• Nie Znaleziono Wyników

Crude heptamethylcellobiose 1-chlorohydrin, prepared from heptamethylcellobiose by Allison and

Organic Chemistry

XIX. Crude heptamethylcellobiose 1-chlorohydrin, prepared from heptamethylcellobiose by Allison and

Hixon’s method (A., 1926, 386), and trimethyl-P- methylglucoside in presence of Ag2C03, CaCl2, and CC14 give a mixture of products from wThich deca- methyl-3-methylcellotrioside is isolated. The original must be consulted for details. H. B u r t o n .

Combination of bio-colloids [with other sub­

stances]. IV. Combination w ith am ylopectin and w ith proteins or protein derivatives. S. J.

v o n P r z y l e c k i and S. D o b r o w o l s k a (Biochem. Z., 1932, 245, 388—407; A., 1931, 1437).—Amylopectin is pptd. from starch solution at 80—90° by addition of electrolyte (preferably an acid); the washed ppt.

contains no amylose but almost all the P and most of the X. Suspended starch does not combine • with glycine, alanine, asparagine, guanidine, creatine, creatinine, uric acid, guanine, peptone, or protein, but amylopectin combines with all but glycine, alanine, and uric acid. The extent of combination depends on the concn. of the reactants, on the p R, and on the chemical nature of the X compound. The possible reasons for combination and failure to combine are discussed. W. M c C a r t n e y .

Cryoscopic determ inations of m ol. w t. of sugars and inulin in liquid am m onia. L. S c h m i d

and L. H a s c h e k (Monatsh., 1932, 59, 328—334).—

Further determinations of the mol. wt. of inulin in liquid XH3, using an improved form of the apparatus previously described (A., 1925, i, 1386), give the val. 275—363 (limits). Other mol. wts. found are : fructose 152—201, sucrose 335—373, raffinose 488—

535. H. B u r t o n .

A triphenylmethyl ether of glycogen. L.

S c h m i d and E. K o t t e r (Monatsh., 1932, 59, 335—

340).—Glycogen and CPh3Cl in pyridine at 100° give an insol. co m p o u n d , (CjoHjgOjo'CPhj)*, m. p. 235°

(decomp.), unaffected by further treatment with CPh3Cl and hydrolysed by successive treatment

5 0 2 B R I T I S H C H E M IC A L A B S T R A C T S .— A .

with CHClg-HCl and. H20 to glycogen and CPh3-0H.

A CPh3 ether of inulin could not be prepared.

H. B u r t o n .

Degradation of cellulose by a new m ethod.

H. H. S c h l u b a c h , H. E l s n e r , and V. P r o c h o v n i c k

(Angew. Chem., 1932, 45, 245—249).—Dry HC1 converts cellulose into a mixture of low-mol. glucose anhydrides. Saturation pressure and 20—30° are the most favourable conditions, the process then being complete in 10 hr. The decomp, takes place also in presence of indifferent org. media such as CgH6, but requires a longer time, depending on the nature of the liquid. The reddish-violet, powdery product does not show the original fibre structure.

It contains much adsorbed HC1, of which 6—8%

remains after leaving iii vac. The product is purified by dissolving in a little H20 and pptg. with MeOH-EtsO.

A portion which is sol. in this mixture is recovered by adding C6H0-EtOH (75 : 25). The pure product is a white powder which can be separated by H20, EtOH, and Et20 into fractions having different rotations ; it consists mainly of 1-, 2-, and 3-mol.

anhydrides. The action of HC1 on cellulose is differentiated into three stages : depolymerisation, hydrolysis, and reversion. By the same method starch, inulin, mannan, xylan, silk fibroin, wool, horn, and other materials can be degraded into low- mol. anhydrides. E. S. H e d g e s .

N ew degradation of cellulose. III. H. P r i n g s - h e i m and K . W a r d , jun. (Cellulosechem., 1932, 13, 65—71).—Cellulose acetate treated with PhS03H in boiling CHC13 containing 2% EtOH affords a product which, after lij'drolysis with cold 5% aq. NH3 (A., 1928, 1226; 1930, 1168) and pptn. of the H20-sol.

product with EtOH, gives a prep., [a]n +93°.

Rc-pptn. from aq. solution with EtOH gives, finally, a more sol. prep. G, [a]D +6 6 —69°. Similar results are obtained with the primary acetate, “ Agfa,” and an acetate (Ac 44-4%) as starting material and using MeOH in place of EtOH. G is quantitatively hydro­

lysed by 3% HC1 to glucose, and with aq. malt extract at p x 4-8 suffers 4% and 10% hydrolysis in 2 and 8 days, respectively. Acétylation (Ac20-pyridine, or Ac20-S0C12) gives an a c eta te (45% %c), [a]D + 7 5 ° in CHClg, hydrolysed by cold KOH in MeOH to the original prep., [a]D +69°. Mol. wt. determinations show that G is not a single entity. Dialysis of C

until the effluent gives no reducing sugars on hydro­

lysis and pptn. with EtOH gives a prep. D , [a]D + 8S—

92°, which gives an a ceta te, [a]D +88° in CHC13, and is not appreciably hydrolysed by enzymes (1-1% and 2-78% in 2 and 8 days, respectively). Méthylation of G with 45% KOH and Me2S04 followed by Ag20 and Mel gives a yellow p o w d e r (43-68% OMe), becoming white at 80° and fluid at 120°, which is only partly distillable in a high vac. and probably contains > 5 glucose residues. Debye-Sclierrer diagrams (A. W e i d i n g e r ) of G (freshly prepared or re-pptd. with EtOH after gélatinisation in H20 for 1 month) indicate definite cryst. structure, but both these and that of the acetate are quite unlike the cellulose diagram. It is considered that degradation of cellulose has been effected without fission of the glucosidic linkings. J . W . B a k e r .

M olecular structure of polysaccharides. J. C.

I r v i n e (Chem. and Ind., 1932, 263).—In part a reply to Haworth (this vol., 370). Graded hydrolysis of methylated cellulose affords only 2 : 3 : 6-trimethyl- glucose in the first stage, and then 2 : 3 : 4 : 6-tetra- methylglucose from the more resistant fraction. The latter is also obtained (3—5%) by similar hydrolysis of methylated amylose, one fraction of which gives a mixture of 2 : 3 : 4 : 6-tetra- (23—26%), 2 : 3 : 6-tri- (55—52%), and 2 : 3 - and 2 : 6-di- (21%) -metkyl- glucose. Approx. equal proportions of the 2 : 3- and 2 : 6-derivatives are] obtained when the amylose is methylated directly, but the ratio is 24% and 76%, respectively, when methylation follows preliminary acetylation. Hydrolysis of trimcthylinulin with H2C204 yields, in addition to trimethyl - y-fructoses, to-methoxy-5-methylfurfuraldohyde, tetramethyl-y- fructose (2-7—1-7% yield), and a trimethylanhydro- fructose. Caution is urged in applying such results to deductions of the structure of polysaccharoses.

J. W. Ba k e r.

Chloroacetic esters of cellulose. H. Ru d y (Cellulosechem., 1932, 13, 49—58).'—Cellulose does not react with CH2C1-C0C1 in presence of ZnCl2 or pyridine, but with (CH2C1-C0)20 and conc. H2S04 affords cellulose trichloroacetate, sintering at 85°, [“ ]'?> +30-5°, also obtained from hydrocellulose (obtained by reducing cellulose with HC02H), (CH2C1-C0)20, and ZnCl2. Similarly, di- and tri­

chloroacetic anhydride with hydrocellulose afford

cellu lose d id i- , sinters and decomp. 160°, [a]'” +21-3°, and d itri-ch lo ro a ceta te, sinters at 198—200°, [ag +8-4°, respectively. The trichloroacetate yields an odour of carbylamine on warming with NH2Ph and EtOH-KOH. All three esters are hydrolysed by EtOH-NH3 to a chloroacetamide and a reducing cellulose. Starch and (CH2C1-C0)20 with H2S04 afford an ester, sintering at 85°, [a]j5 +96-2° (con­

taining 25-5% Cl), which on hydrolysis affords a slightly-reducing Cl-free product. Chlorination of cellulose triacetate with PC1S in very large excess gives cellulose trichloroacetate, [a]“ —13-2°, unaffected by conc. alkali and NaOEt. 41% HC1 is without action during several weeks. Chlorination in sun­

light or in presence of PC13 or red P affords a series of products containing up to 40-4% Cl. This stage is reached by chlorinating at 130° during 2 hr. in presence of red P. Prolonged action of PC15 at 135—140° in a solvent on starch triacetate affords sta rch tr itr ic h lo r o a c e ta te , very resistant to

hydrolysis. J. L. D’Silva.

p-N itrobenzyl halides as reagents for the identification of prim ary and secondary amines.

E. L y o n s (J. Amer. Pharm. Assoc., 1932, 21, 224—

225).—The completely amino-substituted p-nilro- b e n sy l derivatives of the following amines are described: NH2Me, m. p. 102°; NH2Et, m. p. 67°;

NH2-CH,-CO,Et, m. p. 108°; NHvCILPh, m. p. 144°;

p-NHo-CgHj-CCLEt, m. p. 117 °; "p-NH2-CfiH4-C02Pr, m.p. 114°; p-NH,-C0H4-SO3H, chars; NILPli m. p.

168°; NHPhEt, m. p. 67°; NHPh2, m. p 96°;

p-NH2-C6H4-NMe2, m. p. 210°, 0-, m. p. 198°, and p-Cr>H4(NHo)o, m. p. 225°, and benzidine, m. p. 228°.

E. H. Sh a r?l e s.

Aliphatic ammono-aldehydes. H. H. S t r a i n

(J. Amer. Chem. Soc., 1932, 54, 1221—1228).—

Evidence is presented to support the postulation that aliphatic imines, hydramides, and Schiff bases are ammono-aldehydes. In addition to the known re­

actions, it is shown that reactions which should lead to the formation of CHdNH (ammono-formaldehyde) yield only hexamethylenetetramine (I) (polymer­

ised ammono-formaldehyde). Anhydroformaldehyde- aniline (aminono-forinaldehvde acetal) is ammono- lysed to (I) and NH„Ph, whilst NHICHMe (ammono- acetaldehyde) is nitridised to acetamidine (ammono- acetic acid), and reacts with CH2(CP2H)2 and N2H4 derivatives as do aquo-aldehydes. The formation of pyridines from aldehydes and NH3 is dependent on the formation of aquo-ammono-aldols. (I) is re­

covered unchanged when passed through an evacuated glass tube heated to redness (the presence of soda- lime caused no change), it does not react with liquid NH3 in presence or absence of NH2Ph or K3NTH2 at 210°, and it is not nitridised by I in liquid NH3 at

—33° or by N3H in liquid NH3 at 260—270°. EtCHO and Ca(NH2)2 in liquid NH3 give a liquid a m m o n o -

aldol (structure suggested), which is unaffected by

dil. HC1 and when distilled passes into 3 : 5-dimethyl-2-ethylpyridine. PrCHO similarly gives a c o m p o u n d ,

C12H260N2, convertible into 3 : 5-diethyl-2-propyl- pyridine; Pr^CHO appears to give NHICHPr#, rapidly hydrolysed by HC1 to the aldehyde; heptaldehyde affords a c o m p o u n d , C21H44ON2, convertible into 3 : 5-diamyl-2-hexvlpyridine, b. p. 355—365°.

C. J. W e s t (b ).

Colorimetric determination of glycine. G.

K l e i n and H. L i n s e r (Z. physiol. Chem., 1932, 2 0 5 , 251—258).—Glycine when treated with a buffered solution of o-phthaldialdehyde followed by a mixture of 5 parts of conc. H2S04 and 30 parts of 96% EtOH, gives a green colour, extractable with CHC13, which may be used for colorimetric determination. The reaction is sensitive to 0-05 mg. of glycine. Trypto­

phan and NH3 interfere. J. H. B i r k i n s h a w .

Physico-chemical behaviour of polypeptides composed of di-alanine. E. A b d e r h a l d e n and J- H e u m a n n (Z. physiol. Chem., 1932, 2 0 5 , 271—

232).—A series of polypeptides of increasing com­

plexity was obtained from df-alanine by coupling in successive stages with dl-a-bromopropionyl bromide : hi-a la n in e a n h y d r id e , oil; di- ( d \ - a la n y l ) - ( \ \- a la n in e, becomes yellow at 237°, decomp. 245°, from a-b ro m o - Pro p i o n y l- d l- a la n y l- d \- a la n in e , in. p. 170—175°; tr i-

{ & \-a la n y l)-d \.a la n in e , m. p. about 245°, from b ro m o -

precursor, m. p. 217—220° (becomes brown); te tr a - [ d \-a la n y l)-d l-a la n in e , m. p. 280—283° (becomes brown), from 6roroo-precursor, becomes yellow at 231°, m. p. about 241°; p e n ta - ( A \- a la n y l) - < l\- a la n in e ,

yellow about 270°, decomp, about 280°, from b ro m o -

precursor, m. p. about 240° (decomp.); h e x a - ( d \- d a n y l)-d \-a la n i7 ie , decomp, above 280°, from b ro m o -

precursor, m. p. about 243° (decomp.).

By repetition of the same component, polypeptides quickly show colloidal properties, with di-alanine, from the hexapeptide up. The particles of all the colloidal dl-alanine chains are strongly hydrated, the n20 not being removed by drying in high vac., hence

MM

their small adsorptive power. This may explain the high O content of protein. The di-alanine chains contain 1 mol. of H20, the 1- 1 mol. The colloidal polypeptide particles swell greatly, are negatively charged and show little movement in the electric field. Electrolytes produce coagulation but no dis­

charge. Halogenoacyl compounds with an uneven no. of constituents are more readily aminated than those with an even no. J. H. B i r k i n s h a w .

Tastes of derivatives of d-glutamic acid. C. L.

T s e n g and E. J. H. C h u (Acad. Sin. Mem. Nat. Res.

Inst. Chem., 1931, No. 5, 1—18).—Na d-glutamate has the most intense meat-like taste; K and NH3Mo salts (both deliquescent) follow, but have an unpleasant after-taste. NH2Me2 d-glutamate hydrolyses readily;

the NHMe3 salt does not form an aq. solution.

. Ch e m i c a l Ab s t r a c t s.

Glutamic acid. I. Action of dehydrating agents on d-glutamic acid. II. Tastes of some derivatives of d-glutamic acid. III. Hydrolysis of acetyl-d-glutamic acid. C. L. T s e n g and E. J. H. C h u (Nat. Centr. Univ. Sci. Rep., 1931, A., 1, No. 2, 8—10).—I. d-Glutamic acid was unaffected by ZnCl2 at 100° or 140° or by P20 5 in CIIC13.

III. Na acetyl-d-glutamate could not be prepared owing to hydrolysis. C h e m i c a l A b s t r a c t s .

Synthesis of AT-substituted fi-aminoaldehydes.

C. M a n n i c h , B. L e s s e r , and F. S i l t e n (Ber., 1932,

6 5 , [B], 378—385).—¿soButaldehyde, NHMe2,HCl,

and paraformaldehyde in boiling EtOH afford p-

d i in e th y la m in o - a a - d im e th ijlp r o p a ld e h y d e , b. p. 142—

144° (h y d r o c h lo r id e, m. p. 152153°; c h lo r o a u r a te ,

m. p. 106°; o x im e , m. p. 57°, and its h y d r o c h lo r id e ,

m. p. 163°; s e m ic a r b a z o n e , m.p. 160°; p- n itr o p h e n y l- h y d r a z o n e h y d r o c h lo r id e , m. p. 174°; m e th io d id e ,

m. p. 219—220°; c y a n o h y d r i n ). Reduction of the aldehyde by Na-Hg in AcOH yields y - d im e t h y l a m i n o - P P - d i m e th y lp r o p y I a lc o h o l, b. p. 166168° (h y d r o ­ c h lo r id e, m. p. 136°; m e th io d id e , m. p. 222°; b e n z o a te h y d r o c h lo r id e , m. p. 153°; p - n itr o b e n z o a te , m. p. 35°;

p- a m in o b e n z o a te , m. p. 7980°). The aldoxime and boiling A c20 give $ - d im e th y la m in o - a .c c - d im e th y lp r o p io - n i t r i l e , b. p. 72°/14 mm. ( h y d r o c h lo r id e , m. p. 145°), hydrolysed to (l - d im e th y l a m in o - a a - d im e th y l p r o p i o n i c a c i d ( h y d r o c h lo r id e , m. p. 150—151°). ¿.soValeralde- hyde is converted by CH20 and piperidine hydro­

chloride into a .- p ip e r id in o n ie th y l- a - h y d r o x y m e th y lis o - v a le r a ld e h y d e h y d r o c h lo r id e ,m. p. about 145° (decomp.), in 70% yield. w-Butaldehydc, NHMe2,HCl, and CH20 at 75° or room temp, afford a - d im e th y la m in o - m e tJ iy l- n - b u ta ld e h y d e , b. p. 60°/19 mm. ( h y d r o c h lo r id e ,

m. p. 105°), more complex products, and a-ethyl- acraldehyde. EtCHO, NHMe2,HCl, and CHzO at 85° yield o .- d im e th y la m in o m e th y l-, b. p. 45°/15 mm., and < x 'j.-b is d im e lh y la m in o m e th y l-p r o p a ld e h y d e , b. p.

83°/15 mm. MeCHO, NHMe2,HCl, and CH20 ( 1 : 3 : 3 mols.) yield p- h y d r o x y-a*- b i s d i m e t li y la m i n o m e t h y l - p r o p a l d e h y d e h y d r o c h lo r id e (+ H 20), m. p. about 105°, from which dimethylhydroresorcinol removes 1 and 3 mols. of CH,0 in cold and hot solution; it is reduced by Na-Hg in slightly acid solution to CH2(NMe2)2 and y - d im e t h y l a m i n o - $ - d i m e t h y l a m i n o m e tk y l p r o p y l a l ­ c o h o l, b. p. 95—102°/11 mm. ( b e n z o a te , p - n i t r o b e n z o a t e ,

and p - a m in o b e n z o a te h y d r o c h lo r id e s , m. p. 242°, 223°,

5 0 4 B R I T I S H C H E M IC A L A B S T R A C T S .— A .

and 230°, respectively). The following compounds are similarly prepared : fi-d ie th y la m in o -a z -d im e th y l-p r o l-p a ld e h y d e , b. p. 175—177° {sem ica rb a zo n e, m . p.

124— 125°),and y -d ie th y la m in o -$ $ -d im e th y lp r o p y l a lc o ­ h ol, b. p. 90—91°/12 mm. (B z, p-n itro -, and -a m in o - b e n zo y l ester h yd ro ch lo rid es, m. p. 131—132°, 160°, and 196°, respectively); [i-p ip e rid in o -a .a -d im e th y l- p r o p a ld e h y d e , b. p. 95°/12 mm. (hydrochloride, m. p.

164°; ch loroau rate, m. p. 116°; c h lo r o p la tin a te , m. p.

167°; o x im e h yd ro ch lo rid e, m. p. 169°; sem ic a rb a zo n e ,

m. p. 175°; c y a n o h y d r in; m e th io d id e , m. p. 211°), and y - p ip e r idin o-fi $ -d im e th y lp r o p y l alcohol, b. p.

140°/39 mm., (h y d ro c h lo rid e , m. p. 204°; B z , p - n i tr o -

and -a m in o -b e n z o y l ester h y d ro ch lo rid es, m. p. 152°, 162—163°, and 218°, respectively); a-p ip e r id in o - m e th y lh e x a h y d ro b e n za ld e h y d e , b. p. 141—142°/15 mm.

[h yd ro ch lo rid e, m. p. 165° (decomp.); n itr a te , m. p.

164°; o x im e h yd ro ch lo rid e, m. p. 178°; m e th io d id e ,

m.p. 160°], and $ -p ip e rid in o m e th y lh e x a h y d r o b e n z y l alcoh ol, b. p. 155—157°/15 mm, (h y d ro c h lo rid e , m. p.

181°; m e th io d id e , m. p. 148°; B z , p-n itro - and -a m in o - b e n zo y l ester h y d ro c h lo rid e s, m. p. 177°, 134°, and 230°, respectively) : < x-dim eth ylam in om eth ylh exah ydro- b en za ld e h y d e , b. p. 102—104°/17 mm. (h y d ro c h lo rid e ,

m.p. 130°; o x im e h y d ro c h lo rid e , m.p. 179°; m e th io d id e ,

m. p. 223°), and $ -d im e th y la m in o m e th y lh e x a h y d r o - b e n z y l alcohol, b. p. 127—129°/20 mm. (h y d ro c h lo rid e ,

m. p. 144°; m e th io d id e , m. p. 178°; B z , p - n itr o - and

-a m in o -b e n z o y l ester h yd ro c h lo rid e s, m. p. 145°, 185°, and 193°, respectively); a .-p ip e rid in o m e th y l\e o v a le r - a ld e h y d e , b. p. 119—120°/18 mm. [h yd ro ch lo rid e,

m. p. 142° (decomp.)], and $ -p ip e r id in o m e th y lis o a m y l a lcoh ol, b. p. 134—136°/17 mm. {B z , p-n itro - and

-a m in o -b e n z o y l ester h y d ro ch lo rid es, m. p. 155°, 189°, and 222°, respectively): a - d im e th y la m in o m e th y l-a - k y d ro x y m e th y liso v a le ra ld e h y d e , m. p. 149° (decomp.);

o L -d im eth yla m in o m eth yliso va lera ld eh yd c, b. p. 63—66°/

13 mm. [h yd ro ch lo rid e, m. p. 120° (decomp.); m e th io d ­ id e , m. p. 145°; o x im e h yd ro ch lo rid e, m. p. 133°], and p -d im e ih y la n m io m e th y lis o a m y l alcohol, b. p.

S0°/13 mm. {B z , p-n itro - and -a m in o -b e n z o y l ester

h y d ro c h lo rid e s, m.p. 180°, 176°, and 167°,respectively);

$ - d im e th y la m in o m e th y lb u ty l alcohol, b. p. 70—71°/14 mm. {h yd ro ch lo rid e, m. p. 81°; B z , p-n itro - and

-a m in o -b e n z o y l ester h y d ro c h lo rid e s, m. p. 159°, 163°, and 163°, respectively); P-d im e th y la m in o m e th y l- p r o p y l alcohol, b. p. 60—65°/12 mm. {B z , p -n itr o - and

-a m in o -b e n z o y l ester h y d ro c h lo rid e s, m. p. 142°, 183°, and 165°, respectively); $ $ -b is d im e lh y la m in o in e th y l- p ro -p yl alcoh ol, b. p. 100—102°/12 mm. {B z and p-

n ilro b e n zo y l ester h y d ro c h lo rid e s, m. p. 196° and 209°,

respectively). H. W r e n .

fj-Methylamino-xa-dimethylpropaldehyde and the corresponding alcohol. C. M a n n ic h and H.

W i e d e r (Ber., 1932, 6 5 , [B], 385—390).— isoButalde- hvde, paraformaldehyde, and NH,Me,HCl afford p-

m e th y la m in o -c v x -d im e th y lp ro p a ld e h y d e , b. p. 48°/12 mm. [very hygroscopic h y d r o c h lo r id e ; p e rc h lo ra te ,

m. p. 221° (decomp.); s e m ic a rb a zo n e h yd ro ch lo rid e,

m. p. 192°; o x im e h y d ro c h lo rid e , m.p. 132°], which passes slowly when preserved, partly when distilled

0M62-gH-NMe

into the c o m p o u n d (I), QH, O 0^2. m- P- 71-5°, XMe-CH- CMe,

converted by 25% HC1 into the aldehyde. The B z derivative, m. p. 67°, of the aldehyde, its o x im e ,m. p.

86—87°, s e m ic a r b a z o n e , m . p. 90°, and c y a n o h y d r in , m . p. 107-5°, are described. fi-M e th y la m in o - a a - d im e t h y lp r o p a ld e h y d e d ie th r jla c e ta lhas b. p. 82—83°/12 mm. Reduction of the crude aldehyde with Na-Hg in dil. acid yields y - m e t h y l a m i n o - ^ - d i m e t h y l p r o p y l a lc o h o l,b. p. 7577°/12 mm., m. p. 52° {h y d r o c h lo r id e ,

m. p. 179°; h y d r o b r o m id e , m. p. 124°; ben zoate,

b. p. 162°/12 mm., its h y d r o c h lo r id e , m. p. 182°, corresponding c a r b a m id e ,m. p. 97 °, and N-Bz derivative, m. p. 69—70°; p - n itr o b e n z o a te , its h y d ro c h lo rid e , m . p. 207°, and N - p - n it r o b e n z o y lcompound, m.p. 131°;

p - a m in o b e n z o a te m o n o h y d r o c h lo r id e , m. p. 193°; com­

pound NH2-CO*NMe*CH2-CMe?-CH2-OH, m. p. 157°).

E t N - m e th y l- 'N - y - h y d r o x y - f if i- d im e th y lp r o p y lc a r b a m a te ,

b. p. 127°/12 mm., from the alcohol and ClC02Et in COMe2, is transformed by cold, conc. H2S04 into the la cto n e, X M c ^ q 2'0Ml^ > C H 2, b. p. 132—133°/12 mm. With CH2Cl-C02Et at 100° the alcohol affords

E t N - m e t h y l-N -y-h y d r o x y -(3(3 - d im e th y lp r o p y la m in o -

a c e ta te , b. p. 137—138°/12 mm., hydrolysed by

Ba(OH)2 to the corresponding a c id , m. p. 167°. y- Methylamino-pp-dimethylpropyl alcohol with 35%

CH20 gives 3 : 5 : o - tr im e th y lm e to x a z in e te tr a h y d r id e ,

NM e<GJ J | ^ g > C H 2 (R—H), b. p. 40—42°/12 mm.

{ h y d r o c h lo r id e ,m. p. 203°; m e th io d id e ,m. p. 210°), and with PhCHO affords 2 - p h e n y l- Z : 5 : b -trim e th y lm e io t- a z i n e t e t r a h y d r id e (R=Ph), b. p. 124°/12 mm. {hydro­

c h lo rid e -, m e th io d id e , m. p. 160°). H. W r e n . Oxycyanogen. II. Free radical. H. H u n t . —

See this vol., 482.

Action of primary amines on dicyanodiamidine sulphate. A. P e r r e t (Compt. rend., 1932, 194, 975—977).—At high temp., dicyanodiamidine sul­

phate and primary amines afford guanidine sulphate and a s-carbamide the structure of which depends on the amine used. Reaction proceeds easily with NH2Ph etc., but very weak bases like o-chloroaniline do not react, o- and m-Phenylenediamine afford polymerised carbamides. Aliphatic and aliphatic- aromatic amines show varying capacities for reaction.

J. L. D’Silva. Electronic interpretation of reactions applied to halogen organic compounds. N. J. B e a b e r

(Iowa State Coll. J. Sci., 1931, 5 , 317—319).—There is no analogy between Grignard reagent f o r m a t i o n

and Pry’s electronic formula for C6H6. For poly- halogeno-aromatic compounds no catalyst is known to facilitate reaction of the second halogen atom to form a di-Grignard reagent.

Ch e m i c a l Ab s t r a c t s.

Derivatives of sec.-butylbenzene. R. R. R e a d ,

C. A. H e w i t t , and N. R. P i k e (J. Amer. Chem. Soe., 1932, 5 4 , 1194r—1195).—The following derivatives

of sec.-butylbenzene are described : o-, b. p. 123—

126°/12 mm., m-, b. p. 132—134°/19 mm., and p-

N O z , b. p. 142—144°/12 mm.; 0-, b. p. 120—122°/

16 mm., m-, b. p. 120°/1S mm., and p- N H 2, b. p.

130—133°/26 mm. o -a e c .- B u ty lp h e n o l has b. p.

116°/21 mm., 227—228° (corr.). C. J . W e s t (b).

Comparative stability of isomerides according to their absorption spectra. Intramolecular transpositions. ( M m e .) R a m a r t - L u c a s and

( M l l e . ) P. A m a g a t (Bull. Soc. chim., 1932, [iv], 51, 108—126).—The ascending branch of the absorption curve of the propenyl hydrocarbons is nearer the visible region and the intensity of the absorption is much greater than in the isomeric allyl derivatives in the series allylbenzene, propenylbenzene, propenyl- toluene, anethole, safrole, isosafrole. The characteristic absorption of two chromophores can be modified when the two chromophores are directly linked, the spectra of the hydrocarbons, CHArlCHMe, showing traces of the characteristic spectra of the Ar radical. The iso- meride possessing an absorption curve nearest to the visible spectrum possesses the lowest heat of combustion and is the most stable at low temp.

The absorption curve of the phenylbutenes is dis­

placed towards the visible region as the double linking approaches the ring. Similarly in the aa- diarylethylenes and a(B-diarylethylenes, the absorp­

tion curve of the s-hydrocarbon is nearer to the visible region than that of the ras.-isomeride, and accordingly (A., 1928, 881, 1000) the latter isomerises to the s-hydrocarbon by heat. Similarly, a-phenyl- Aa-propene has an absorption curve nearer the visible spectrum and a lower heat of combustion than |3- phenyl-Aa-propene, and the absorption curve of aa-diphenyl-Att-propenc is nearer the visible than that of a(3-diphenyl-Aa-propene.

Dehydration of y-phenylpropan-'a-ol at 400—500°

over kieselguhr affords mainly methylstyrene with some allylbenzene, although with S02C1 in pyridine at room temp, allylbenzene is the main product. Similarly, 8-phenylbutan-oc-ol at 500° also affords ethylstyrene. The allylhydrocarbons, CH2Ar;CH!CH2, when passed over kieselguhr at 500° isomerise to propenyl derivatives, allylbenzene yielding propenylbenzene, estragóle, anethole; safrole, however, yields resinous products and not Isosafrole.

«a-Diphenylethylene is similarly converted into a(3-diphenylethylene. Dehydration of the alcohols CHArR-CH2-OH and CHArAr'-CHyOH proceeds ac­

cording to the rules previously described, yielding hydrocarbons with an absorption curve nearer the visible region than the normal hydrocarbons. De­

hydration of the alcohols CRPh2-CH2*OH gives exclusively the hydrocarbon, CRPhiCHPh, which has an absorption curve nearer the visible region than the isomeric CPh2;CHR .

The following are described : E t (3-p-a n is y lp r o p i- onate, b. p. 152—153°/12 mm.; E t [3-3 : 4-m eth yl- en ed io zyp h en ylp ro p io n a te, b. p. 180°/15 mm.; y-p-

<m isyljrropan-a-ol, m. p. 26°, b. p. 162°/15 mm.

{phenylurethane, m. p. 67°), obtained in 40% yield from the ester and 60% yield from the amide by reduction with Na and EtOH; and y-3 : 4-methyl- enedioxyphenylpropan-a-ol, b. p. 180°/13 mm.

{phenylurethane, m. p. 97°), yield, 50% from the amide, 25% from the ester. R. B e i g h t m a n .

R earrangem ent of certain p o ly -in e n e s. S tru c­

ture of th e p ro d u ct ob tain ed b y the rea rra n g e­

ment of tetrap b en yld iferf.-b u tyleth in yleth an e.

R- A l t h a t j s e n and C. S. M a r v e l (J. Amer. Chem.

Soc., 1932, 54, 1174—1184).—Reactions of the hydrocarbon C38H38 (I), obtained by the rearrange­

ment of tetraphenvldiferf.-butylethinylethane,

in-/ __ —CPh \

dicate the indene formula ^)>CHj . Oxidation of (I) with 03 gives CMe3-C02IR H2C20¡, o-CgH4(C02H)2, and tarry products; COPh2 "could not be detected. Oxidation with K 2Cr20 7 in AcOH gives o-C6H4Bz-CO,H; definite products are not obtained using HN03, and (I) is not oxidised by KMn04 or H20 2. (I) does not add Br in CC14, is not reduced with H2 under slight pressure in presence of Pt or Pd catalysts, but with H2 and a Cu chromite catalyst at 175° under a pressure of 200 atm. gives (mainly) 3 -p h e .n y l-l-te v t.-b u ty lh y d ri? id e n e (II), m. p.

181—182°, <xa-diphenyl-BB -dim ethylpentane, b. p. 122—

127°/1 mm. (also obtained by reduction of diphenyl- ferf.-butylethinylcarbinol), and the le tra h y d ro -deriv­

127°/1 mm. (also obtained by reduction of diphenyl- ferf.-butylethinylcarbinol), and the le tra h y d ro -deriv­