• Nie Znaleziono Wyników

Conceived and designed the experiments: JH EK. Performed the experiments: JH WO. Ana-lyzed the data: JH. Contributed reagents/materials/analysis tools: JH EK. Wrote the paper: JH EK.

References

1. Bilej M, Procházková P,Šilerová M, Josková R. Earthworm immunity in Invertebrate immunity (eds.

Söderhäll K) 66–79 ( Uppsala, Sweden 2010).

2. Little TJ, Hultmark D, Read AF. Invertebrate immunity and the limits of mechanistic immunology. Nat Immunol. 2005; 6:651–4. PMID:15970937

3. Mills CD, Ley K, Buchmann K, Canton J. Sequential Immune Responses: The Weapons of Immunity. J Innate Immun.2015; 7:443–9. doi:10.1159/000380910PMID:25871013

4. Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, et al. Antioxidant responses of Anne-lids, Brassicaceae and Fabaceae to pollutants: a review. Ecotoxicol Environ Saf. 2015; 114:273–303.

doi:10.1016/j.ecoenv.2014.04.024PMID:24951273

5. Engelmann P, Palinkas L, Cooper EL, Németh P. Monoclonal antibodies identify four distinct annelid leukocyte markers. Dev Comp Immunol. 2005; 29:599–614. PMID:15784291

6. Adamowicz A. Morphology and ultrastructure of the earthworm Dendrobena veneta (Lumbricidae) celo-mocytes. Tissue and Cell 2005; 37:125–33. PMID:15748739

7. Cooper EL, Kauschke E, Cossarizza A. Digging for innate immunity since Darwin and Metchnikoff.

Bioessays. 2002; 24:319–33. PMID:11948618

8. Kurek A, Homa J, Kauschke E, Plytycz B. Characteristic of coelomocytes of the stubby earthworm, Allolobophora chlorotica(Sav.). Eur J Soil Biol. 2007; 43:1–6.

9. Engelmann P, Molnar L, Palinkas L, Cooper EL, Nemeth P. Earthworm leukocyte populations specifi-cally harbor lysosomal enzymes that may respond to bacterial challenge. Cell Tissue Res. 2004;

316:391–401. PMID:15138884

10. Kalaç Y, Kimiran A, Ulakoğlu G, Çotuk A. The role of opsonin in phagocytosis by coelomocytes of the earthworm Dendrobaena venata. J. Cell Mol. Biol. 2002; 1:7–14.

11. Popović M, Hrzenjak T, Grdisa M, Vuković S. Adhesins of immunoglobulin-like superfamily from earth-worm Eisenia foetida. Gen Pharmacol. 1998; 30:795–800. PMID:9559337

12. Fjøsne TF, Stenseth E B, Myromslien F, Rudi K. Gene expression of TLR homologues identified by genome-wide screening of the earthworm Dendrobaena veneta. Innate Immun. 2015; 21:161–6. doi:

10.1177/1753425914523056PMID:24574024

13. Škanta F, Roubalová R, Dvořák J, Procházková P, Bilej M. Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol. 2013; 41:694–702. doi:10.1016/j.dci.2013.08.009 PMID:23969138

14. Cook SR, Sperratore MM, Fuller-Espie SL. Nitric oxide production in celomocytes of the earthworm Eisenia hortensisfollowing bacterial challenge. Invert Surv J. 2015; 12:46–65.

15. Homa J, Zorska A, Wesolowski D, Chadzinska M. Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J Comp Physiol B. 2013;

183:313–2. doi:10.1007/s00360-012-0710-7PMID:23014884

16. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellu-lar traps kill bacteria. Science. 2004; 303:1532–5. PMID:15001782

17. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albi-cans. PLoS Pathog. 2009; 5(10):e1000639. doi:10.1371/journal.ppat.1000639PMID:19876394 18. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev

Immunol. 2013; 13:159–175. doi:10.1038/nri3399PMID:23435331

19. Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol. 2013; 3:1–10.

20. Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014; 79:1286–1296.

21. Nakashima K, Hagiwara T, Yamada M. Nuclear localization of peptidylarginine deiminase V and his-tone deimination in granulocytes. J Biol Chem. 2002; 277:49562–8. PMID:12393868

22. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010; 191:677–691. doi:10.1083/

jcb.201006052PMID:20974816

23. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immu-nol. 2012; 3:360. doi:10.3389/fimmu.2012.00360PMID:23264775

24. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walch M, et al. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins. J Immunol. 2014; 192:5390–7. doi:10.4049/jimmunol.1303296PMID:24771851

25. Neeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J Innate Immun. 2009; 1:194–201. doi:10.1159/000206974PMID:20375577

26. Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010; 8:445–454. doi:10.1016/

j.chom.2010.10.005PMID:21075355

27. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, et al. Catapult-like release of mitochon-drial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008; 14:949–953. doi:10.

1038/nm.1855PMID:18690244

28. Pijanowski L, Golbach L, Kolaczkowska E, Scheer M, Verburg-van Kemenade BM, Chadzinska M.

Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways.

Fish Shellfish Immunol. 2013; 34:1244–1252. doi:10.1016/j.fsi.2013.02.010PMID:23422817 29. Ng TH, Chang SH, Wu MH, Wang HC. Shrimp hemocytes release extracellular traps that kill bacteria.

Dev Comp Immunol. 2013; 41:644–651. doi:10.1016/j.dci.2013.06.014PMID:23817142

30. Ng TH, Wu MH, Chang SH, Aoki T, Wang HC. The DNA fibers of shrimp hemocyte extracellular traps are essential for the clearance of Escherichia coli. Dev Comp Immunol. 2015; 48:229–233. doi:10.

1016/j.dci.2014.10.011PMID:25450908

31. Koiwai K, Alenton RR, Kondo H, Hirono I. Extracellular trap formation in kuruma shrimp (Marsupenaeus japonicus) hemocytes is coupled with c-type lysozyme. Fish Shellfish Immunol. 2016; 52:206–209. doi:

10.1016/j.fsi.2016.03.039PMID:27012393

32. Poirier AC, Schmitt P, Rosa RD, Vanhove AS, Kieffer-Jaquinod S, Rubio TP, et al. Antimicrobial his-tones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas. J Biol Chem. 2014;

289:24821–31. doi:10.1074/jbc.M114.576546PMID:25037219

33. Robb CT, Dyrynda EA, Gray RD, Rossi AG, Smith VJ. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat Commun. 2014; 5:4627. doi:10.1038/ncomms5627 PMID:25115909

34. Zhang X, Zhuchenko O, Kuspa A, Soldati T. Social amoebae trap and kill bacteria by casting DNA nets.

Nat Commun. 2016; 7:10938. doi:10.1038/ncomms10938PMID:26927887

35. Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res. 2007; 635:105–117. PMID:

17257890

36. Zhao J, Xiao R, He J, Pan R, Fan R, Wu C, et al. In situ localization and substrate specificity of earth-worm protease-II and protease-III-1 from Eisenia fetida. Int J Biol Macromol. 2007; 40:67–75. PMID:

16814856

37. McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect

Immun.1999; 67:3248–3256. PMID:10377098

38. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Pro Nat Acad Sc USA. 2010; 107:15880–5.

39. Rochael NC, Guimarães-Costa AB, Nascimento MT, DeSouza-Vieira TS, Oliveira MP, Garcia E. C.

et al. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites. Sci Rep. 2015; 5:18302. doi:10.1038/srep18302PMID:

26673780

40. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;

185:7413–7425. doi:10.4049/jimmunol.1000675PMID:21098229

41. Homa J, Bzowska M, Klimek M, Plytycz B. Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from the earthworm, Dendrobaena veneta. Dev Comp Immunol. 2008; 32:9 14. PMID:17544121

42. Hirao A, Ehlers RU. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl Microbiol Biotechnol. 2009; 84:77–85. doi:10.1007/

s00253-009-1961-4PMID:19319521

43. Bakshi S, Choi H, Rangarajan N, Barns KJ, Bratton BP, Weisshaar JC. Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack. Appl Environ Micro-biol. 2014; 80:4977–86. doi:10.1128/AEM.00989-14PMID:24907320

44. Thakur S, Cattoni DI, Nöllmann M. The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent. Eur Biophys J. 2015; 44:337–48. doi:10.

1007/s00249-015-1027-8PMID:26024786

45. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007; 176: 231–41. PMID:17210947

46. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016; 12:1 222. doi:10.1080/15548627.2015.1100356PMID:26799652

47. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelárová H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Bio-chem. 1997; 243:240–246. PMID:9030745

48. Golbach LA, Scheer MH, Cuppen JJ, Savelkoul H, Verburg-van Kemenade BM. Low-Frequency Elec-tromagnetic Field Exposure Enhances Extracellular Trap Formation by Human Neutrophils through the NADPH Pathway. J Innate Immun. 2015; 7:459–465. doi:10.1159/000380764PMID:25871408 49. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, et al. Neutrophil

extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;

21:290–304. doi:10.1038/cr.2010.150PMID:21060338

50. Fierro IM, Barja-Fidalgo C, Cunha FQ, Ferreira SH. The involvement of nitric oxide in the anti-Candida albicansactivity of rat neutrophils. Immunology. 1996; 89:295–300. PMID:8943729

51. Elliott JA, Winn WC Jr. Treatment of alveolar macrophages with cytochalasin D inhibits uptake and sub-sequent growth of Legionella pneumophila. Infect Immun. 1986; 51:31–6. PMID:3941000

52. Sauter E, Buckwalter JA, McKinley TO, Martin JA. Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res. 2012; 30:593–598. doi:10.1002/jor.21552PMID:21928429 53. Mena HA, Carestia A, Scotti L, Parborell F, Schattner M, Negrotto S. Extracellular histones reduce

sur-vival and angiogenic responses of late outgrowth progenitor and mature endothelial cells. J Thromb Haemost. 2016; 14:397–410. doi:10.1111/jth.13223PMID:26663311

54. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P.

Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003; 160:267–77. PMID:12527751

55. Cho IH, Choi ES, Lim HG, Lee HH. Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J Biochem Mol Biol. 2004; 37:199–205. PMID:15469696 56. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, et al. Molecular

mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature.

Nat Commun. 2015; 6:6673. doi:10.1038/ncomms7673PMID:25809117

57. Wada Y, Yoshida K, Hihara J, Konishi K, Tanabe K, Ukon K. Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Sci. 2006; 97: 1037–1043. PMID:16918998

58. Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immu-nol. 2013; 191:2647–2656. doi:10.4049/jimmunol.1300436PMID:23904163

59. Kolaczkowska E, Chadzinska M, Scislowska-Czarnecka A, Plytycz B, Opdenakker G, Arnold B.Gelati-nase B/matrix metalloproteiB.Gelati-nase-9 contributes to cellular infiltration in a murine model of zymosan peri-tonitis. Immunobiology. 2006; 211:137–148. PMID:16530081

60. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012; 9:1386–1393.

61. Hara S, Nemoto K, Ninomiya N, Kubota M, Kuno M, Yamamoto Y. Continuous infusion of sivelestat sodium hydrate prevents lipopolysaccharide-induced intestinal paralysis and hypotension in conscious guinea-pigs. Clin Exp Pharmacol Physiol. 2008; 35:841–5. doi:10.1111/j.1440-1681.2008.04921.x PMID:18346172

62. Tumminello RA, Fuller-Espie SL. Heat stress induces ROS production and histone phosphorylation in celomocytes of Eisenia hortensis. Invert Surv J. 2013; 10:50–7.

63. Homa J, Stalmach M, Wilczek G, Kolaczkowska E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B. 2016; 186:417–430. doi:10.1007/s00360-016-0973-5PMID:26922789

64. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development. 2009; 6:3131 3141.

65. Denis H, Deplus R, Putmans P, Yamada M, Métivier R, Fuks F. Functional connection between deimi-nation and deacetylation of histones. Mol Cell Biol. 2009; 29:4982–4993. doi:10.1128/MCB.00285-09 PMID:19581286

66. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15:81–94. doi:10.1038/nrm3735PMID:24401948 67. Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis- induced neutrophil extracellular traps

activate human macrophages. J Innate Immun. 2013; 5:591–602. doi:10.1159/000348676PMID:

23635526

68. Bryantsev AL, Chechenova MB, Shelden EA. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress. Exp Cell Res. 2007; 313: 195–209. PMID:17123510 69. Kolaczkowska E, Grzybek W, van Rooijen N, Piccard H, Plytycz B, Arnold B, et al. Neutrophil elastase

activity compensates for a genetic lack of matrix metalloproteinase-9 (MMP-9) in leukocyte infiltration in a model of experimental peritonitis. J Leukoc Biol. 2009; 85:374–381. doi:10.1189/jlb.0808460PMID:

19088179

70. Nakajima N, Mihara H, Sumi H. Characterization of potent fibrinolytic enzymes in earthworm, Lumbri-cus rubellus. Biosci Biotechnol Biochem. 1993; 57:1726–1730. PMID:7764268

71. Nakajima N, Sugimoto M, Ishihara K. Stable earthworm serine proteases: application of the protease function and usefulness of the earthworm autolysate. J Biosci Bioeng. 2000; 90:174–9. PMID:

16232838

72. Pan R, Zhang Z-J, He R-Q. Earthworm Protease. Applied and Environmental Soil Science Volume 2010. Available:http://dx.doi.org/10.1155/2010/294258

73. Procházková P, Silerová M, Stijlemans B, Dieu M, Halada P, Josková R et al. Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. J Comp Physiol B. 2006; 176:581 587. PMID:16636833

74. Grimaldi A, Girardello R, Malagoli D, Falabella P, Tettamanti G, Valvassori R, et al. Amyloid/Melanin distinctive mark in invertebrate immunity. Invert Surv J. 2012; 9:153–162.

75. Falabella P, Riviello L, Pascale M, Lelio ID, Tettamanti G, Grimaldi A, et al. Functional amyloids in insect immune response. Insect Biochem Mol Biol. 2012; 42:203–11. doi:10.1016/j.ibmb.2011.11.011 PMID:22207151

76. Pascale M, Laurino S, Vogel H, Grimaldi A, Monné M, Riviello L, et al. The Lepidopteran endoribonu-clease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids. Dev Comp Immunol. 2014; 47:129–39. doi:10.1016/j.dci.2014.07.009PMID:25043263 77. Schorn T, Drago F, Tettamanti G, Valvassori R, de Eguileor M, Vizioli J, et al. Homolog of allograft

inflammatory factor-1 induces macrophage migration during innate immune response in leech. Cell Tis-sue Res. 2015; 359:853–64. doi:10.1007/s00441-014-2058-7PMID:25435328

78. Albini A, Pagani A, Pulze L, Bruno A, Principi E, Congiu T, et al. Environmental impact of multi-wall car-bon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition. Int J Nanomedicine. 2015; 10:6133–45. doi:10.2147/IJN.S85275PMID:26457053 79. Pulze L, Bassani B, Gini E, D'Antona P, Grimaldi A, Luini A. et al. NET amyloidogenic backbone in

human activated neutrophils. Clin Exp Immunol. 2016; 183:469–79. doi:10.1111/cei.12730PMID:

26462606

80. Azevedo EP, Guimarães-Costa AB, Torezani GS, Braga CA, Palhano FL, Kelly JW, et al. Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associ-ated elastase. J Biol Chem. 2012; 287:37206–18. doi:10.1074/jbc.M112.369942PMID:22918834

Powiązane dokumenty