• Nie Znaleziono Wyników

(1)WORKED SOLUTIONS

N/A
N/A
Protected

Academic year: 2021

Share "(1)WORKED SOLUTIONS"

Copied!
50
0
0

Pełen tekst

(1)WORKED SOLUTIONS. 4. Modeling the real world. Answers. 4. Skills check. 5. 1. lim f ( x ) 8 ∴ f (3) = 8. x o3. ∴ f (3) = 4. lim f ( x ) 4. x o 3. y. 3. 2. –4 0 –4. 2. ∑5. n=0. 4. 8. 6. x. x=3. ( ) = 1 − 1 = 10 1 2. n. 5. 2. Exercise 4A 1 2 3. x2 −1 x +1. lim. x →−1. lim x →1. x3 −1 x −1. lim f x →2 +. 5 6. a. discontinuous at x = ±1. b. discontinuous at x = ±2. c. continuous. d. discontinuous at x = −4 and x = 1. e. discontinuous at x = 1. f. continuous. Exercise 4C. = −2. 1. =3. b. § lim ¨ x o2 ©. x2  x  2 ·. c. § lim ¨ x o2 ©. x 6  64 ·. does not exist. 7. x 3. 3. x 8. x. x o0. lim ( x  6) x o6. x o0. 2 3. lim [ x ] 2. x o 3. x. d. lim [ x ] 3. x →1. ∴ lim f ( x ) x o1. ∴ lim f ( x ) x o1. f. lim. x o1. x o1. lim. x o2. 2. x x. x 1 x. x o0. 1. 1 x. 1. 1. h. lim x oa. = lim x →1. 1 =2 x. 1− x 2−x. =0. 6x. 4 + 12 x + 9 x 2 − 4 − 8 x − 4 x 2 6x 5x 2  4 x. x o0. lim f ( x ) 1. 1+. 1 x (2  3 x ) 2  4 (1  x ) 2. = lim. x o1. ( ). = lim x →1. 1. = lim x →0. ∴ f is continuous at x = −2. does not exist. x2 1. x o0. lim f ( x ) 1 ∴ lim f ( x ) 1. Also, f (−2) = 1 lim f ( x ) 1. lim. g. ∴ f is not continuous at x = 1. x o1. e. does not exist. x o2.

(2) = lim

(3) ,. which does not exist. x →1. x o2. § ( x 3  8) ( x 3  8) · ¨ ¸ ¸ = xlim o2 x3  8 ¹ © ¹ 3 = lim ( x + 8) = 0. = lim x o0. lim+ f ( x ) = 2. lim f ( x ) 1.

(4). 2 ( x  1) ( x  1) · lim §¨ x2  1 ·¸ = lim §¨ ¸ x o0 © x o0 © x  x ¹ x ( x  1) ¹. x o 3. lim− f ( x ) = 0. ( x  2) ( x  1). x →−2. x. 0. ¸ = xlim o2 ( x  2) ¹ ( x − 1) = − 3 = xlim →−2. x 2. |x| 1 ∴ lim | x | does not exist lim | x | 1 lim x o0. Exercise 4B. 3. x o4. x → 2−. x o3. 2. x 3. lim. ∴ lim [ x ] does not exist.. 1.

(5). a. lim f ( x ) = 5. ( x ) = 31. ⎧⎪3 x − 1 x < 2 lim ∴ x →2 ⎨ 1 x ≥2 ⎪⎩ x 2 − 1 4. 3. a=1. 4. –8 ∞. 4. ∴ 9a − a = 4 8a = 4. 8 (0, –1 ). ∴k=. ∴6=8. 2. x a x a. ∴ f is not continuous at x = 1 © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 6x 2. = lim x o0. = lim x oa. 5x  4. 2. 6. 3. (x  a) (x  a) x a. = lim (x + a) = 2a x →a. Worked solutions: Chapter 4. 1.

(6) WORKED SOLUTIONS 2. a. lim. b. lim. c. lim. d. 3. 2x x +2. x →∞. 3x 2. x →∞. x of. lim x of. e. lim. f. lim. x of. b. =2. x2 − 1. 2x 2  x  1. 2 3. 3x 2  5 x  1. gradient = lim h →0. 0. 4x 3  2. c. x 1. y = x3. 4x  3  2 1  x. 2. b. y=1. d. y = −1. e. no horizontal asymptote. y=0. c. 2. d. y = −x 2. converges. b. converges. d. diverges. e. converges. ∞. ∑. n =1. c. (−1). n =0. 2. converges, ∑. ( ) S 3.14. 1. =. 1 1+ 2. diverges since ∞. converges, ∑ 5 ∞. converges, ∑. n =1. e. n. n. n =1. d. n. () 1 3. 3 10. n. =. n. ∞. 2 −3. n =1. 7. converges, ∑. =. 1−. 2. f ′(x). lim. (x  2xh  h  x ) h. 1 3. =. h o0. ∞. =∑. n. n =1. = −2x f ′(1) = −2(1) = −2 e. !1. y=. x x +1. f ′( x ) = lim h→0. 5 2. () 2 7. = lim h→0 = lim h→0. n. ∞. −∑. n =1. () 3 7. =. n. a. f. h. ( x + h + 1) ( x + 1) h 2. y. 1. (x = 2). x2. 1. lim. 2. ( x  h) h. h o0. b 4. h o0. −1 < 2x < 1 2x must be positive ∴ 0 < 2x < 1 ∴ x < 0 1− 2. 1 . = 40. x. 3x x 1. ∴ 1 2. ∴2. x. = 1 8. ∴ x = −3.  1 ∴ −0.25 < x < 0.5. f ′(2) = 2. 1. a. = lim h →0. −2x − h x 2 (x + h)s. ,. x3. =−. 1 4. -2 x3. =2. ⇒ x = − 1 ⇒ x = −1 ∴ point is (−1, 1). y = 2x − 1. (x = 1). 2. 2. [2(1  h)  1]  [2(1)  1] (1  h)  1 4h  2h h. 2. hx 2 (x  h). 2. 2. 3. 2. 'y 'x. h o0. x 2  (x  h). 2. f ′(x) = - x 3. f ′(x) = 2 ⇒. Exercise 4E. 2. 3. x. lim. 2. 2. 4. −2. 1. hx 2 (x  h). 2x x. . x 2  x 2  2xh  h 2. lim. 7 8. 1. ( x + h + 1) ( x + 1). 1. r = 2x. x. = lim h→0. ( x + 1). f ′(x). ∞. 35. x +h x − x + h +1 x +1 h ( x + h ) ( x + 1) − x ( x + h + 1) ( x + h + 1) ( x + 1) h. f ′(0) = 1. 2 3 7 − 7 = 2 − 3 = −7 5 4 5 4 20 7 7. converges, ∑ 4(−0.6)n −1 = 4 = 2.5 1 + 0 .6. u1 = 35. 2. h o0. 3 10 = 1 1 3 1− 10 n. 2. lim (2x  h). n =1. 3. 2. lim h o0. converges. c. 2 3. 3.14. =. f. =. S. 5 3. n. 3  3h  h 2. (x = 1) (x  h)  (x ) h 2. a. b. 1  3h  3h  h 3  1 h. h o0. y=3. ∞. 1 2. ∴ gradient = 3. a. a. 1 −2 + h. 2. 3. (1  h)  1 (1  h)  1. Exercise 4D 1. ( )= −. 2−2+h 1 = h(−2 + h) −2 + h. 2 gradient = lim (3  3h  h ) 3. =4. x. =. (x = 1) 3. 'y 'x. 0. x 2  3x  5. x of. (x = −2). 2 2 2 +1 Δy −2 + h − −2 −2 + h = Δx (− 2 + h) − (−2) h. =3. 5x 2. 2 x. y. 2. 3 2. (1  4h  2h )  1 h. f ′(x) = 4x −. f ′(x) = 3 ⇒ 4x − ⇒ 4x. 3. 4  2h. gradient = lim (4 + 2h) = 4 h →0. 1 x2. ⇒ (x ⇒x. 1 x2. =3. − 1 = 3x ⇒ 4x3 − 3x2 − 1 = 0 2. − 1) (4x2 + x + 1) = 0. = 1 ∴ point is (1, 3). © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 2.

(7) WORKED SOLUTIONS. Exercise 4F 1. 2. Exercise 4H. a. y = x 2 + 2x + 1 f ′(x) = 2x + 2. b. y = x3 − 1. c. y. 2 x. f ′(x) = 3x 2 f ′(1) = 3 2. f ′(x) =. d. y = x −1. e. y=. x. f ′(x) = −. ∴ f ′(2) =. 1 2 x 1. f ′(x) =. x +3 ,. −2 9. ∴ f ′(3) =. 2. f ′(x) =. 1 , x. 1. f ′(0) = 2. 1 , 2 x +3. 1. f. y=. a. Average velocity =. 3. 2 x. y = 4 − x − 3x 2. b. y = 2x 4 − 3x + 1. c. y = 4x 3 −. 1. dy dx. 2. f ′(1) =. , f ′(4) =. a. 1 4. 1 − 16. dy dx. 2. = −10a − 5h b. 1. y=9−x b. When x = −1, gradient = 8,. y. 3 dy dx. =2 1. 1. Normal is y − 8 = − 2 (x + 1) i.e. y = − 2 x + dy dx. 1 (x  1). ∴. 2. 1 (x  1). 2. a. y = 4 − 3x − 3x 2. dy dx. d. y=. dy dx. 1 1. =. y = x 2 − 3x. x2 x2. dy dx. 4. y. y= x x. 1 x. At (1, 2). dy dx. =8. dy dx dy dx. =. ≠0. 3 2. 1. 2 x 2 x. = 1−. 3x 2. 1  3x. 1. 3 x2 dy dx. 3 ∴ gradient of normal =. Equation of normal: y − 4 =. 1. ( ). y = (2x + 3)5. b. y = 2 − 3x = (2 − 3x) 2. Equation of tangent is y = 2 ∴ normal is x = 1. = 5(2x + 3)4 (2) = 10(2x + 3)4. 1. 1 (2  3x) 2 (3) 2. 2 2  3x. c. y=. 2 x. dy dx. d. y=. − 3x + 5x3, so −3 2. dy dx. = −3 ( 5x 2 + 1). 3 (5x 2 2. =. 1 2. 2. = − x 2 − 3 + 15x2. −1 2. 3. 15x.  1) 2 (10x). (5x 2  1). -. dy dx. 3. 1 2. 1. (3x 2 - 2 x ) 2 (6x − 2) =. At x = 1,. ∴ no points. 3. y = 3 x 2 - 2 x = (3x 2 - 2x ) dy dx. ( ). = 1−1 = 0. (x + 1) 3. dy dx. 5x + 1. 3 −9 , 2 4. x2. 1 3. 1 3. 1. 2. 1. dy dx. a. ∴ no points. ≠0. . . y = − 1 x + 11. −1 19 , 2 4. = 2x − 3. 1. dy dx. (0, 1). ∴x=. 2x − 3 = 0 e. 15 2. = 3x 2. ∴x=0. 3x 2 = 0 c. dy dx. y = x3 + 1. y. x 3 x. = −3 − 6x 1. 1 x. dy dx. At (−1, 4). y − 1 = −1(x − 2) y = −x + 3. −3 −6x = 0 ∴ x = x − 2 b. − 3 + 15x 2. = 12x − 4. Exercise 4I. At (0, −1) y + 1 = −1(x − 0) y = −x − 1 3. 2 x2. 3. (0, −1), (2, 1). At (2, 1). 3. 4. = −1. x−1=±1. ∴ (x − 1)2 = 1 x = 0 or 2. 3x. y = 8x − 6. When x = −1, gradient = 2. 1 x 1. 4.  4x . = −2x. ∴ tangent is y − 8 = 2(x + 1) i.e. y = 2x + 10. 2. 3 x4. Equation of tangent: y − 2 = 8(x − 1) dy dx. 2. a. c. 4 −3 x 3. = −2x −2 − 3 + 15x 2 = −. At (1, −2). Exercise 4G. = 4x 3 − x −3 + 2x 2 + 32 x −2. 2 3x 2. y = 2(3x 2 − 2x) = 6x 2 − 4x dy dx. velocity = lim (average velocity) = −10a hl 0. = 8x 2 − 3. y = 2 − 3x x + 5x = 2x−1 − 3x + 5x 3. d. 2. dy dx. + 2x 2 +. 2. 12 - 5(a + h ) -12 + 5a 2 h. = − 1 − 6x. = 12x 2 + 3x−4 + 4x − 12x 2 . x (a + h ) - x (a ) h. =. 1 x3. dy dx. 3 x -1 3x 2 - 2 x. = 2 and y = 1, so tangent is. y − 1 = 2(x − 1) i.e. y = 2x − 1 3. x -3 x dy = 32 dx x. y=. =1−. At (1, −2),. dy dx. 3 x. 1. = 3 so gradient of normal = − 3 1. ∴ equation of normal is y + 2 = − 3 (x − 1) 5 1 i.e. y = − 3 x − 3. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 3.

(8) WORKED SOLUTIONS 4. 1. y. 3x  6x  1. dy dx. 2. 6. −2. = −(3x − 6x + 1) (6x − 6). 6x − 6 = 0 ∴ x = 1 5. 2. = (3x 2 − 6x + 1)−1. 2. 1 § 2· ¨1  x ¸ © ¹. y. 1 x. dy dx. =. ⎞ 1⎛ 1− x 2 ⎟ 2⎜ ⎝ ⎠. dy dx. =. 1. −1 2. y. 1 3 6 1. dy dx. (6x  6). . 2. (3x  6x  1). y = (x − 1)4 (3x - 2) 3 ,. 2. 1− x x. 1. a. (3 x - 2). 2( x -1) (7 x - 5) 1. (3 x - 2)3. 2. x 7. y. x3. u(x) = x2 − 7. x −x. x (2x)  (x  7)3 x. dy dx. x. v(x) = (x + 3)3. v′(x) = 3(x + 3)2. x. =. = (x − 1)3 (x + 3)2 + (x + 3)3 (1). b. 21 − x. = 4x (x + 3)2. y. 2. x 1. dy dx. u(x) = (2x − 3). u′(x) = 4(2x − 3). v(x) = (4x + 1)3. v′(x) = 12(4x + 1)2. c. = 8(2x − 3) (4x + 1)2 (5x − 4). u′(x) = 1. v(x) = (x − 1)−1. v′(x) = −(x − 1)−2. dy dx. = −(x + 1) (x − 1)−2 + (x − 1)−1. dy dx. = (x − 1) [−(x + 1) + (x − 1)] =. d. −2 (x − 1). 2. −1. = (1  2x) 5. 1 2. + (1  2x). dy dx. =. -1. (x. 4. - 3 x + 1). 2. 1. =. 1−2x. 3- 4x3. (x. 4. 1. u′(x) = x. x. 1 2. 2. 1 2. 1. v′(x) = − 2 x. 1. 1. 1. 1. 1 2. 1 2.

(9). −1 2. ( ). 1 2 2. =. 1 2 2. 1. x (1 − x ). 2. 1. e. (4x3 − 3) =. 3. ( x 2 + 1) 2. = (x 4 − 3x + 1)−1. 1 x. 1 − 3x. y = (x4 − 3x + 1)−1 ⇒. 1. (1  x 2 ) 2 x 2  (1  x 2 ) 2 x. 1− x. [−x + (1 − 2x)] =. + 1). x x. 1 2. 1 2. 2. (x 4 − 3x + 1) 2. 1 1. dy dx. v(x) = (1  2x) 2 v′(x) = 12 (1 − 2x) 2 (−2) = −(1  2x).

(10) ÷ (x. 3 − 4 x3. v(x) = 1 − x. u′(x) = 1. = −x (1  2x). =. 1. y = x 1  2x 1.  3x  1. 3 2. u(x) = 1 + x 2. −2. 1 2. y. 2. + 1) − x. 1 2. 1 2. = −(x 4 − 3x + 1)−2 (4x 3 − 3). y=. = (x + 1) (x − 1)−1. u(x) = x. x4. dy dx. u(x) = x + 1. 2. 1. y. v′(x) = (x 2  1). 1. ( x 2 + 1). = 4(2x − 3) (4x + 1)2 (10x − 8). dy dx. = (x. = 4(2x − 3) (4x + 1)2 [3(2x − 3) + (4x + 1)]. 4. u′(x) = 1 1 2. = ( x 2  1) 2  x 2 ( x 2  1). = (2x − 3)2 12(4x + 1)2 + (4x + 1)3 4(2x − 3). x 1 x 1. 4. v(x) = (x 2  1). y = (2x − 3)2 (4x + 1)3. y. x x. 4. 2. u(x) = x. = (x + 3)2 (4x). 3. 6. 2x  3x  21. u′(x) = 1. 2. 2. 2. 2. u(x) = x − 1. dy dx. v′(x) = 3x 2 2. 3. = (x + 3)2 (3(x − 1) + (x + 3)). 2. u′(x) = 2x. v(x) = x 3. y = (x − 1) (x + 3)3. dy dx. 2. Exercise 4K. 1. Exercise 4J 1. 2. 3. −1 4. 1. + 4(x − 1)3 (3x - 2) 3. 1 3. =. 1 2. ⎛ 1 − 12 ⎞ ⎜− 2 x ⎟ = − 4 ⎝ ⎠. -. 4. 1 2. 2. 2( x -1). =. 1,

(11). 1. 2. = (x −1)4 3 (3x - 2) 3 × 3 + 4(x − 1)3 (3x - 2) 3. - 3 x + 1). 2. y = ( x − x) 2 dy dx. −1 −1 ⎛ ⎞ = 1 ( x − x ) 2 ⎜ 1 x 2 − 1⎟ 2 2 ⎝ ⎠. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 4.

(12) WORKED SOLUTIONS 1 4. x  x

(13). . x. 4. 1 2. 2. x x. y = ⎛⎜ x ⎝1−. f.

(14). 1 2. x. 4 xx x. x. 3. 2. dy dx. 3x. 2. 3. v′(x) = 3(1 − x ). 3. 3x. 3. u′(x) = 3x 2.

(15). 1 x. 2. (1 − x ). u(x) = x 3 v(x). x x

(16). 5. 3. 1  x

(17)  32 x 2 1  x

(18) 6 1  x

(19). 2. (. −1 x 2. −1 2. ). 2. 6x . 4. x.

(20). f ′(0) = −2. f ″(−1) = 12. f (x) = x − 4x + 16x − 16 4. f (x) = x4 + rx2 + sx + t. f ″(−1) = 16 ⇒ 12 + 2r = 16. 5. (x = −1) u′(x) = 4. v(x) = x 2 + 1. v′(x) = 2x. 2. (x  1). 2. 4  4x. = (t − 4)2 (3 − 2t) (25 − 10t). 2. 2. 2. (x  1). 8. y dy dx. 2. 4x. s ′(4) = 0 ms−1. 2. b. = 8(4 + x 2)−1. ( ) 5. dy dx. 16 25. 4x. 8. 4. f (x). 3. 1 

(21). f ′(x) = 2 (1 − (2 + x). = (t − 4) [−80t + 40t 2 + 320 − 160t + 150 − 160t + 40t 2].

(22). 2. = (t − 4) (80t 2 − 400t + 470). 25 (x 16. − 1), y. acceleration = s″ (4) = 0 ms−2. 25 16 25 16. x. c 3 80. 1  (2  x)

(23) 1 −1 − 3. 2 2 3 (2 + x) 3 1− 1 2+ x. ). (2 + x)−2. s″(t) = 80t 3 − 720t 2 + 2070t − 1880 jerk = s′ ″(t) = 240t 2 − 1440t + 2070 s′ ″(1) = 240 − 1440 + 2070 = 870 ms−1. 2 1 3. 3. =. 2. gradient of normal =. 2. s ″(t) = (t − 4)2 (−80 + 40t) + 2(t − 4) (70 − 80t + 20t 2). (x = 1). Equation of normal: y − 5 = 1 2x. s′(t) = (t − 4)2 (75 − 80t + 20t 2). 16x. = −8(4 + x 2)−2 (2x). At 1, 8 ,. Velocity = s′(t) = (t − 4)3 2(3 − 2t) (−2) s ′(t) = (t − 4)2 (3 − 2t)[−4(t − 4) + 3(3 − 2t)]. At x = −1, gradient = 0 3. (3). = 3(t − 4)2 (3 − 2t)2. u(x) = 4x 4(x  1)  8x. (2). s (t) = (t − 4)3 (3 − 2t)2 a. 2. (1). Solve equations (1), (2), (3) to find r = 2, s = –8, t = 5.. 2. 2. 3. f ″(x) = 12x2 + 2r. 4. x 1. dy dx. f ″(x) = 12x 2. f ′(−1) = −16 ⇒ s − 2r = −12. 4. 4x. y. f ′(x) = 4x 3 − 2. f ′(x) = 4x3 + 2rx + s. (2 − x ) 4 2 (1 − x ). 3x. =. f (x) = x − 2x − 1. f (−1) = 16 ⇒ r − s + t = 15. 5 3x 2. 2 1. 2.

(24). x3. 4. f (−2) ≠ f ′(−2) ≠ f ″(−2), but f (2) = f ′(2) = f ″(2) = 0 so x = 2. 5. x. 2. f (x) = (x + 2) (x − 2)3 ⇒ x = −2 or x = 2. 2. 6x  6x 2  3x 2 2 1. f ″(x) = 2x −3 =. f ″(x) = 12x2 − 24x. 5. 5. 1 x. f ′(x) = 4x3 − 12x2 + 16. 1  x

(25)  32 x 2 4 1  x

(26). 2. f (x) = 4x + 1 + f ′(x) = 4 − x −2. 1 2 x. 3. =. 1. 1 2 x 4 x. ⎞ ⎟ ⎠. Exercise 4L. §  12 · ¨ x  2¸ © ¹. 1 2. 6. f (x) =. 1 x. = x −1. f ′(x) = −x −2. f ″(x) = 2x −3. f (4) (x) = 24x−5. f (5) (x) = −120x−6. f (n) (x) =. f ′ ″(x) = −6x −4. n. (1) n !. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. x n 1. Worked solutions: Chapter 4. 5.

(27) WORKED SOLUTIONS. Exercise 4M 1. a. b. y = x − 3x + 1 dy dx. = 2x − 3 3 2. 2x − 3 = 0 ∴ x x. 3 2. x<. dy dx. −. y=. ( ) − 3( ) + 1 = − 3 2. 2. 3 2. 5 4. 2. a. 3 2. x> +. ∴minimum value = b. 3. ( when x = ). −5 4. a. 3 2. x = −1, 2 , 2. iii. ] − ∞, −1 [. i. x=. iii. ] − ∞, − 12 [ = − 6x + 6 −6x + 6 = 0 ⇒ x = 1 (1, 2). x. x<1. x=1. x>1. dy dx. +. 0. −. = − 6x 2 + 12x or 2. (0, −3). maximum at (1, 2). (2, 5). f is increasing for −∞, 1[. x<0 0<x<2 x>2. dy dx. −. +. f is decreasing for 1, ∞[. −. ∴ minimum value = −3. (at x = 0). maximum value = 5. (at x = 2). b. y dy dx. 12x 3 − 6x 2 − 6x = 0 6x (2x 2 − x − 1) = 0. x. 1 2. x<. dy dx. or 1 1 2. ( 1 , 2. (0, 4) 1 2. −. 1 2. (2 − x 2). 2x. 59 ) 16. 0<x<1. x>1. −. +. +. ? minimum values are. 59 at 16. =. 1 2 2.

(28). 2  2x 2. 2. 2 (at x =1) maximum value = 4 (at x = 0). 2  x2. = 0 ⇒ x = ± 1 (1, 1). (−1, −1). 2x. 2. x. x < −1 x = −1 −1 < x < 1 x = 1 x > 1. dy dx. x =  1 and.

(29) 1.

(30). 2dxd 2. (−2x) + (2 − x 2) 2. 2  x2. (1, 2) 2  2x 2. <x<0. 1 2.  2x. 1 2 2. x 2  (2  x 2). 6x (2x + 1) (x − 1) = 0. −. 0. +. 0. increasing for ]−1, 1[. dy dx. decreasing for ⎡⎣ − 2, − 1 [ ∪ ] 1, 2 ⎤⎦. = 4x 3 − 12x 2. x = 0 or 3. 4x 2 (x − 3) = 0 (0, 0). (3, −27). x. x<0. 0<x<3. x>3. dy dx. −. −. +. ∴ horizontal point of inflexion at (0, 0) minimum value = −27 (at x = 3). x = −1 or 1 iii ]−1, 1[. c. y= dy dx. 2. x. (x  1)  x (2x) 2. 2. (x  1). x 1. =0. 1 x 2. x. x < −1. x = −1. dy dx. −. 0. 2. (x  1). 2. 1, 12

(31) 1, 21

(32). x=±1. when. (. 2. −1 < x < 1 x = 1 x > 1 +. ). 0. −. ( ). minimum at −1, − 12 , maximum at 1, 12. Exercise 4N i. −. minimum at (−1, −1), maximum at (1, 1). y = x 4 − 4x 3. 4x 3 − 12x 2 = 0. a. =x. x 2. = 12x 3 − 6x 2 − 6x. x = 0,. . x 2  x2. y = 3x 4 − 2x 3 − 3x 2 + 4 dy dx. ] 32 , ∞ [. ] − 12 , ∞ [. ii. dy dx. x. 1. 1 2. ∪. ] 12 , 32 [. ∪. y = −2x3 + 6x 2 − 3). x=0. d. −. ] − 1, 12 [. ii. y = −3x 2 + 6x − 1 dy dx. −6x 2 + 12x = 0 ∴ 6x(−x + 2) = 0. c. 1 3. i. 2. ii. ]−∞, −1 [ ∪ ] 1, ∞[. increasing for ]−1, 1[ decreasing for ]−∞, −1 [ ∪ ] 1, ∞[. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 6.

(33) WORKED SOLUTIONS. dy dx. =. 4 3. 1 3. 2 3. x −. 2 3. 1 3. 4 3. x ,. x. x<. dy dx. −. 1 2. 2 3. x. dy dx. =0. 0. 2. d y dx. 1 2. x>. 2x. 2. dx. =x. 1 2. 2. 1 2 2. y=. d.

(34). (−2x) + 2x(2 − x ). ). 4x  3x. 3. 2x. 2. 2 

(35) 2 3 2. x<− 3. ⎛ (0, 0), ⎜ ⎝. 2. 4 3 3. 2. −. ⎞ ⎛ ⎟, ⎜− ⎠ ⎝. 2 3. ,. x=− 3. +. = 20x 3. 2 3. 0. 2. 4 3 3. 2 3. ,. ⎞ ⎟ ⎠. −. = 12(x 2 + 2x − 3)−1. = −12(x 2 + 2x − 3)−2 (2x + 2). dy dx. = 0 ⇒ x = −1 x. x < −1. x = −1. x > −1. dy dx. +. 0. −. 24 (x  1). x. 2.  2x  3.

(36). 2. maximum at (−1, −3) 3x  3 x (3  x). y. e. x=0. <x<0. 12 x 2  2x  3. dy dx. = 0 ⇒ 4x − 3x 3 = 0, x (4 − 3x 2) = 0. x = 0, ±. 2. f ″(1) > 0 ∴ minimum at (1, −4). 1 2 2. (2 − x ) 2.  2dxd 2. 1 2 x 2. dy dx. x = ±1. f ″(−1) < 0 ∴ maximum at (−1, 4). 2. 2. x 3  2x (2  x. x. 5x 4 − 5 = 0, x4 = 1,. 2. x. dy dx. = −12x 2 < 0 ∴ maximum at (0.794, 0.191). = 5x 4 − 5. d y. 2. dy dx. 2. dy dx. +. increasing for ] 1 , ∞ [ , decreasing for ] − ∞, 1 [ y. 1 32. x. y = x 5 − 5x. c. ⎞ ⎛ minimum at ⎜ 1 , 34 ⎟ ⎜2 3 ⎟ ⎝ 2 ⎠. e. 1 2. −4x 3 + 2 = 0 ∴ x3 =. = −4x 3 + 2. = 0.794. § · ¨ 1 , 3 1 ¸ ¨ 2 2(2) 3 ¸ © ¹. 1 2. 1 2. x=. 2 3. x −. ∴ 4x − 2 = 0 ∴ x =. y = −x 4 + 2x − 1. b. 1. 4. 1. y = x 3 (x − 2) = x 3 − 2 x 3. d. 3x  3 3x  x. 2. (3x  x 2)3  (3x  3) (3  2x). dy dx. 0. 3x  x. 2.

(37). 2. 9x  3x 2  9x  6x 2  9  6x. 0<x<. x dy dx. 2 3. 2 3. x=. +. x>. 0. ⎛ maxima at ⎜ −2 , 4 ⎝ 3 3 minimum at (0, 0), increasing for decreasing for. @ @. 2 3. 2 3. 3x 2  6x  9. −. ⎞ ⎛ ⎟ and ⎜ ⎠ ⎝. 2. x (3  x). 2. 4 3 3. 2 3. ,. ⎞ ⎟, ⎠. 1. a. dy dx. 2, . 2 3. >. ‰. @ 0,. 2 3. 2 ,0 3. >. ‰. @. 2 , 3. 2. dx. 2. b. = 6x + 6x − 12. 2. = 12x + 6. f ″(−2) = −18 < 0 ∴ f has a maximum at (−2, 17) f ″(1) = 18 > 0 ∴ f has a minimum at (1, −10). 3(x 2  2x  3). 2. 2. x (3  x). 3(x  3) (x  1). 2. 2. x (3  x). 2. x = −3 or 1. +. 0. −. x>1. 0. +. 3. y. 1 x x2  8. i. dy dx 2. 2. 2. 2. maximum at −3, 1 , minimum at (1, 3). 2. d y.

(38). ( ). @. 6(x 2 + x − 2) = 0 6(x + 2) (x − 1) = 0 x = −2 or 1. 2. x < −3 x = −3 −3 < x < 1 x = 1. dy dx. y = 2x + 3x − 12x − 3 dy dx. =0 ⇒. x. Exercise 4O 3. 3x  x. dy dx. = (−x. 2. + 8) − 2x (1 − x) x 2 − 2x − 8 = 2 2 (x 2 + 8) 2 (x + 8). = 0 ⇒ (x − 4) (x + 2) = 0 x = −2 or 4. x. x < −2. x = −2. −2 < x < 4. x=4. x>4. dy dx. +. 0. −. 0. +. (. ). (. maximum at −2, 41 minimum at 4, −81. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. ). Worked solutions: Chapter 4. 7.

(39) WORKED SOLUTIONS ii. f is increasing for ]−∞, −2 [ ∪ ] 4, ∞[ f is decreasing for ]−2, 4[. iii. y 1 ) 4 1 4. (–2,. –4. y. x  1

(40) 3. i. dy dx. dx. 2. 6 x. 4. ii. 2. dx. d y. x. 9(x. e. x=0 x=0. x>0. −. 0. +. 2. x. 3x x 1. i. dy dx. (x  1). 2. dx. = (x − 1). 2. dx. = 4x − 3 2. = 6x. dx. = 12x. 2. 2. d y dx. x>0. +. 0. +. ii. 2. 1 2. d y dx. 2. (x − 1). =. 4x  x

(41) −. (. 4x − x. ). 1 2 2. 2x. (4  2x). − (2 − x). (. (. 4x  x. 1 4x − x 2. 4x − x. 2. ). ). −1 2 2. 1 2 2. 1. 2. − 12x + 6 − 6x + 12x (x − 1). 3. 3. x<1. x>1. −. +.

(42). ( 4 − 2x ). a. s (0) = 10 m. b. −5t 2 + 5t + 10 = 0 t2 − t − 2 = 0 (t − 2) (t + 1) = 0.

(43). 4x  x. ∴ t = 2 seconds c. 3 2 2.

(44). 4x  x 2. 4x. 4x  x. 2. <0.

(45). 2. s (t) = −5t 2 + 5t + 10. v (t) = −10t + 5. a(t) = −10. v (2) = −15 ms. a(2) = −10 ms–2. –1. 4x  x 2  4  4x  x 2. 2. 3. Exercise 4Q. 4x  x 2  (2  x) 2. dx. 4. concave up for ]1, ∞[, concave down for ]−∞, 1[. ]−∞, 0 [ ∪ ] 0, ∞[. 1 2 2. . d y. x. dx. 4x  x 2 where x ∈ [0, 4]. 2. 2. ( 6 x − 6 ) − ( 3 x − 6 x) 2 (x − 1 ). 2. concave up for. dy dx. 2. ≠ 0 ∴ no points of inflexion. 2. d y. no point of inflexion. i. 2. (x  1). 2. x=0. 2. dx. (x  1). 2. x<0. d y. y. 2. (x  1) (6x  6)  (3x  6x)2. ⇒ x=0. =0. 2. 3 x  6x. 6. 2. x. ii. 2. 2. (x  1). d y. 3. 2. c. 0. 6x (x  1)  3x. d y. 2. d y. inflexion. −. y = x 4 − 3x + 2 i. ≠0. x>1. concave up for ]0, ∞[. dy dx. 3. 2. y. concave down for ]−∞, 0[ b. 2. x<1 2. point of inflexion at (0, 0) ii. dx. 4. 9. concave down for ]− ∞, 1[∪]1, ∞[. = 6x. 2. x<0. d y dx. dx. =0 ⇒. 2. 2. dx. = 3x 2 − 1. d y. 2. d y. 4  1) 3.  2 x  1

(46). 2. 2. 2. dy dx. dx. 2. d y. y = x3 − x i. 2. d y. 1. x  1

(47) 3. ∴ no points of. 1 (4, – ) 8. Exercise 4P a. 2 3. 2. –1 8. 1. 2. d y. (1, 0). 0. –2. concave down for [0, 4]. 1 ) 8. (0,. 1 8. –6. d. ii. The diver is moving downwards and speeding up when he hits the water.. 3 2. 3 2 2.

(48). ∴ no points of inflexion. 2. s = 50t − 15t 2 a. v = 50 − 30t = 0 when t maximum height = 5. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 5 3. ( ) = 41 m 5 3. 2 3. Worked solutions: Chapter 4. 8.

(49) WORKED SOLUTIONS b. 20 = 50t − 15t 2. d. t = 2s and t = 4s.. 3t 2 − 10t + 4 = 0. e. 0 − 2s distance = s (2) − s (0) = 6 32 − 0 = 6 32. t = 0.4648 or 2.8685. 1. v = 50 − 30t v (0.4648) = 36.1 ms. 1. v (2.8685) = −36.1 ms–1. a = −30 ms –2. d. 50t − 15t 2 = 0. s = 7t + 5t − 2t a. 10 s 3. 3. v = 7 + 10t − 6t 2. a = 10 − 12t. v (0) = 7 ms–1. a(0) = −10 ms–2. v (2) = 3 ms–1. c(x) = 20 000 + 180 x − 0.1x2 a. c′(x) = 180 − 0.2 x. b. c′(100) = 180 − 0.2 × 100 = 160 euros / tank. Initially the particle is moving in a positive direction and is slowing down. b. a(2) = −14 ms–2. 2. c. c(101) − c(100) = 159.9 ⇒ cost of producing 1 extra tank is nearly the same as the marginal cost function.. a. i. The particle is moving in a positive direction and slowing down. 4. s = 10t 2 − t 3 a s (3) = 63m ∴ average velocity = b. v = 20t − 3t 2. a = 20 − 6t. v (3) = 33 ms–1. a(3) = 2 ms–2. c. Speeding up.. d. 20t − 3t 2 = 0. 63 3. 5. s (t) =. 1 3 t 3. 20 3. = 21 ms–1 b. − 3t + 8t. i. a (t) = 2t − 6. 3. t 2 − 6t + 8 = 0 t = 2 s or 4 s. c. t v t a. 0<t<2 + 0<t<3 −. r(x) = x(7 − 0.002 x). Break-even points: r(x) = c(x) when 7x = 0.002 x2 = 500 +3x i.e. 0.002 x2 − 4x + 500 = 0 4 o 16 - 4 0.004. Average cost per 100 units = To minimize cost, need. (t − 2) (t − 4) = 0 ii. iii. For profit, need to make x memory sticks where 134 < x < 1870.. 2. b. c ′(x) = 3 euros / unit ⇒ it will always cost 3 euros to make an extra memory stick. = 134 or 1870 (3 sf).. 3. v (t) = t 2 − 6t + 8. ii. ⇒x=. direction changes when t = 20 s. a. p(x) must be > 0 so 0.002 x < 7 i.e. x < 3500 ∴ domain is 0 < x < 3500. t (20 − 3t) = 0 t = 0 or. 1. 3. 1. ∴ rock hits the ground again when t = 3. 1. total distance = 6 32 + 1 3 + 1 3 = 9 1 m. Exercise 4R. 5t (10 − 3t) = 0 2. 1. 4 − 5s distance = s (5) − s (4) = 6 32 − 5 3 = 1 3. speed = 36.1 ms–1 upwards (when t = 0.4648) and downwards (when t = 2.8685) c. 1. 2 − 4s distance = s (4) − s (2) = 5 3 − 6 32 = −1 3. –1. ⇒ 500 − 2<t<4 − t>3 +. t>4 +. v and a have the same sign for 2 < t < 3 and t > 4 ∴ the particle is speeding up at these times. iii the particle is slowing down for 0 < t < 2 and 3 < t < 4 a (2) = −2 ms–1 a (4) = 2 ms–2 the particle changes direction from positive to negative when t = 2s and from negative to positive when t = 4s.. 1000 x2. d dx. c (x ) x. æç c ( x )ö÷ ÷ çç çè x ø÷÷. = 500 +. 1000 x. =0. =0. ⇒ x2 = 2 ⇒ x = 1.41 (3 sf) ∴ costs are minimised by making 141 units. 4. b. r(x) = 35x − 3 and p(x) = r(x) − c(x) so p(x) = 35x − 3 − 400 − 20x + 0.2x2 − 0.0004x3 = 15x − 403 + 0.2x2 − 0.0004x3 p′(x) = 15 + 0.4x − 0.0012x2 = 0 ⇒ x = 367, so 367 jackets must be made to maximise profit.. c. Minimising costs will not necessarily maximise profits.. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 9.

(50) WORKED SOLUTIONS. Exercise 4S. x 2 + y 2 − 3x + 4y = 2. c. dy dx 3 − 2x dy = dx 2y + 4. 2x + 2y. y. 1. (x, 10 – x2). 4x − 3(x 2 2y dy + 2xy 2) + 2y dy = 0. A = 2x (10 − x 2) = 20x − 2x 3. 4x − 6x 2y dy − 6xy 2 + 2y dy = 0 dx. dy 3xy − 2x = 2 dx y − 3x y. 10 3. A″ = −12x. 2. (x + y)2 = 5 − 2x. e. A″ < 0. 3. x. dy dx. 800 – 2x. A = x (800 − 2x) = 800x − 2x 2 A′ = 800 − 4x A′ = 0 ⇒ x = 200 A″ = −4 < 0 ∴ maximum maximum area = 200 × 400 = 80 000 m 2 3. =. =. 1 xy. 1 xy. xy xy. x2. f. dx. dy dx. 1+. 3. x. −1 = − (1 + x + y) x+y. x 3 + x 2y = x − y. dx. dy 2 (x dx dy dx. 2. + 1) = 1 – 3x2 – 2xy. = 1 − 3x2. 2. − 2xy. x +1. x2 − y2 = 9. (5, 4). dx. y−4=. y. 2. =4. 3. 2x + 4y + πx = 8 8  2x  S x 4 A = xy 1 (8x − 2x 2 − 4 1 A′ (8 − 4x − 2πx) 4. 4. 8 = 0.778 y = 1 4  2S A″ 1 (−4 − 2π) < 0 ∴ maximum 4 8 m by 1m dimensions: 4  2S. 3y + x = 4. b. + 2x = 0. dy dx. = 3x 2 ?. − 10 3. x 2 − 3 xy + 2y 2 = 5.

(51). ∴. dy −x = dx 3y. dy dx. x. 2. 4y. 3. ( 3, 2). dx. dx. − 3 dy + 4y dy = 3 y − 2x dx. dy dx. 5. y4 = x3 + 1 4y 3. (x − 1). dx. 3 y  2x 4y  3 x. 0. Tangent: y = 2. 2. dy dx. 4 3. 3 4. 3 2y. =. 2x − 3 x dy  y + 4y dy = 0. Exercise 4T 6y. (1, −2) dy dx. x. a. 4 x 3. 5 4. 4. y 2 = 3x + 1. y=. x y. =. −9. y+2=. πx 2). dy dx. (x − 5). dx. A = 0 ⇒ x (4 + 2π) 8. 2. 5 4. 2y dy = 3. y. 1. 5 x 4. y=. x. Sx. dy dx. 3x 2 + x 2 dy + 2xy = 1 −. 2x − 2y dy = 0 ∴. x + 2y +.

(52). 2(x + y) 1  dy = −2. ∴ max.. height = 10 − 10 = 20 (3.65 by 6.67). 10 3. base = 2. dx. 2. 20 − 6x 2 = 0 ⇒ x = 10 , 3. dx. dx. A′ = 20 − 6x 2. If x =. =0. 2x 2 − 3x 2y 2 + y 2 = 9. d. x. 0. dy dx. −3+4. Normal: x = 3. x + y − 6x − 8y = 0 2. 2. 2x + 2y dy − 6 − 8 dy = 0 dy dx. dx 3x y4. dx. dy dx. =0 ⇒. x=3. 9 + y 2 − 18 − 8y = 0. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 10.

(53) WORKED SOLUTIONS y 2 − 8y − 9 = 0 (y − 9) (y + 1) = 0 y = 9 or −1 stationary points (3, 9), (3, −1) 6. 3x 2 + 2xy + y 2 = 3 6x +. 2x dy dx. dy dx.  (3x  y) xy. (2x  2y  1). 2. dx 2. 3+. d y dx. dy dx. +. 2. +. dx. 7. 2. =1. 1. A = πr 2. 2. A = 2πr 2 + 2πrh. dy dx. +y. 2. d y dx. 2. +.

(54) dy dx. 2. =0. 2. dx. +1=0. 2. 3. =6. x2 = 3. 2x + x. dy dx. dy dx. (2x  y) x  2y. =. . +y+. =0 4. dy dx. At ( 3 , 0). 2y dy dx. = −2 At (− 3 , 0). dy dx. b. dy dx. = 2x − 2 x dy  y + 2y dy. 1+. dy dx. = 2x − 2x. dy dx. + 2x. dy dx. =. 1−. dy dx. dy dx. dx. = 2 cm s−1. b. dt. dt. dx. (l 2 + w 2 + h ) dw dt. = −2 cm s−1 l = 12 cm, w = 5 cm. = l dw + w dl. dt. dt. = 2 dl + 2 dw dt. dt. = 2(2) + 2(−2) = 0 cms−1 Let x = diagonal of the rectangle. x2 = l2 + w2. (2x − 2y − 1) (2x − 2y + 1). 2x dx = 2l dt. dl dt. + 2w. dw dt. (l = 12, w = 5, x = 13). 13 dx = 12(2) + 5(−2) dt. dx 14 = cms −1 13 dt. 2 2x − 2y + 1 dy dx.

(55) . (2x  2y  1) 2  2. (2x  2y  1). 2. dy dx.

(56). 5. dv dt. = 1.5 m3s−1 v = 81 m3 x = 3 81 m. Let x = side length of cube V = x3. dy dx 2 (2x  2y  1) 44. dA dt. (2x − 2y − 1) 2x − 2y + 1. =. A = 6x 2. dv dt. = 1.5 × =. 2. 4(2x  2y  1)  4(2x  2y  1) (2x  2y  1). dt. 1 2 2. dp dt. 2x − 2y + 1 − 2x + 2y + 1 2x − 2y + 1. (2x − 2y + 1). dh dt. = 12(−2) + 5(2) = −14 cm2 s−1 p = 2l + 2w. c. 2. 4−4. + 2h. A = lw. dx. d y. =. dx. dt. l dl + w dw + h dh. dl dt. − 2y + 2y dy. dy dx. (2x  2y  1) 2  2. 2. dx. dx. dr dt. + 2πr. dw dt. + 2w. =. − 2y dy = 2x − 2y − 1. =1−. 1 − dy =. dl dt. dx dt. dA dt. 2x − 2y − 1 2x − 2y + 1. =. c.

(57). 1+. dh dt. + 2πr. Let x = diagonal of the box. x2 = l2 + w2 + h2. x + y = x 2 − 2xy + y 2 a. dr dt. = 2S r. dt. ∴ tangents are parallel 9. (from b). = (4S r  2S h) dr  2S r dh. dr dt. ). 3. 3. dA dt. a. = −2. ). = 4πr. dt. x=± 3. 2 2x − 2y + 1. dA dt. 2. y=0. dA dt. 2x dx = 2l. x + xy + y = 3 2. dx. Exercise 4U. 2. d y. (. = 1 − dy. (3  2) 1. d y. +2−2. 2. 2. =0. dx. d y. 3+x. dx. (1, −2). 3x + x dy + y + y dy = 0 dx. 2. d y. ∴. (. =. 3. dy dx. + 2y + 2y =−. 8. 3. dA dt. ×. dx dv. 1 3x 2. × 12x. ×. dA dx. 6 x. =. 6 3. 81. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. = 1.39 m2 s−1. Worked solutions: Chapter 4. 11.

(58) WORKED SOLUTIONS y. 6. 2. f (2) = 8. 5m. 0. When x = 3 m,. dx dt. −1. = 0.5 ms. 2x dx + 2y dy = 0 dt. dt. dy dt. dy dt. 4. ∑ 3⎜⎜ ( −1n). 1 2. n =0. x dy +. =. 1 2. =. 1 2. dt. 1 2. 5. y dx dt. (3)(−0.375) +. 1 1 2. 1 a. (4)0.5. sum =. 6. dA dt. (r = 5). 2. dr dt. = 2πr dr dt dr = 10 π dt. dr1 dt. 1 5S. a 1−. dr2 dt. = 1.2 ms−1. ( ). 3. 2. =. 1. a. y=−1. = 1.5 ms−1. 2S r1. dr. 1. dt. 3 x x. 1. a. lim. b. lim. x →1. 7. =−1. x. lim 3. d. lim 3 x. e. f. x o0. 1 x 2. x →0. lim x →∞. lim. x →−∞. +x. x. 5x. 2. 2. 3. 2x + 1 7 3. x +1. 2x  1. (0, 1). 2. x 1 2. dy. 2( x  1)  2 x (2 x  1). dx. ( x  1). 2. dy dx. 2. =2 y = 2x + 1. 1. 1.10 (3sf ) 2. y. ( − 5 , −1). Tangent: y − 1 = 2x. does not exist since the domain. =4. 9. x + y = −3 y dy dx. 2. gradient = −1. x x 1. = x 1 ( x + 1) 2. −1 2. 1. + ( x + 1) 2. x  2( x  1). =0 =0. y = − 1 x +1. Normal: y − 1 = − 2 x. is ]−∞, −1] ∪ [1, ∞[ c. r 5. If x = 0,. 2. x −1 x. x →0. x2. ( 5 , −1). Review exercise x3 − 3 x +1. 1+ a −1. =1 + a 2. 1. 2. x. 2. dt. = 2π (9 × 1.2 − 1 × 1.5). ✗. 2. x 3  2x 2  5 x 2  x 3. dr. = 18.6π = 58.4 m2s−1. 2. 2. x  2x  5. 5.  2S r2. 2. a (1 + a ). 2 3 x x. A = S r12  S r22 dA dt. 2. 2. x  2x  5. b. 1 1 a. 2. 1+ a. y. 3. = 0.0637 cms−1. = 2 .5. 3. 1− − 1 5. < 1 provided a ≠ 0. 2. = 2 cm s 2. =. Geometric series with, r =. 2 −1. A = πr. 10. n⎞ ⎟ ⎟ ⎝ 5 ⎠. ⎛. ∞. = 0.4375 m s 7. is a geometric series with r = − 1 5 hence it converges.. ∑ 3⎜⎜ ( −1n). 2 −1. dA dt. n⎞ ⎟ ⎟ ⎝ 5 ⎠. ⎛. ∞. =0. dA dt. xy. sequence converges since an → 0 as n → ∞.. 3 n 2. n =0. = −0.375. A=. 2. an. ∴ 0.375 ms−1 down the wall b. lim f ( x ) 4. x o 2. 2n  3. 3. x 2 + y 2 = 25. 3(0.5) + 4. x d2 x !2. f (x) is not continuous at x = 2. x. 3m. a. ­x 2  2x ® 3 ¯ x  6x. y. 1. 2( x  1) 2. =. 3x  2 1. 2( x  1) 2. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 12.

(59) WORKED SOLUTIONS 1. 3x  2 2( x  1). 1 2. Ÿ 3 x  2 2( x  1) 2. = −1. c. y. 2. x 3. x ≠ −1. x 1 1. (3x + 2)2 = 4(x + 1). dy. 9x 2 + 12x + 4 = 4x + 4. ( x  1) 2 2 x . dx. 1. If x = 0,. at  8 , . 10. dy dx. 9. =. 1 2. 8 27. 1 2. 7. 9. ,. = 3x. = −1. x. x  x 1. dy dx. 1§. 2. 2. 1  x ( x  1). 14 1 7. x  37. x = 3.0782 y = −2.2031. 2 x 1.

(60)

(61) 2. y+ 12 a. 1 8. 8 3.

(62). 3. . 1 8. ª 2 «( x ¬. 0,

(63) 1. 8. e. 1. 1 2. 1. § 2 ¨ x  (x ©.  1). 1 2. ·2 ¸ ¹. 1 2. 2. º2 x » ¼.

(64). 1 2. 1. 2. 2. x 1.

(65). = (1 − 3x)7 3(3x + 5)2 3 + (3x + 5)3. 6. y = (x + 2 + (x − 3)8)3 dy dx. 13. 2. = 3(1 − 3x) (3x + 5) (−30x − 32) = −6(1 − 3x)6 (3x + 5)2 (15x + 16). = 3(x + 2 + (x − 3)8)2 (1 + 8 (x − 3)7). f (x) = ax 3 + 6x 2 − bx f ′(x) = 3ax 2 + 12x − b f ″(x) = 6ax + 12 f ″(1) = 0 ∴ 6a + 12 = 0 ∴ a = −2 f ′(−1) = 0 ∴ −6 − 12 − b = 0 ∴ b = −18. = 3(1 − 3x)6 (3x + 5)2 [3(1 − 3x) − 7 (3x + 5)] 14. y. x  33 x. a. (0, 0). 1. x  3x 3 1. y = ( 4 x 2 − 3 x + 1)5 dy. ·2 ¸ ¹. 1. = 9(1 − 3x)7 (3x + 5)2 − 21 (1 − 3x)6 (3x + 5)3. dx. 1 2. ( x  1) 2  x. 1 2. 7(1 − 3x)6 (−3). b.  1). 2 x 1. y = (1 − 3x)7 (3x + 5)3 dy dx.

(66).  1). 8. 2. = 2x or y = 2 x −. · 2x¸ ¹. 1. (3.08, −2.20)  12. 2. 2. f c(0) 3  1. 1 2. 1 2. 2. f c( x ) 3 > g ( x )@ g c( x ) 2. 2. ( x 2  1). ( x  1) 2  x. 14. 14x 4 − 35x 3 − 35x 2 + 19x +37 = 0. ? f (0). 1. 1. § 2 2 ¨ x  (x ©. 37. > g ( x )@. 1. 1 2. · 2§ x  ( x  1) ¸ ¨ 1  ¨ 2© ¹ ©. ( x − 1) 7. 3. 1 2 § 2 2 · ¨ x  ( x  1) ¸ © ¹. 2. 1. (2x 4 − 5x 3 − 5x 2 +3). f (x ). 3. y. 14x 4 − 35x 3 − 35x 2 + 21x = 2x − 37. 11. + 4x + 3. 1. (8x 3 − 15x 2 − 10x +3) = −7 =. 2. 2 ( x + 1) 2.

(67) 2. y. . 9. dy dx. 3 2. 2( x  1). 8. d. 5 normal: y + 1. If x =. =1. 8. 2. ( x  3). 2. x x  1 is parallel to the line x + y = −3. ? y. dy dx. . 2. 4 x ( x  1)  ( x  3 ). x (9x + 8) = 0 x = 0 or. 1. 2 ( x  1). 2. 9x + 8x = 0. ( x  1). x 3 2. = 5 ( 4 x 2 − 3 x + 1) (8 x − 3) 2. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 2. x 3 ( x 3  3) 0 2. 0 or x 3. 3. x = ± 27 ( 27 , 0 ) ( − 27 , 0 ). Worked solutions: Chapter 4. 13.

(68) WORKED SOLUTIONS b. (1  x 3 ). dx. 1 x. 2 3. d y. 2. =. 2. 2. c. dx. d. 2. d y. d y dx. 2. 2. 2. ( x  3). −1 < x < 1. If x = 1, f ″(x) < 0 ∴ maximum at (1, −2). x=1 x>1. −. 0. c. f ″(x) = 0 x. +. b. f (−x). 2 x. 2 x. 2. ( x )  1. i. increasing for ]−∞, − 3 [ ∪ ] − 3 , 1[ ∪ ]3, ∞[. ii. decreasing for ]1, 3 [ ∪ ] 3 , 3[. e. x 1. 8. ∴ function is odd. ∴. 4. ( x  1)2  2 x (2 x ). dx. ( x − 1). 2. 2. <0. x = –√3. 17. 2 4 x. 2. –2. f (x ) a b. ( x  3). dy dx. dy. At (0, 1). dx. dy dx. ∴. 1 4. 5y  1. = −1 =1 4. x=1. Review exercise. –4. 16. = 5y 4 − 1. At (0, 0). 0. –2. x = y 5 − y 0 = y (y 4 − 1) dx dy. 4. –4. x = √3. –8. y = 0, ±1 (0, 0) (0, 1) (0, −1). y x = –1. 8 x. 0 (3, 0) 4 –4 (0, –3) (1, –2) –4. –8. <0. d. (4.20, 0.0979). y=1. 2. ( x  1). x > 4.1958 −. y. = −f (x). 2. x = 4.1958. ∴ point of inflexion at (4.20, 0.0979) d. x = 1, x = −1, y = 0. ⇒. x < 4.1958 +. f ″(x). 2x. a. 3. If x = 3, f ″(x) > 0 ∴ minimum at (3, 0). 2. 2. 2. < 0 ∴ maximum at (−1, 2). function decreases for ]−1, 1[. −2 x − 2. 3. 12 x  72 x  108 x  72. ii. 2. 2. 4. 2. ( x  3). function increases for ]−∞, −1 [ ∪ ] 1, ∞[. dy. 2. 2. ∴ minimum at (1, −2). 0. 2. 2. ( x  3)(12 x  24)  4 x (6 x  24 x  18). i. =. 2. 3. 2. +. dy dx. 2. ( x − 3). 2. x 1. c. − 24 x + 18. 2. 5. x x < −1 x = −1. y. x = 3 or 1. ( x  3). x. >0. 2. 2. ( x  3) (12 x  24)  2( x  3)2 x (6 x  24 x  18). f ″(x). ≠ 0 ∴ no points of inflexion. dy dx. 15. 3. 2. If x = −1,. 2. 1 x=±1. 2. = 3. dx. ? x. ⇒. f ′(x) = 6 x. 2 3. x3. −5 3. x. 3. If x = 1,. d y. 1. =0 ∴1=. 2. dx. f ′(x) = 0. 2. dy. 1. 2. (1.5, 0). (x,. Let l = distance. x). l 2 = (x − 1.5)2 + x. 2. x 3. (0, − 3). (3, 0) x = ± 3. y=1. f ′( x ) =. ( x − 3) 2( x − 3) − 2 x ( x − 3). 2. 2. 2. ( x − 3). l. 2. ( x  3). 2( x  3)(3 x  3) 2. ( x  3). 2. 1. ( x 2  2 x  2.25) 2. 2. 2( x  3)[ x  3  x ( x  3)] 2. = x 2 − 2x + 2.25. dl. 1. dx. 2. 1. ( x 2  2 x  2.25) 2 (2 x  2) x 1. 2 2. 2. ( x  3). 2. 1. ( x  2 x  2.25) 2. 6( x  3)( x  1) dl dx. =0⇒x=1. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 14.

(69) WORKED SOLUTIONS x. x<1. x=1. x>1. dy dx. −. 0. +. 4 y. ∴ minimum distance when x = 1. 2. x 180. xy = 180. Let r = radius, x = side of square. printing area, A = (x − 2)(y − 3). 4πr + 4x = 80. A = xy − 3x − 2y + 6. x = 20 − πr A = 2πr + x 2. x. = 2πr + 400 − 40πr + π r 2. dA dr dA dr. 2 2. d A. r dr dt. = 0 ⇒ 3x 2 = 360. x d A dx. 2. 720 x. 3. dt. x. 2. y = 16.43.  0 ∴ maximum. ∴ dimensions are 11.0 cm by 16.4 cm. = 4π + 2π2 > 0 ∴ minimum. 5. dx dt. 1 1  2x. = (1 + 2x)−1. 20. acceleration. 2S dh dt. = 3 cm min−1. 2. d x dt. = −4 cm min−1. 2. = −(1 + 2x)−2 2 dx dt. 2 (1 + 2 x ). v = πr 2h dv. 360. 120 = 10.95 2. 20. 2. dA dx. = 0 ⇒ 4πr + 2π2r = 40π. 2S. dr. = −3 +. x 2 = 120. 2r + πr = 20. 2. dA dx. = 4πr − 40π + 2π2r. r. x. 180  3 x  360  6. 2. = 2πr 2+ (20 − πr)2. 3. y. minimum distance = 1.25. S r 2 dh  2S rh dr dt. dt. 3. At x = 2, acceleration =. −2 125. = π(81) (−4) + 2π (9)(12)(3) = 324π cm3 min−1 increasing at a rate of 324π cm3 m−1. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 4. 15.

(70) WORKED SOLUTIONS. 7. The evolution of calculus. Answers. Exercise 7A. Skills check 1. a. y = x lnx. b. y= dy dx. dy dx. x. ⎛ 1 ⎞ 1 ⎜ (2 − x ) 2 2e2 x − 3 +e2 x − 3 1 (2 − x )− 2 ⎟ 2 ⎝ ⎠ (2 − x ) 4 (2 − x ) e. 2 x −3. 2( 2 − x ). =. dy dx. 2. a. 2. 3x8 dx =. 3. − 5x4 dx = − x5 + c. 2 x −3. =. y=. − 2x dx = − x2 + c 9. + lnx = 1 + lnx. e 2 −x. =. c.

(71) 1 x. 1. e. 2 x −3. +e. 2 x −3. x. x. +c. dx = x−5 dx =. 5. 3. x 3 dx = x 2 dx. 5. 3 2. 1. 6. (9 − 4 x ). 2( 2 − x ) 4 x − 1. 1. 4. x 3. x. 1. dx =. 3. x. 3 2. 2 5. −4. 4x. +c. 4. 5. x2 c. dx = x. 3 2. −1. +c=. −3 2. 1. 2  x. dx = 2 x 2  c. c. 3. 2x x. 7. 4. = 4x3 + 4x−5 = 4 x 3 +. 1 2. 2x 3 2. dx = 2x dx =. 4 x. 4. − x. 5. y = 3x − 2 y = x − 2x + 4 2. 2. x − 2x + 4 = 3x − 2 x2 − 5x + 6 = 0 (x − 2)(x − 3) = 0 x = 2 or 3 (2, 4) or (3, 7). 8. 7x. b. y=1−x. c. (1 − x)2 = 2x + 1 1 − 2x + x2 = 2x + 1 x2 − 4x = 0 x(x − 4) = 0 x = 0 or 4 Check in (1) if x = 0, LHS = 1 RHS = 1 ᅚ if x = 4, LHS = −3 RHS = 3 ᅜ ∴ x = 0 (0, 1) y = 6 + 3x y = x3 − 5x. y 2x  1 1 − x = 2 x + 1 (1). x. +c = 4 x2 +c 3. 1 dx = − x 4 dx = − 1 x 7. 3. 4 x 21. 3 4. 1. a. ( )+c −4 3. c. (5x − x ) dx. ⎛ 5x 2 − 1 ⎞ dx = ⎜ 2 ⎟ 5x ⎠ ⎝. 1 5. 2. 3. = 5x + 3. b. −3 4. 7. Exercise 7B. 1 5x. −2. +c. (x + 3)(2x − 1)dx = (2x2 + 5x − 3)dx 3. 2. = 2 x + 5 x − 3x + c 3. 2. c. x −1 x. −3. d. + 3x = x − 5x. 2.

(72) dx = x. 2. dx = (x−2 − x−4)dx. 4. x 3. = −x −1 +. 3. 6 + 3x2 = x4 − 5x2 x4 − 8x2 − 6 = 0 x = −2.948 or 2.948 (−2.95, −10.9) or (2.95, 10.9) 3 s(t) = 3t4 − t3 + t v(t) = s′(t) = 12t3 − 3t2 + 1 a(t) = v ′(t) = 36t2 − 6t. 3. 2. −7. 5. 2. 6 x. −x 4. 1 x. +c=. e. ( x + 3)( x − 4 ). © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. x. 5. 1 x. +. 1 3x. 3. +c. (x2 + 2 + x−2)dx 3. =. . x 3. 1 x. + 2x −. +c. dx = (x−3 − x−4 − 12x−5)dx =. −x 2. =−. −2. −3. −4. + x + 12 x + c 3. 1 2x. 2. +. 1 3x. 3. +. 4 3. x. 4. +c. Worked solutions: Chapter 7. 1.

(73) WORKED SOLUTIONS ⎛ x− ⎜ ⎝. f. 1 1 ⎞ ⎟ dx = ( x 2  5x 3 ) dx ⎠. 5 3. x. =. 2 3. 2. dy dx. = (3x2 − 4). 3. 2 3. 2. x 2 − 5x 3. x. 3 2.  15 2.

(74) 3 2. 4. (1, −21 ). 1 2. t. 2. + 3t +. 1 2. =. 1 2. +3+1+c ∴c=−5. f (t) =. t 2. 2. + 3t +. 1 t. 1 t. +c. 3. 3. −2 (2 x + 1) 2. −2 (2 x + 1) 2. 2. (). ( 4 x − 1). =. +c =. 3 2. 1. 3. −5. dx = (4x − 1)−5 dx. 5. ( 4 x − 1) 4 ( −4 ) 2 4. −4. +c =. y = 2x4 + 12x3 + 27x2 + 27x + 12 =. = (2 x  3)4  15 8. = (2x + 1)(x − 1) = 2x + x − 2x − 1 2. 0= A=. x 2. 3. −1 16 ( 4 x − 1). dx = 2(3  x ). 3−x. 2. +c. 3. . 2 (3 − x ). +c. 4. 1 4. dx 3. 3. z = 2 − 12 + 27 − 27 + c ∴ c = 12. 1 2. +c. − 2 2 x  1 dx = − 2(2 x  1) 2 dx. y = 2x4 + 12x3 + 27x2 + 27x + c. 4. 8. 2. 4. x 2. (3 x − 1) 24. (3x − 1)7 dx =. = (2x + 3)3 = 8x3 + 3(2x)2(3) + 3(2x)32 + 33. A=. + 2t + 1. 1. =. t 2. dA dx. 2. t 2. 1 = c ∴ s(t) = t3 +. = 8x3 + 36x2 + 54x + 27. 5. + 2t + c. Exercise 7C. f (t) =. dy dx. 2. t 2. 1. y = x3 − 4x − 1. −. s(t) = t3 +. x c. −1 = 8 − 8 + c ∴ c = −1 f ′(t) = t + 3 −. 2 = c ∴ v(t) = 3t2 + t + 2. 2 3. (2, −1). a(t) = 6t + 1 v(t) = 3t2 + t + c. c. y = x3 − 4x + c. 3. 8. 4. +c =. −3 4. −8 (3 − x ). 4. +c. 3. 1 1 § · § 2  3 1  x · dx = ¨ 2(2  5x ) 3  (1  x ) 3 ¸ dx 1 ¨¨ ¸ © ¹ 3 ¸ © (2  5x ) ¹. 5. 3. + x − x2 − x + c. 2. 3. −1−1+c ∴c=. 1 3. +. 7 6. =. 2 (2 − 5 x ) −5 2 3. =. −3 (2 − 5 x ). 3. (). 4. +. (1 − x ) −4 3. 3. +c. 2. 6. ds dt. 4. 3. x 3. +. = 3t −. −x −x+ 2. 7 6. 8 t. 4. −. 3 (1 − x ) 4. 3. +c. 2 § 3 · ¨ 4 2  3x  6(3x  2) ¸ dx © ¹. 6. 2. 5. 3. 2. s = 3t + 8 + c. 2 1 § · = ¨ 4(2  3x ) 2  6(3x  2) 3 ¸ dx © ¹. t. 2. 1.5 = 1.5 + 8 + c. ∴ c = −8. s = 3t + 8 − 8 t. 2. 2. 7. d y dx. 2. = 6x − 1. dy dx. = 3x − x + c. = 3x − x − 6 2. y = x3 −. =. −8 (2 − 3 x ). 2. −. (). 6 (3 x + 2) 3 5 3. ∴c=−6. 9. 2. − 6x + c. +c 5. −. 6 (3 x + 2). 3. 5. +c. Exercise 7D 1. − 5e −2x dx 1. 2 e. 3x +2. 5e 2. c. dx = e −3x −2 dx. 2. x 2. 3. (). 2 x. 2. x 2. 0 = 8 − 2 − 12 + c ∴ c = 6 y = x3 −. =. 4 (2 − 3 x ) −3 3 2. 3. 2. 4 = 12 − 2 + c dy dx. 5. 3. 2. − 6x + 6. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. =. 1 −3x −2 e 3. +c. Worked solutions: Chapter 7. 2.

(75) WORKED SOLUTIONS 3. ⎛3 x ⎜ e − e ⎝. 2 e. x. 4. x. 3 dx =. 3. 6 7. 2x. 3. 4. =. 3 ln 2. (16 − 4) =. +c. 41−x dx = − 4. 1− x. −2 −2 x. m. . 4. =a. 1 a. dx =. x. 1. ª¬1  7 6 º¼. u. m ln (m ). a. 1 a ln (m ). Exercise 7G. +c. 0. max+b + c. 1. Exercise 7E 1 3x. 2. − dx = −6ln|x| + c. 1 3. dx = ln|x| + c. 6 x. 0. ⎡ (2r − 1) 5 ⎤ (2r − 1) dx = ⎢ −1 ⎣ 10 ⎥⎦ −1 4. dx = − 1 ln|2 − 3x| + c. 4. 5 3  5x. dx = −ln|3 − 5x| + c. 5. −2(4 + 3x) −1 dx =. 3. Not possible, x ≠ ± 1, 1 ∈ [0, 2] 0 (2 x. + 1). (2x + 1) −3dx. =. 3. 0 1.  1

(76). 1. 1 4 9. 5 6 3. 2 ⎛ 3x + 1 ⎞ dx = ⎡ 3x − 1 ⎤ = 27 − 1 − 3 + 1 ⎜ ⎢ 2 2 ⎟ x⎥ 1 ⎝ x ⎠ ⎣ ⎦1 2 3 2. 3 3 x 4 0. . 2 x 1.

(77) dx = [ln|3x + 4| − 2ln|x + 1|]. 1. = ln7 − ln4 − ln4. 3. ln. = 38 2. 1. e +4. −1. e. x. 7. 2. 3 ⎤ ⎡ ( 4 x + 1) 2 ⎥ 3 4 x  1dx = 3 = ⎢ 0 ⎢⎣ 4 32 ⎥⎦ 0. x. dx =. (). −2e1−3x dx = 2 ⎡⎣e1−3 x ⎤⎦. −1. 3. =. 2 3. −1. = 2 − 4 + 4e e. 2. 10xdx. 8 0. 2. 1 ln 10. 2. ª¬10 x º¼ 0. 1 (100  1) ln 10. −1 9. (e −5 − e4) =. 1. = (1 − 4e ) − (−1 − 4e). 3 ª 2º (4 x  1) «¬ »¼ 0. 2. 2. (1 + 4e −x)dx −1. −1. = 1 (27 − 1) = 13 3. 7 16. 1. = ⎡⎣ x − 4e − x ⎤⎦. 2. 1 2. 0. = (ln7 − 2 ln2) − (ln4 − 2 ln1). = 12 − 1 + 1 3. 2 9. Not possible, x ≠ − 1 1. Exercise 7F. 2. 121 5. 1 ⎡ ⎤ = − 1 ⎡⎣(2 x + 1)−2 ⎤⎦ = − 1 ⎢ 1 2 ⎥ 0 4 4 (2 x + 1) ⎣ ⎦0. ln|4 + 3x| + c. 3. 242 10. 1. dx. 3. 2 3. (( −1) − ( −3)5) =. Not possible, s ≠ 0 1. 1 2  3x. 1 10. 2. 4. 3. .  1)dx. = (4 − 4) − (2 − 1) = −1. =. 1. 1 2. 4. mu du. =1. 1. (x. ª 12 º «¬2x  x »¼ 1. du a. ∴ dx =. du a. 4. x. 1. 6. dx Let u = ax + b. max+b dx = mu. 1 9. ª¬ (1  3x )6 º¼ 2. = 13072. +c. ln 4. 0. 2 3 (6). 2(1 − 3x)5dx. +c dx = 32 x dx = − 2 ln 3. ax+b. 36 ln 2. 0. du dx. 1. 1. 3. ª¬ 2 x 1 º¼ 1. 3 ln 2. 3.2x+1dx. 5 3. 1. 5. 3 ln 3. 2x. x ⎞ − x −1 3 ⎟ dx = (e − 2e ) dx ⎠ x = 3 e 3 + 2e −x −1 + c. 2 (1 − e ) 3e. 5. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 99 ln 10. Worked solutions: Chapter 7. 3.

(78) WORKED SOLUTIONS. Exercise 7H 1. 5. y = x4 + 3x3 − 3x2 − 7x + 6 y. y = x4 − x = x(x3 − 1) y. O. x. 1. 0. x. 1. 0. 2 ⎡ 5 ⎤ (x − x)dx = ⎢ x − x ⎥ −1 ⎣ 5 2 ⎦ −1. 4. 0. 1 1  5 2. −2. (x4 + 3x3 − 3x2 − 7x + 6)dx.

(79). −3. 7 10. −2. 4 2 ⎡ 5 ⎤ = ⎢ x + 3x − x 3 − 7 x + 6x ⎥ 5 4 2 ⎣ ⎦ −3. 1. 1. 2 ⎡ 5 ⎤ (x4 − x) dx = ⎢ x − x ⎥ 5 2 0 ⎣ ⎦0. 1 5. ∴ area 2. O. –3 –2. 7 10. . 3 10. 1. . 2.   . 3 10. = 1 sq. unit. 32 5.  12  8  14  12. 243 5.

(80).  243  27  63  18 4. 2.

(81). = −12.4 − ( −10.35) = −2.05. y = x2 − 2x − 3 = (x − 3)(x + 1). 1. (x4 + 3x3 − 3x2 − 7x + 6)dx. y. −2 1. –1 O. 4 2 ⎡ 5 ⎤ = ⎢ x + 3x − x 3 − 7 x + 6x ⎥ 4 2 ⎣5 ⎦ −2. x. 3. 1 5.

(82).  3  1  7  6 − ( −12.4) = 14.85 4. 2. area = 2.05 + 14.85 = 16.9 sq. units 6. -1. A=. (x − 2x − 3)dx −3. 1 3. 32 3. −1. 3.

(83).  1  3 − ( − 9 − 9 + 9).

(84) . 1 3. ∴ required area = 3. 4 ln3. x. 0. 2. 2. 32 3.

(85). + 16 = 16 sq. units. 8. 2. 2x dx =. 1. ln3. 1 (4 ln 2. 9. 1 ln 2.  2). y = 2e −x+1 − 1. [2 x ]. 2 1. 2 ln 2. sq. units. x = 0, x = 3. 3. ( e x − 3) dx = ⎡⎣e x − 3x ⎤⎦ ln3. A=. |2e−x+1 − 1|dx = 3.32 sq. units 0. 0. ∴ area = e + 3ln3 − 12 + 3ln3 − 2 = e3 + 6ln3 − 14.

(86)  2 

(87) 1 2. y = 2x x = 1, x = 2 A=. 3. = 3 − 3 ln 3 − 1 = − (3 ln 3 − 2). 1 5 5. = 6.3 sq. units. 3. = e − 9 − 3 + 3 ln 3 = e3 + 3 ln 3 − 12. 5. (x−2 + 1) dx = ⎡⎢ −1 + x ⎤⎥ 1 ⎣x ⎦1 2. 16 3. ( e x − 3) dx = ⎡⎣e x − 3x ⎤⎦. 3. sq. units. 2. 3. ln3. 16 3. 1 x = 1, x = 5. 1. y. A=. ª x3 º 2 « 3  x  3x » ¬ ¼ 1. −1. 1 3 . 2 (0  4 2 ) 3. 5. (x2 − 2x − 3) dx. 7. sq. units. 1 3. 4. 3 ª 2 º  (4  x ) 2 «¬ 3 »¼ 0. (4 − x) dx . 1. 1 3. x=4. 1 2. 0. 1. 3. x = 0,. 4. A=. ⎡ 3 ⎤ = ⎢ x − x 2 − 3x ⎥ 3 ⎣ ⎦ −3. =. 4x. y=. 2. 10. 1 x2. y. A=. 2. x = −1, x = 2. 1 x +2 −1. 2. dx = ⎡⎣In| x + 2|⎤⎦ −1. = ln4 − ln1 = ln4 = 2ln2 sq. units. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 7. 4.

(88) WORKED SOLUTIONS 11. 2 3  4x. y 3. 2 dx 3 − 4x. 1. −. =. x = 1, x = 3. 1 2. =. 3. ⎡⎣In|3  4 x |⎤⎦. 2 −4. −. (ln9 − ln1) =. 1 2. y= 4−x. 3. y =4−x. 1. x = 4 − y2 ⎡ (4 − y2) dy = ⎢ 4 y − 0 ⎣ 2. A=. ln9 = −ln3. ∴ area = ln3 sq. units 12. 8 8. y = −x3 + 6x2 + x − 30 x-intercepts: −2, 3, 5 (−x3 + 6x2 + x − 30)dx. 4. 3.

(89).  54  9  90  4  16  2  60

(90) 2. x2 = 4 − y. 5. ⎡ ⎤ (− x3 + 6x2 + x − 30)dx = ⎢ − x + 2 x 3 + x − 30 x ⎥ 4 2 3 ⎣ ⎦3 4. 625 4.  250 . 2. 1. x = (4 − y ) 2 4.

(91). 25 2. A=2.  150  51.75

(92). 3. 5. ­x 0 d x d1 ® ¯2  x 1 d x d  2. Area =. x2dx +. A=. 1. y.

(93).  (4  2)  2  1. 2. °­ x ® 2 °¯ x. 5 6. sq. units. 3. 2. y = 1,. y 1 A =. y = 10 1 2. ( y  1) dy 1. 2 3 10 2. ª2 º «¬ 3 ( y  1) »¼ 1. y = 0, y = 4. 2 (9) 3. 3 2. −1 2. 3 2 ⎡ ⎤ = ⎢2x − x + x ⎥ 3 2 ⎣ ⎦ −1. 4   2

(94)  2  

(95). x=y. 8 3. 4. ⎡ 3⎤ y2 dy = ⎢ y ⎥ = 64 sq. units 0 ⎣ 3 ⎦0 3. (2 − x2 + x) dx. Area =. 2 4. y=–x. 2 − x2 = −x x2 − x − 2 = 0 (x − 2) (x + 1) = 0 x = 2 or − 1. = 18 sq. units. A=. x. –2. 3. 10. y= x. 2. · dy = ª 4 y  1 º 2 ¸ «¬ »1 y¼ y ¹ 2 1. y = 2 – x2. O. Exercise 7I. 2. 2. 2. = 3 sq. units. x. 1. y. y. 1. 81. y = x2 + 1. §4  ¨ ©. 1 1. x=4−. 2. Exercise 7J. ⎡ 3⎤ ⎡ 3⎤ = ⎢2 x 2 ⎥ + ⎢x ⎥ ⎣ 3 ⎦ 0 ⎣ 3 ⎦1. 1. y. y=2. 2. 2. 0. 2 3. 1. 1 2. = 4 1 sq. units. x dx. x dx +. Area =. y=. sq.units. 1 2. 2. 1 2. 4 3. 3 ª º 2 « 2 (4  y ) 2 » 3 ¬ ¼3. 8 

(96)  (2  2). 0 d x d1 1d x d  1. 1 2. 2. 2 ⎤ ⎡ ⎤ ⎡ = ⎢ x ⎥ + ⎢2x − x ⎥ 3 2 ⎣ ⎦0 ⎣ ⎦1. 14. 1 x 4. 2. (2 − x)dx. 1. 3. (4 − y ) dy. −x+4=. 2. 0. 1 3. y=. 4. 1 2. 4 (0  1) 3. = − 43.75 + 51.75 = 8 ∴ area = 93.75 + 8 = 101.75 sq. units. 1. x. O. 5. y. y=4. 4. = − 51.75 − 42 = − 93.75. 13. 2. ⎤ ⎥ ⎦0. y. 3. 2 ⎡ −x 4 ⎤ + 2 x 3 + x − 30 x ⎥ =⎢ 4 2 ⎣ ⎦ −2. 3. y 3. sq.units. y = 4 − x2 y = 3,. −2. 81 4. 16 3. 3. 3. y = 0, y = 2. 2. =. 9 2. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 1 3. 1 2. sq. units. Worked solutions: Chapter 7. 5.

(97) WORKED SOLUTIONS 2. 4. y. A=. (16 − x2 − (x2 − 4x)) dx −2 4. y = x3. y = x2. (16 − 2x2 + 4x) dx. = −2. 4. O –1. ª16 x  2 x 3  2 x 2 º «¬ »¼ 2 3. x. 1. 64 . x3 = x2 x2 (x − 1) = 0 x = 0 or 1. 4. 3.

(98). 4. y. 6. 1. ⎡ ⎤ (x2 − x3)dx = ⎢ x − x ⎥ 3 4 0 ⎣ ⎦0 1  1 1 sq. units 3. 3.  32  32  16  8. = 72 sq. units. 1. A=.

(99) . 128 3. y = 2x2. 12 y. 3. y = x4 – 2x2. 4. y=2–x. O. –2. y = 4 – x2. x. 2. x4 − 2x2 = 2x2 x4 − 4x2 = 0 O. –2. x2 (x2 − 4) = 0. x. 2. x2 (x − 2) (x + 2) = 0. –2. x = 0, ± 2. 4 − x2 = 2 − x x2 − x − 2 = 0 (x − 2) (x + 1) = 0 x = −1 or 2. 2. 9 2. y = –x. −1. (2 – x2 + x)dx −1. sq. units. 2 3. −1 1. 

(100) 1 2. y. 5 16 y = 16 –. 1 5. 5. ). y = x2– 4x. 1 2. −2 1 2. (−10x3 − 25x2 − 5x + 10)dx −1 −1 3 2 ⎤ 25 x 5x + + − 10 x ⎥ 3 2 ⎦ −2 +. ⎡ 4 = ⎢ 5x ⎣ 2. 1. 3 2 ⎡ 4 ⎤2 + ⎢ −5x − 25x − 5x + 10 x ⎥ 3 2 ⎣ 2 ⎦ −1. x2. –4 –2 O –5. 4. 16 − x = x − 4x 2x2 − 4x − 16 = 0 x2 − 2x − 8 = 0 (x − 4) (x + 2) = 0 x = 4 or − 2 2. + 32. (10x3 + 25x2 + 5x − 10)dx. Area =. 2 2 ⎡ 5 ⎤ Area = 2 ( x 3  x )dx = 2 ⎢ 3 x 3 − x ⎥ 5 2 0 ⎣ ⎦0. 3 5. −32 3. 2x3 + 5x2 + x − 2 = 8 − 4x − 20x2 − 8x3. x = − 2, −1,. 1. 2. 5. 2x3 + 5x2 + x − 2 = 0. x. 1. )(. − 32 −. 15. (1, 1). –1 O –1. 32 3. 10x3 + 25x2 + 5x − 10 = 0 y=x. 1. (. = 128 sq. units. (see qn. 1) 7. y=x. 2. 5 ⎡ 3 ⎤ = ⎢ 4x − x ⎥ = 3 5 ⎣ ⎦ −2. 2. y. 4. −2 2. (4 − x2 − (2 − x)) dx =. =. (4x 2 – x 4)dx. −2. 2. Area =. 2. (2x2 − (x4 − 2x2)) dx =. A=. x. 5 2. 2. + 20 3.

(101)  5

(102) − (.  25  5  10 − 40  200  10  20 3. . 5 32. 2.  25  5 24. 8.  10  305  20 3. 96. 3. 3. −. 5 2.

(103). + 25 − 5 − 10 3. 2. ). 1265 96. = 13.2 sq. units (3 sf ). © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 7. 6.

(104) WORKED SOLUTIONS 8. 1 1 x. x4 − 4. 1. (x > 0). 0. (x4 − 4) (1 + x) = 1. = 2 [ −e −x ]0 = 2 (−e −1 + 1) = 2 1 − 1 or 1.26 sq. units 1. ( ). x5 + x4 − 4x − 5 = 0 x = 1.449 1.449. A= 0. 1 1 x.

(105).  x 4  4 dx = 5.41 sq. units. e. y. 13. y=x. y. 9. O. y = √x. 1. A= O. 0.4755. ( x − e1−x + 1) dx = 7.00 sq. units. y dy =. = 1 2. y dy. a. 3. 1. a. 4. ª 2 32 º «¬ 3 y »¼ 0. 3. 1. 1 x. dx. 3 5 3 5. + ln3 sq. units. Exercise 7K. 0. ª 2 32 º «¬ 3 y »¼ a. 0. = (1 − 0) + ln3 − ln1. y = x2 x = y a. 3. 1. 0.4755. 1 2. 1 2 3. 3 ⎡ 5⎤ = ⎢ 3 x 3 ⎥ + [ ln| x |]1 5 ⎣ ⎦0. 4. A=. x. 3. x dx +. x x=4. 4. 2 3. 1 y= x. y = e1–x – 1. 10. e −x dx. Area = 2. v(t) = t (t − 4) v(t). 3. 42 − a2 = a2 3. 2a 2 = 8 3. a2 = 4 2. O. a = 43. t. 4. y. 11. y = x2 4. distance = | O. –2. x. 1 y=2–x. 4. ⎡ 3 ⎤ = ⎢ t − 2t 2 ⎥ ⎣3 ⎦0. x2 = 2 − x. =. x2 + x − 2 = 0 (x + 2) (x − 1) = 0. 2. x = −2 or 1 x2 dx +. = 32 m 3. v(t) = 5 + 4t − t2 = (1 + t) (5 − t). (2 − x) dx. 1. 12. −32 3. 1 2. 2 ⎡ 3⎤ ⎡ ⎤ A = ⎢ x ⎥ + ⎢2 x − x ⎥ = 1 + (4 − 2) − 2 − 12 2 ⎣ 3 ⎦0 ⎣ ⎦1 3. =. − 32 =. 2. 0. 5 6. 64 3. v(t). 1. A=. 0. (t2 − 4t) dt|. (. ) –1. O. 5. t. sq. units 1. y y = e–x. a. y = ex. (5 + 4t − t2)dt. distance = 0. 1. 3 ⎡ ⎤ = ⎢5t + 2t 2 − t ⎥ 3 ⎣ ⎦0. –1 O. 1. x. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. = 5 + 2 − 1 = 20 m 3. 3. Worked solutions: Chapter 7. 7.

(106) WORKED SOLUTIONS 5. b. 4. (5 + 4t − t2) dt. distance =. 5.

(107).

(108)

(109). 6. 3 ⎡ t ⎤ 2 ⎢5t + 2t − 3 ⎥ ⎣ ⎦5. 3. 5. = 25  50  125  20 + (30 + 72 − 72) 3. (. − 25 + 50 − 125 80 3. 3. 3. 10 3. . v=π 3S 7. = 30 m. 6. a(t) = 1 − e –2t 0 ≤ t ≤ 3 v (t) = t + v(0) = 0 v (t) = t +. 1 −2t e +c 2 1 ∴0= 2 + 1 –2t e − 1 2 2. (t +. 3. distance = 0. 1 2. 2. ). 7. (3 3  1) = 16.1 cu. units 36  x 2 y 2 =. 2. x (36 − x 2 ) 144. =. 2. x 4. −. 4. x 144. 6. Exercise 7M. 3. 1. x 2.

(110). 5 2. 3x 4. 117S 4. 2. dx cu. units. y. 2. 0. y=. 2 § · v = π ¨ x 2  x ¸ dx = π 4 2© ¹ 5 3 ª º S « x » S 125  2 4 ¬ 4 ¼2. 2. (10 + 5e −0.5t ) dt. y=x. 5. a(t) = −2.5e −0.5t < 0 ∴ always negative distance =. y dy. = 7.2π cu. units. = ª« t  1 e 2t  1 t º» = 3.25 m 2 ¬2 4 ¼0 −0.5t 4 v(t) = 10 + 5 e b. 3. 5 ⎛ x2 x4 ⎞ ⎡ 3 ⎤ dx = p ⎢ x − x ⎥ v=π ⎜ − ⎟ 4 144 12 720 0⎝ ⎠ ⎣ ⎦0 = π (18 − 10.8). − 1 dt. 2. a. x2 = y 3 ª 7º S «3 y3 » ¬ 7 ¼1. 4 3. 1. x 12. y. 4. x = y3. 6. c ∴c=−. 1 −2 t e 2. 2. y = x2 3. 3. ). 2. 3 (2x − x2) dx = p ⎡ x 2 − x ⎤ ⎢⎣ 1 3 ⎥ ⎦1 8 1 º 2S ª S « 4   1 » cu. units 3 3 ¼ 3 ¬. (5 + 4t − t2) dt|. 3 ⎡ ⎤ = ⎢5t + 2t 2 − t ⎥ + 3 ⎣ ⎦1. y2 = 2x − x2. v=π. 6. 5. 2x  x 2 2. 1. +|. y. = 26.3 m. Exercise 7L 1. O. y = (x − 1) − 1 = x − 2x 2. 1. v=π. 0. 1. (x2 − 2x)2 dx = π. (x4 − 4x3 + 4x2) dx 0. –4. 1. ⎡ ⎤ = p ⎢ x − x 4 + 4x ⎥ 5 3 ⎣ ⎦0 5. = 2. 8 S 15. 3. x − 4 = x2 − 4x x2 − 5x + 4 = 0. cu. units or 1.68 cu. units. (x − 1)(x − 4) = 0 x = 1 or 4. x. y=1+ 2. v=π. (1 + 0. 4. x )2 dx = π 2 (1 + 2 x + x) dx. (. 3. y. ) (. 3. ). (3 + 2 2 ) cu. units or 24.4 cu. units 2. x 2. v=π. 2y dy 0. 2. 1 4. (x4 − 8x3 + 15 x 2 + 8x − 16) dx 1 4. ª º S « x  2 x 4  5x 3  4 x 2  16 x » ¬5 ¼1 5. ¬. S ª¬ y 2 º¼ 0 = 4π cu. units. (x4 − 8x3 + 16x2 − x2 + 8x − 16) dx. =π. S ª«. x2 = 2y 2. ((x2 − 4x)2 − (x − 4)2)dx 1. =π. = p 2 + 4 (2 2 ) + 2 = p 4 + 4 (2 2 ) 3. v=π. 4. 2. 3 2 ⎡ ⎤ = p ⎢x + 4 x 2 + x ⎥ 3 2 ⎦0 ⎣. 4S 3. 4 x. 1. 2. 108S 5. 1024 5.

(111) .  512  320  64  64 . 1 5.

(112).  2  5  4  16 º» ¼. cu. units. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 7. 8.

(113) WORKED SOLUTIONS y. 3 2. O. 4 5. y. 2 5. 2a  b. c. 24 5.  8  16. 2. 5. 5. x 2  32  24 5x. 5. y. 2. x. 2. y=x. 32 5. b. a. y = x2. y2 = 2x. y = √x. x2 = 2x. x(x − 2) = 0. O. x = 0 or 2 y = 0 or 2 ⎛ 2 ⎛ y 2 ⎞2 ⎞ v = π ⎜ y − ⎜ ⎟ ⎟ dy ⎝ 2⎠ ⎠ 0⎝. x. 1. 2. 1. Area = 0. 4 ⎛ ⎞ v = π ⎜ y 2 − y ⎟ dy 16 ⎠ 0⎝. 2. (. 2. 5 ⎡ 3 ⎤ v =S ⎢y − y ⎥ =S ⎣ 3 20 ⎦ 0. 8 3. 1. ( x 2  x 2 )dx 1. ). 3 ⎡ 3 ⎤ = ⎢ 2 x 2 − x ⎥ = 2 − 1 = 1 sq. units 3 3 ⎣ ⎦0 3 3 3. − 32 = 16 S cu. units 20. 15. y. 3. y. 4. y = 2x – 1 O. 1. 1. y = x2. O –1. 0.7459. x. 3.1149. x. 1. ⎛ 2 2 ⎜ (1 + 3x − x ) − ⎝ 0.7459 3.1149. y. y = 2x − 1 y 1 2. x. x = y2. x 2 = ( y + 1). 2. 1. −1. ( y + 1) 4. 1. 2. dy − π. 0. 1. a. y4 dy. S. ✗.

(114) S

(115). 7S 15. 1 5. 1. = ax +. b x. 2. 2 . cu. units. 4. b. when x = −2, ∴ b = 8a y=. ax 2. 2. dy dx. b 4. 1 24.

(116) . 4. (x + x−2 − x−4) dx 1 2. x. =0. 1 2. 1 1. 4. 3. 3.

(117). 41 24 1. (5x 2  4 x 2 )dx. dx = 0. 1 ª 52 º 2 «¬2 x  8x »¼ 1. 5. 1. (2 (4) 2  8(4) 2 ) − (2 − 8). = (64 − 16) − ( − 6) = 54. (1). 2. b x. − +c 0 = 2a +. (−1, 2). 2=. (2) − (3) − 2 3a 2. 1 dx x 3 1. c. (−2, 0). ∴ −2. ∴ − 2a +. . 4. ( −2, 0) = stationary point. =0. 1 2. 5x − 4. 1. (−1, 2). 2. 2. Review exercise dy dx. 2. −3 ⎡ 2 ⎤ ⎡ 2 ⎤ = ⎢ x − x −1 + x ⎥ = ⎢ x − 1 + 1 3 ⎥ 3 ⎣2 ⎦1 ⎣ 2 x 3 x ⎦1. 1. 5. 8 12. ⎛ 1 1 ⎞ ⎜ x + 2 − 4 ⎟ dx = x x ⎠ 1⎝ 2. 4. ⎡ ⎤ ⎡ ⎤ = p ⎢ ( y + 1) ⎥ −p ⎢ y ⎥ 12 ⎣ ⎦ −1 ⎣ 5 ⎦0 3. ( ) ⎞⎟⎠ dx 2 x. = 41.3 cu. units. x2 = y4. 4. v=π. x. v=π. 1 2. a 2. b 2. +c. (2). +b+c. (3). 3a 2. b = 8a. b. 2.  4a ⇒ − 4 = 3a − 8a ⇒ −4 = −5a. e. d 1. = =. 1 1  4x 1 4 1  4 . = [ ln| x  3|]12 = ln1− ln2 = −ln2. dx =. . 1 4. [ln|1 − 4x|]1e. (ln |1 − 4e| − ln3) (ln(4e − 1) − ln3) = − 1 ln. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. 4. ( 4e3−1). Worked solutions: Chapter 7. 9.

(118) WORKED SOLUTIONS. Review exercise 1. (x − 4 + ). 3. 3. 2. v(t) = t3 − 4t = t(t2 − 4) = t(t − 2) (t + 2). 2. x. 1. ⎡ 3 ⎤ dx = ⎢ x − 4 x − 3 ⎥ x 3 ⎣ ⎦1. v(t). = ( 3  4 3  3) . O. (. 1 3. ). 3. 4. 4 2. ⎡ ⎤ (t3 − 4t)dt = ⎢ t + 2t 2 ⎥ 4 0 ⎣ ⎦0 2. 4. = 4 − 8 = −4. 3x + 6. a. x. b.

(119)

(120). c. 1 2  3x. d. 2 1 4 x. 1 x. x. 6. dx = 3x2 +. 2. x. 3. 81 4.

(121). x. dx =. 1 3. 4. dx = x3 −. 6 x. +c 3. x 3. + 1 +c x. ln |2 − 3x| + c 1. dx = 2(1  4 x ) dx =. 2 (1 − 4 x ) 2 1 −4 2. +c. = − 1 − 4x + c. 2e3x  3 e x

(122) dx =. e. 41 m 4. v(t) = t3 − 3t2 + 2. =. v(t) (0, 2). 5. −2 −3 x e 3. x. 2e. + 3e 3 + c =. 3 x. x.

(123).  e 3 dx. −2 −3 x e 3. + 33 ex + c. x 2 2 x  1 2 x  3x 2. 2x2 − x. t. 1. 2. 3. 1 2. 25 4.  18  (4). ∴ total distance = 4 + 25 =. O. 3. ⎛ 2 1⎞ ⎜ x − 2 ⎟ dx = x ⎠ ⎝. x  1 dx =. 3. ⎡ 4 ⎤ (t − 4t)dt = ⎢ t − 2t 2 ⎥ 2 ⎣4 ⎦2 3. 2.

(124).  4  3 = −4 3 + 20. ∴ total area = 2 4 3 − 20 = 8 3 − 40 sq. units. t. 2. 3. 4x (2, 2). 4x − 2. 1. ⎡ ⎤ (t3 − 3t2 + 2) dt = ⎢ t − t 3 + 2t ⎥ 4 ⎣ ⎦0 0 1. 4. 1 4. =. 2 ∴. 5 4. −1+2=. 2. 4. (4  8  4) .

(125) 5 4. = x +2+ 2. 2. 2 x + 3x 2x − 1 1. 2. ⎡ ⎤ (t3 − 3t2 + 2) dt = ⎢ t − t 3 + 2t ⎥ 4 ⎣ ⎦1 1 2. 2. 2 x + 3x 2x − 1. dx = 1. 3. 4. x  2 

(126) dx 2 2x  1. 2. ⎡ 2 ⎤ = ⎢ x + 2 x + ln 2 x − 1 ⎥ ⎣2 ⎦1. 5 4. 1. ∴ total distance = 5 + 5 = 5 m 4. 2 2x − 1. = (2 + 4 + ln3) − ( 2 + 2 + ln1). 2. =. y. 7 2. + ln3. y. 6. y=5 –√3 –1 O. y=. x2 − 4 +. x −4+ 2. 3 x. 2. 1 √3. x. 3 x. 2. x. –1 O. =0. x − 4x + 3 = 0 4. 2. (x2 − 1)(x2 − 3) = 0 x = ± 1, ± 3. y=. 1 x +1. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. ∴x+1=. 1 y. Worked solutions: Chapter 7. 10.

(127) WORKED SOLUTIONS 1 y. x= 5 1. 9. −1. 1 y. 5. 2. 1. 1. = ln5 − 4. 1. S. (32  1). A=. 0. 1 2. (x + 1) dx −1. 2 3. 3 ª2 2º  ( x 1) «¬ 3 »¼ 1. sq. units. ln 3. S ln 3. 3−2x dx 0. 1. ª¬32 x º¼ 0. x 0. 0. 1. (3−x)2 dx = 2π. 2S 2 ln 3. . –1 O. x. 1 1. y. =. –1 O. v = 2π. ∴ area = 4 − ln5 sq. units 7. y = 3x. 3.  1

(128) dy = >ln y  y @. = (ln5 − 5) − (ln1 − 1). 8. y. y = 3–x.

(129). 8S 9 ln 3. 8 9. cu. units. y. O. a. x. a. (3ax − 3x2 ) dx = 4 0 a. ⎡ 3ax 2 3⎤ ⎢ 2 −x ⎥ =4 ⎣ ⎦0 3a 2. 3. − a3 = 4. 3. a 2. 4. a3 = 8. ∴a=2. © Oxford University Press 2012: this may be reproduced for class use solely for the purchaser’s institute. Worked solutions: Chapter 7. 11.

(130) WORKED SOLUTIONS. 9. The power of calculus. Answers. 2. Skills check. a. y = sin (x 5 − 3). dy dx. = 5x 4 cos( x 5 − 3). b. y = cos (e x). dy dx. = − e x sin(e x ). c. y = csc (x 2 + 11). sin q 2. 1−. 1 − tan T 2. 1. a. =. 1 + tan T 2. 1+. tan 2T. =. sin q 2. ∴ cos 2T = b. cos 2 q. cos 2 T − sin 2 T. = cos2θ − sin2θ = cos2θ. cos 2 T + sin 2 T. cos 2 q. d. 2. 1 − tan T 2. tan T  tan T 1  tan T tan T. tan(T  T ). 2 tan T 2. 1  tan T. ∴ tan 2T = 2. y = tan (ln(2x + 1)),. f. y = sec dy dx. 2. 1 − tan T. a. f (x) = 3e 2x − 2x 2,. b. g (x) = (x + 1) ln (x 2 + 2x + 1). f (x) = 6e 2x − 4x. = (x + 1) ln (x + 1) 2 = 2(x + 1) ln (x + 1) 2( x  1) ( x  1). g(x). ex x 1. + 2 ln (x + 1) = 2 + 2 ln (x + 1) ( x  1)2 xe x  e 2. 2. c. h(x ). hc( x ). ( x  1) e. x2. g. x2. (2 x 2  2 x  1). a. Exercise 9A b. a. y = cot x. dy dx. b. y = csc x. dy dx. y = sin 3x. dy dx. =3 cos 3x. d. y = tan (5x − 3). dy dx. = 5 sec (5x − 3). e. y = cos (8 − 3x). dy dx. = 3 sin(8 − 3x ). f. y = csc. dy dx. = − 1 csc. g. y = cot. ( ). (. 7 − 2x 13. ). dy dx.  csc 2 x. c. 2. =. ex + 1). = 1 e x (e x + 1) 2 sec ( e x + 1 ) tan ( e x + 1 ) −1. 2. x. ) ( e + 1) 2( e + 1) sin ( e + 1 ) sec ( e + 1 ) 2( e + 1). =. e sec. =. e. (. x. x. e + 1 tan x. x. x. x. 2. x. = −sec 2 x sin (tan x) cos (cos(tan x)). (. 2 csc 2 7 − 2 x 13 13. cot. ). x −3 4. = (3 − 2x) sin 2x + 2 (3x − x 2) cos 2x. = e 1−x sec2 x − e 1−x tan x = e 1−x (sec2 x − tan x). d. y. sinx dy , dx x. e. y. 2 x  3 dy , sin 2 x dx. f. ( ) ( ) x −3 4. = 2cos x − (2x − 1) sin x. y = e 1−x tan x dy dx. = − csc x cot x. 4. + 1)). y = (3x − x 2) sin 2x dy dx. Exercise 9B. x −3 4. 2 sec 2 ( ln(2 x 2x + 1. y = (2x − 1) cos x dy dx. Proofs using differentiation from first principles. c. =. Exercise 9C 1. 1. (. dy dx. y = sin (cos (tan x)) dy dx. 2. ( x  1)2. = −(12x 2 − 4x + 7) csc 2(4x 3 − 2x 2 + 7x + 17). e. 2 tan T.  2 x csc( x 2  11)cot( x 2  11). y = cot (4x 3 − 2x 2 + 7x + 17) dy dx. 1 + tan T. dy dx. x cos x - sin x. =. x2. =. 2 sin2 x − 2(2 x + 3) cos2 x 2. sin 2x. tan x 2 x. y dy dx. −1 ⎛ ⎞ = ⎜ 2 − x sec 2 x + 1 (2 − x ) 2 tan x × 1 ⎟ (2 − x ) ⎠ 2 ⎝. dy dx. =. 2. 2(2 − x ) sec x + tan x. © Oxf ord University Press 2012: this may be reproduced f or class use solely f or the purchaser’s institute. 3. 2( 2 − x ) 2. Worked solutions: Chapter 9. 1.

(131) WORKED SOLUTIONS 2. a. b. x. dy dx. 2cos S = 1. Exercise 9D. 6. 1. 3. x. 1 x. b. f (x) = arcsin 3x, f ' ( x ). 1  (2 x  1). 2. 2. 3S 2. 2. b. = 2x tan x + x 2 sec 2 x. ( ) 3S 4. 16. dx. dy dx. 2 tan 2T 2. 1 − tan T. tan 3U 2. c. dy dD. =. 1− x. 2. − arccos x x. 2. d 2. dy dx. 3U U cos 2 2 U 3U 2 cos cos 2 2. dy dx. 3 sec 2 3U 2 2. e. sin M  cos M 2. 2 sin M − 1 sin M − cos M. =. 2. sin M − cos M. (sin M  cos M )(sin M  cos M ) sin M  cos M dy dM. 1  x arccos x x. 2. 1 x. 2. 2 arctan x . 2x  1 1 x. 2. 1  x 2 arcsin x 1 x. 2. 1 x. 2. 1. 1.  2 x 1 (1  x 2 ) 2 arcsin x 2. x arcsin x 1 x. 2. y = (4x 2 + 1) arctan 2x 2. 2(4 x  1). dy dx. 8x arctan 2 x . dy dx. 8x arctan 2 x  2. 2. sin M − cos M. y = sin φ + cos φ. y. 4 sec 4T. 2 sin. dy dx. 2. x . y = (2x + 1) arctan x dy dx. (sin M sin 2M  cos M ) sec M. =. arc cos x x. 0. sec E tan E dy dT. = tan 4T. dy dx. = e x sec x tan x + e x sec x = sec 0 tan 0 + sec 0 = 1. dy dE. sec E. sin U  sin 2 U cos U  cos 2 U. y.  2arcsin x 2. 1 x. 8. tan E sin E. y. 2x. y dy. 2. y = sin2 α + cos2 α = 1. y. y = 2x arcsin x. −x. 4. a. y=. 2. 2x  2x  1. 2. + 9S sec 2 3S. y = e x sec x x = 0. y. a. dy dx. 3x 4. x. y = x tan x. 1. f ' (x ). 2. g. e. 2. f (x) = arctan (2x + 1), f ' ( x ) 1  4x  4x  1. S. x. 2. 2. 2. d. 2. 2. = −3 cos x + 3x sin x.  3S  9S. c. 3. 2. 2. b. 2. 2. = sin x + (x − 2) cos x. = 3S tan. 3. 1 x. 1  x. c. 2. dy dx. 1. . 1. ? f c( x ) . x=0. 3cos S  3 S sin S f. 1 1  cos y. 2. 4. 1 siny. 2. 5S 4. x.  sec 2 5S. y = −3x cos x dy dx.  . = sin 0 + (−2) cos 0 = −2 e. dx dy.  sin y ∴. 3 2. 4. = −sec 2 x. y = arccos x ∴ x = cos y dx dy. 3sin 7S. = −3sin 3x. y = (x − 2) sin x dy dx. a. 7S 12. y = tan (−x) = −tan x dy dx. d. = 2cos 2x. y = cos 3x dy dx. c. S. y = sin 2x. cos M  sin M. 3. a b. 1  4x. 2. d dx. (arcsin x + arccos x). d dx. (arctan x + arctan (−x)). 1 1 x. © Oxf ord University Press 2012: this may be reproduced f or class use solely f or the purchaser’s institute. 1.  2. 1 x. 1 1 x. 2. . 0 2. 1 1 x. 2. Worked solutions: Chapter 9. 0. 2.

(132) WORKED SOLUTIONS c. ⎛ 2 arctan x − arcsin 2 x ⎞ ⎜ ⎟ 2 ⎝ x +1⎠. d dx. § 2 2  2 x (2 x ) ·  ¨ ( x  1)2 2 ¸ ( x  1) © ¹. 2 1+ x. 2. 2. 2. 1 4 x ( x 2 1)2. 2 1+ x. 4. a. x = siny 1 cos y dy. dy dx. tan 2y = 1 ⇒. dy dx. = cot 2 y. 2. x y. cosy = dy dx. dy dx. ?. (1 − siny). = 2x. dy dx. ?. dy dx. dy dx. 1 dy y dx. 2x e. sin y. cos y. dy dx. 1 y. =. c. d. P (0, 0). f (x) = 3sec 3x. f (0) = 3. 2. f (x) = sin (2x) − 1 y. sin.

(133) 1 2S 3. y. 3 2. 1. f'.

(134).  1 1 x  S. 3. x  S  3. 3 2. 1. , y

Cytaty

Powiązane dokumenty

The solution of Dirichlet problem for the region was obtained in the monograph [3], p.. First let us show that the integral I x{X) exists.. In this paragraph we

[r]

Find the points of intersection of the graph with both the x and the y-axis.. For what values of x is the

[r]

Let B be the point where the tangent to the graph of f at P intersects the x-axis.. Show that the length AB is independent of the choice of

Port A is defined to be the origin of a set of coordinate axes and port B is located at the point (70, 30), where distances are measured

Have the user (probably Jenny) enter thenumber of people at the party that will be eating pizza and output the number of slices each one gets.As you know the pizza might not

If f satisfies a compactness condition expressed in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of pseudo-solutions of this problem is a