of the second phase of the SMED methodology is leading to situations where downtime of retooled machine or process is as short as possible,

period of the saw tooth. Depending on the dimensions of the saw tooth it is possible to confine the electrons throughout the whole thickness of the detector. Another

We have assessed the noninvasive in vivo biomarkers cerebral growth, tissue water and tissue structure by MRI relaxation time measurements, and tissue diffusion parameters together

Material and methods: Comparative method has been used in the article – two po- ems’ texts (Samuil Marshak’s poem “The Absentminded Fellow from Baseynaya Street” in Russian and

Wartości obliczeń korelacji liniowej cech: głębokości eksploatacji pokładu (Ht), grubości warstwy tąpiącej (Hww) i minimalnej odległości pomiędzy ogniskiem a skutkiem wstrząsu

W kaz˙dym b ˛adz´ razie, te trzy imiona były blisko powi ˛azane w okresie bizantyjskim, a jedno z wyjas´nien´ tego powi ˛azania przytacza nam Teodozjusz, który pisze: „S´w.

Subsequent to the dyeing and cooling of the dyeing baths, all dyed samples were rinsed with plain water and dried in the open air. Dye exhaustion on the wool and nylon 6 fabrics

Figure 6 demonstrates the performance comparison of unicast, IP multicast, HNICE, DHNICE, DNICE, RNICE, MCAN1, MCAN2, and Scribe2 in a topol- ogy aware overlay, with cluster size k