• Nie Znaleziono Wyników

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF

(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Ma-jor contributors of computing resources are listed in ref. [77].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab Tevatron p¯p collider using a cone-based jet algorithm,Phys. Rev. D 78 (2008) 052006[Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

[2] D0 collaboration, V.M. Abazov et al., Measurement of the inclusive jet cross section in p¯p collisions at √

s = 1.96 TeV,Phys. Rev. D 85 (2012) 052006[arXiv:1110.3771] [INSPIRE].

[3] L. Evans and P. Bryant, LHC machine,2008 JINST 3 S08001[INSPIRE].

[4] ALICE collaboration, Measurement of the inclusive differential jet cross section in pp collisions at √

s = 2.76 TeV,Phys. Lett. B 722 (2013) 262[arXiv:1301.3475] [INSPIRE].

[5] ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at√ s = 2.76 TeV and comparison to the inclusive jet cross section at√

s = 7 TeV using the ATLAS detector,Eur. Phys. J. C 73 (2013) 2509[arXiv:1304.4739] [INSPIRE].

[6] CMS collaboration, Measurement of the inclusive jet cross section in pp collisions at√ s = 2.76 TeV,Eur. Phys. J. C 76 (2016) 265[arXiv:1512.06212] [INSPIRE].

[7] ATLAS collaboration, Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector,Eur. Phys. J. C 71 (2011) 1512[arXiv:1009.5908] [INSPIRE].

[8] CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at √

s = 7 TeV with the CMS detector,Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].

[9] CMS collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-kT algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at√

s = 7 TeV,Phys. Rev.

D 90 (2014) 072006[arXiv:1406.0324] [INSPIRE].

[10] CMS collaboration, Measurement of the inclusive jet cross section in pp collisions at √ s = 7 TeV,Phys. Rev. Lett. 107 (2011) 132001[arXiv:1106.0208] [INSPIRE].

[11] ATLAS collaboration, Measurement of the inclusive jet cross-sections in proton-proton collisions at √

s = 8 TeV with the ATLAS detector,JHEP 09 (2017) 020 [arXiv:1706.03192] [INSPIRE].

[12] CMS collaboration, Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at √

s = 8 TeV and cross section ratios to 2.76 and 7 TeV,JHEP 03 (2017) 156[arXiv:1609.05331] [INSPIRE].

JHEP05(2018)195

[13] CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton–proton collisions at√

s = 13 TeV,Eur. Phys. J. C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].

[14] CMS collaboration, Measurement of the differential dijet production cross section in proton-proton collisions at√

s = 7 TeV, Phys. Lett. B 700 (2011) 187[arXiv:1104.1693]

[INSPIRE].

[15] CMS collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at√

s = 8 TeV and constraints on parton distribution functions,Eur.

Phys. J. C 77 (2017) 746[arXiv:1705.02628] [INSPIRE].

[16] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm,JHEP 04 (2008) 063[arXiv:0802.1189] [INSPIRE].

[17] J. Currie, E.W.N. Glover and J. Pires, Next-to-next-to leading order QCD predictions for single jet inclusive production at the LHC,Phys. Rev. Lett. 118 (2017) 072002

[arXiv:1611.01460] [INSPIRE].

[18] J. Currie et al., Single jet inclusive production for the individual jet pTscale choice at the LHC,Acta Phys. Polon. B 48 (2017) 955[arXiv:1704.00923] [INSPIRE].

[19] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider,2008 JINST 3 S08003[INSPIRE].

[20] ATLAS collaboration, ATLAS insertable B-layer technical design report,ATLAS-TDR-19 (2010) [ATLAS-TDR-19-ADD-1].

[21] ATLAS collaboration, Performance of the ATLAS Trigger System in 2015, Eur. Phys. J. C 77 (2017) 317[arXiv:1611.09661] [INSPIRE].

[22] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual,Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

[23] S. Frixione and G. Ridolfi, Jet photoproduction at HERA,Nucl. Phys. B 507 (1997) 315 [hep-ph/9707345] [INSPIRE].

[24] S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081[arXiv:1012.3380] [INSPIRE].

[25] ATLAS collaboration, Luminosity determination in pp collisions at √

s = 8 TeV using the ATLAS detector at the LHC,Eur. Phys. J. C 76 (2016) 653[arXiv:1608.03953] [INSPIRE].

[26] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1,Comput.

Phys. Commun. 178 (2008) 852[arXiv:0710.3820] [INSPIRE].

[27] T. Sj¨ostrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions,Eur. Phys. C 39 (2005) 129.

[28] T. Sj¨ostrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053[hep-ph/0402078] [INSPIRE].

[29] B. Andersson, G. Gustafson, G. Ingelman and T. Sj¨ostrand, Parton fragmentation and string dynamics,Phys. Rept. 97 (1983) 31.

[30] ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes,ATL-PHYS-PUB-2014-021(2014).

[31] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

JHEP05(2018)195

[32] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152[INSPIRE].

[33] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040[hep-ph/0409146] [INSPIRE].

[34] H.-L. Lai et al., New parton distributions for collider physics,Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

[35] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

[36] J. Bellm et al., HERWIG++ 2.7 release note,arXiv:1310.6877[INSPIRE].

[37] ATLAS collaboration, The ATLAS simulation infrastructure,Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].

[38] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit,Nucl. Instrum.

Meth. A 506 (2003) 250[INSPIRE].

[39] V. Lendermann et al., Combining triggers in HEP data analysis,Nucl. Instrum. Meth. A 604 (2009) 707[arXiv:0901.4118] [INSPIRE].

[40] ATLAS collaboration, Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector,ATLAS-CONF-2015-029(2015).

[41] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √

s = 7 TeV,Eur. Phys. J. C 73 (2013) 2304[arXiv:1112.6426] [INSPIRE].

[42] W. Lampl et al., Calorimeter clustering algorithms: description and performance, ATL-LARG-PUB-2008-002(2008).

[43] ATLAS collaboration, Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at√

s = 13 TeV with the ATLAS detector,Phys. Rev. D 96 (2017) 072002[arXiv:1703.09665] [INSPIRE].

[44] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at√

s = 8 TeV using the ATLAS detector,Eur. Phys. J. C 76 (2016) 581 [arXiv:1510.03823] [INSPIRE].

[45] ATLAS collaboration, Jet global sequential corrections with the ATLAS detector in proton-proton collisions at√

s = 8 TeV, ATLAS-CONF-2015-002(2015).

[46] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas,Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].

[47] ATLAS collaboration, Data-driven determination of the energy scale and resolution of jets reconstructed in the ATLAS calorimeters using dijet and multijet events at √

s = 8 T eV , ATLAS-CONF-2015-017(2015).

[48] ATLAS collaboration, Determination of the jet energy scale and resolution at ATLAS using Z/γ-jet events in data at√

s = 8 TeV,ATLAS-CONF-2015-057(2015).

[49] ATLAS collaboration, Monte Carlo calibration and combination of in-situ measurements of jet energy scale, jet energy resolution and jet mass in ATLAS,ATLAS-CONF-2015-037 (2015).

[50] ATLAS collaboration, A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector,Eur. Phys. J. C 77 (2017) 26[arXiv:1607.08842] [INSPIRE].

JHEP05(2018)195

[51] ATLAS collaboration, Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at√

s = 13 TeV,ATL-PHYS-PUB-2015-015 (2015).

[52] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in proton-proton collisions at√

s = 7 TeV with the ATLAS detector,Eur. Phys. J. C 75 (2015) 17[arXiv:1406.0076] [INSPIRE].

[53] B. Malaescu, An Iterative, Dynamically Stabilized (IDS) method of data unfolding, in the proceedongs of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, January 17–20, CERN, Geneva, Switzerland (2011),arXiv:1106.3107[INSPIRE].

[54] ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at√ s = 7 TeV using the ATLAS detector,Phys. Rev. D 86 (2012) 014022[arXiv:1112.6297]

[INSPIRE].

[55] J. Wenninger and E. Todesco, Large Hadron Collider momentum calibration and accuracy, Phys. Rev. Accel. Beams 20 (2017) 081003.

[56] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002[hep-ph/0307268] [INSPIRE].

[57] T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project,Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].

[58] S. Carrazza and J. Pires, Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II,JHEP 10 (2014) 145[arXiv:1407.7031] [INSPIRE].

[59] S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order α3S in QCD,Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].

[60] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era,Eur. Phys. J.

C 75 (2015) 132[arXiv:1412.7420] [INSPIRE].

[61] S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics,Phys. Rev. D 93 (2016) 033006[arXiv:1506.07443] [INSPIRE].

[62] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs,Eur. Phys. J. C 75 (2015) 204[arXiv:1412.3989] [INSPIRE].

[63] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II,JHEP 04 (2015) 040[arXiv:1410.8849] [INSPIRE].

[64] ZEUS, H1 collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data,Eur. Phys. J.

C 75 (2015) 580[arXiv:1506.06042] [INSPIRE].

[65] S. Alekhin, J. Bl¨umlein, S. Moch and R. Placakyte, Parton distribution functions, αs and heavy-quark masses for LHC Run II,Phys. Rev. D 96 (2017) 014011[arXiv:1701.05838]

[INSPIRE].

[66] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001[arXiv:1510.03865] [INSPIRE].

[67] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis,JHEP 07 (2002) 012[hep-ph/0201195] [INSPIRE].

JHEP05(2018)195

[68] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189[arXiv:0901.0002] [INSPIRE].

[69] R. Corke and T. Sj¨ostrand, Interleaved parton showers and tuning prospects,JHEP 03 (2011) 032[arXiv:1011.1759] [INSPIRE].

[70] ATLAS collaboration, Summary of ATLAS Pythia8 tunes,ATLAS-PHYS-PUB-2012-003 (2012).

[71] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune,Eur.

Phys. J. C 74 (2014) 3024[arXiv:1404.5630] [INSPIRE].

[72] S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++,Eur. Phys. J. C 72 (2012) 2225[arXiv:1206.0041] [INSPIRE].

[73] M.H. Seymour and A. Siodmok, Constraining MPI models using σef f and recent Tevatron and LHC Underlying Event data,JHEP 10 (2013) 113[arXiv:1307.5015] [INSPIRE].

[74] S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders,JHEP 11 (2012) 095[arXiv:1210.0438] [INSPIRE].

[75] ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at √

s = 7 TeV using 4.5 fb−1 of data with the ATLAS detector,JHEP 02 (2015) 153[Erratum ibid. 09 (2015) 141] [arXiv:1410.8857] [INSPIRE].

[76] ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector,JHEP 05 (2014) 059[arXiv:1312.3524]

[INSPIRE].

[77] ATLAS collaboration, ATLAS computing acknowledgements,ATL-GEN-PUB-2016-002 (2016).

JHEP05(2018)195

Powiązane dokumenty