• Nie Znaleziono Wyników

ACTA ARITHMETICA XCII.4 (2000)

N/A
N/A
Protected

Academic year: 2021

Share "ACTA ARITHMETICA XCII.4 (2000)"

Copied!
4
0
0

Pełen tekst

(1)

ACTA ARITHMETICA XCII.4 (2000)

A problem of Galambos on Engel expansions

by

Jun Wu (Wuhan)

1. Introduction. Given x in (0, 1], let x = [d

1

(x), d

2

(x), . . .] denote the Engel expansion of x, that is,

(1) x = 1

d

1

(x) + 1

d

1

(x)d

2

(x) + . . . + 1

d

1

(x)d

2

(x) . . . d

n

(x) + . . . ,

where {d

j

(x), j ≥ 1} is a sequence of positive integers satisfying d

1

(x) ≥ 2 and d

j+1

(x) ≥ d

j

(x) for j ≥ 1. (See [3].) In [3], J´anos Galambos proved that for almost all x ∈ (0, 1],

(2) lim

n→∞

d

1/nn

(x) = e.

He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture:

Theorem. dim

H

{x ∈ (0, 1] : (2) fails} = 1.

We use L

1

to denote the one-dimensional Lebesgue measure on (0, 1] and dim

H

to denote the Hausdorff dimension.

2. Proof of Theorem. The aim of this section is to prove the main result of this paper.

By Egoroff’s Theorem, there exists a Borel set A ⊂ (0, 1] with L

1

(A)

≥ 1/2 such that {d

1/nn

(x), n ≥ 1} converges to e uniformly on A. In partic- ular, there exists a positive number N such that

(3) 2 ≤ d

1/nn

(x) ≤ 3 for all n ≥ N and x ∈ A.

Choose a positive integer M satisfying M ≥ N . For any x = [d

1

, d

2

, . . .] = [d

1

, d

2

, . . . , d

M

, d

M +1

, d

M +2

, . . . , d

kM +1

, d

kM +2

, . . . , d

(k+1)M

, . . .], we cons- truct a new point x ∈ (0, 1] as follows:

x = [d

1

, d

2

, . . .],

2000 Mathematics Subject Classification: Primary 11K55; Secondary 28A80.

Project supported by National Natural Science Foundation of China.

[383]

(2)

384 J. Wu

where d

k(M +1)+l

= d

kM +l

for all k ≥ 0 and 0 ≤ l ≤ M . That is, (4) x = [d

1

, d

2

, . . . , d

M

, d

M

, d

M +1

, d

M +2

, . . . ,

d

kM +1

, d

kM +2

, . . . , d

(k+1)M

, d

(k+1)M

, . . .].

Lemma 1. {x : x ∈ A} ⊂ {x ∈ (0, 1] : (2) fails}.

P r o o f. Note that for any k ≥ 1, d

k(M +1)

(x) = d

kM

(x). We have (5) lim

k→∞

d

1/(k(M +1))

k(M +1)

(x) = lim

k→∞

(d

1/(kM )kM

(x))

kM/(k(M +1))

= e

M/(M +1)

, and this proves the assertion.

For any x = [d

1

(x), d

2

(x), . . .] ∈ (0, 1], y = [d

1

(y), d

2

(y), . . .] ∈ (0, 1], define

%(x, y) = inf{j : d

j

(x) 6= d

j

(y)} (inf ∅ = ∞).

For any x, y ∈ (0, 1], x 6= y, suppose %(x, y) = k. Without loss of gen- erality, assume d

k

(x) < d

k

(y). Then x > y and x ∈ (B, C], y ∈ (D, E]

with

B = 1

d

1

(x) + 1

d

1

(x)d

2

(x) + . . . + 1

d

1

(x)d

2

(x) . . . d

k−1

(x)d

k

(x)

+ 1

d

1

(x)d

2

(x) . . . d

k

(x)d

k+1

(x) ,

C = 1

d

1

(x) + 1

d

1

(x)d

2

(x) + . . . + 1

d

1

(x)d

2

(x) . . . d

k−1

(x)(d

k

(x) − 1) ,

D = 1

d

1

(y) + 1

d

1

(y)d

2

(y) + . . . + 1

d

1

(y)d

2

(y) . . . d

k−1

(y)d

k

(y) ,

E = 1

d

1

(y) + 1

d

1

(y)d

2

(y) + . . . + 1

d

1

(y)d

2

(y) . . . d

k−1

(y)d

k

(y)

+ 1

d

1

(y)d

2

(y) . . . d

k

(y)(d

k+1

(y) − 1) , hence

(6) 1

d

1

(x)d

2

(x) . . . d

k

(x)d

k+1

(x) ≤ |x − y| ≤ 1

d

1

(x)d

2

(x) . . . d

k−1

(x) , where d

0

(x) ≡ 1.

Let

ε = 6 log 3

M log 2 , c = 1 3

4M (M +1)

. Lemma 2. For any x, y ∈ A,

(7) |x − y| ≥ c|x − y|

1+2ε

.

P r o o f. Without loss of generality, assume x > y. Suppose %(x, y) = k.

(3)

Galambos on Engel expansions 385

(a) If k ≤ 2M , then by (3), (4) and (6), we have

|x−y| ≥ 1

d

1

(x)d

2

(x) . . . d

k

(x)d

k+1

(x)d

k+2

(x)

 1 3

2M



2M +2

≥ c|x−y|

1+2ε

. (b) If pM < k ≤ (p + 1)M for some p ≥ 2, then by (4) and (6), we have (8) |x − y| ≥

p−1

Y

j=0

 Y

M

l=1

1 d

jM +l

(x)

 1

d

jM +M

(x)



k+1

Y

j=pM +1

1 d

j

(x) . For 1 ≤ j ≤ p − 1, by (3), we have

(9) d

jM +M

(x) ≤ 3

jM +M

≤ 3

2jM

 Y

M

l=1

2

jM +l



ε

 Y

M

l=1

d

jM +l

(x)



ε

, thus

(10)

 Y

M

l=1

1 d

jM +l

(x)

 1

d

jM +M

(x)

 Y

M

l=1

1 d

jM +l

(x)



1+ε

, 1 ≤ j ≤ p − 1.

For j = 0, (11)

 Y

M

l=1

1 d

l

(x)

 1

d

M

(x) 1 3

M (M +1)

. On the other hand,

d

k

(x)d

k+1

(x) ≤ 3

2k+1

≤ 3

3k

≤ (2

M

2

M +1

. . . 2

k−1

)

ε

(12)

≤ (d

M

(x) . . . d

k−1

(x))

ε

, hence

(13) 1

d

k

(x)d

k+1

(x)

 1

d

1

(x)d

2

(x) . . . d

k−1

(x)



ε

. Combining (10), (11) and (13), we have

|x − y|

1

3

M (M +1)



p−1

Y

j=1

 Y

M

l=1

1 d

jM +l

(x)



1+ε



k−1

Y

j=pM +1

1 d

j

(x)

 1

d

k

(x) · 1 d

k+1

(x)

1

3

M (M +1)



k−1

Y

i=1

1 d

i

(x)



1+2ε

≥ c|x − y|

1+2ε

.

Proof of Theorem. Consider a map f : A → (0, 1] defined by f (x) = x.

Note that f : A → f (A) is bijective. Lemma 2 implies that the inverse map

of f is 1/(1 + 2ε)-H¨older. By Lemma 1 and [2], Proposition 2.3, we have

(4)

386 J. Wu

1 = dim

H

A = dim

H

[f

−1

(f (A))] ≤ (1 + 2ε) dim

H

f (A)

≤ (1 + 2ε) dim

H

{x ∈ (0, 1] : (2) fails}.

Hence

dim

H

{x ∈ (0, 1] : (2) fails} ≥ 1 1 +

12M

·

log 3log 2

. Since M > N is arbitrary, we have

dim

H

{x ∈ (0, 1] : (2) fails} = 1, and this completes the proof of Theorem.

References

[1] P. E r d ˝o s, A. R´en y i and P. S z ¨ u s z, On Engel’s and Sylvester’s series, Ann. Univ.

Sci. Budapest. E¨otv¨os Sect. Math. 1 (1958), 7–32.

[2] K. J. F a l c o n e r, Fractal Geometry: Mathematical Foundations and Applications, Wiley, 1990.

[3] J. G a l a m b o s, Representations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.

[4] —, The Hausdorff dimension of sets related to g-expansions, Acta Arith. 20 (1972), 385–392.

[5] —, The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, Quart. J. Math. Oxford Ser. (2) 21 (1970), 177–191.

Department of Mathematics and Center of Non-linear Science Wuhan University

430072, Wuhan

People’s Republic of China E-mail: wujunyu@public.wh.hb.cn

Received on 10.6.1999 (3617)

Cytaty

Powiązane dokumenty

Keywords: intersection graph, partial cube, median graph, expansion theorem, Cartesian product of graphs.. 2000 Mathematics Subject Classification:

However, there are several special situations where b m,j (n) can be readily determined, which often lead to explicit formulas for C m,j (X) and expressions for the

For general Dirichlet series satisfying a functional equation with multiple gamma factors, Redmond [16] proved a mean-square asymptotic formula for the error term of the

Z tymi trzema blo- kami zagadnień kursanci mogli się już zmierzyć w trak- cie zajęć, które odbyły się w okresie od stycznia do marca tego roku, i okazało się, że

Keywords: stretch number, distance hereditary graph, forbidden induced subgraph.. 2000 Mathematics Subject Classification:

Keywords and phrases: linear functional equation, iteration, mean, continuous solution, solution depending on an arbitrary function.. 2000 Mathematics Subject Classification:

Keywords: non-selfcentric, radially-maximal, critical, center, radius, planar graph.. 2000 Mathematics Subject

Keywords: Banach space, difference equation, fixed point, measure of noncompactness, asymptotic behaviour of solutions.. 2000 Mathematics Subject Classification: