• Nie Znaleziono Wyników

F −→ H0(V, F)

on the category of quasi-coherent k-regulous sheaves on V is exact.

Note that every non-empty k-regulous open subset U of Knis an affine k-regulous variety. Indeed, if U = D ( f ) for a k-regulous function f on Kn(Corollary11.11), then U is isomorphic to the affine k-regulous subvariety

V := Z (y f (x) − 1) ⊂ Kxn× Ky.

Remark 13.9 Consider a smooth algebraic subvariety X of the affine space KAn. We may look at the set V := X(K ) of its K -points both as an algebraic variety X(K ) and as a k-regulous subvariety V of Kn. Every function f : V → K that is k-regulous on V in the second sense remains, of course, k-regulous on X(K ) in the sense of the definition from the beginning of Sect.11.

Open problem. The problem whether the converse implication is true for k> 0 is unsolved as yet.

For k = 0 the answer is in the affirmative and follows immediately from Theo-rem10.2. Indeed, every continuous hereditarily rational function f on X(K ) extends to a continuous rational function on Kn, whence f is regulous on V . This theorem was proven for real and p-adic varieties in [27].

Finally, we wish to give a criterion for a continuous function to be regulous. It relies on Theorem10.2on extending continuous hereditarily rational functions on algebraic K -varieties.

Proposition 13.10 Let V be an affine regulous subvariety of Knand f : V → K a function continuous in the K -topology. Then a necessary and sufficient condition for

f to be a regulous function is the following:

(*) For every Zariski closed subset Z of Kn, there exist a Zariski dense open subset U of the Zariski closure of V∩ Z in Knand a regular function g on U such that

f(x) = g(x) for all x ∈ V ∩ Z ∩ U.

Proof By Corollary11.5, the necessary condition is clear, because f is the restriction to V of a regulous function on Kn(Corollary13.3to Cartan’s theorem B).

In order to prove the sufficient condition, we proceed with induction with respect to the dimension d of the set V which is a closed (in the K -topology) constructible subset of Kn. The case d= 0 is trivial. Assuming the assertion to hold for dimensions

less than d, we shall prove it for d. So suppose V is of dimension d. By Corollary11.2, the Zariski closure W of V in Knis of dimension d and we have

W0:= {x ∈ W : W is smooth of dimension d at x} ⊂ V.

Obviously, W:= W\W0is a Zariski closed subset of Knof dimension less than d.

Therefore, Y := V ∩ Wis a regulous closed subset of V of dimension less than d and

W = W0∪ W⊂ V ∪ W⊂ W.

Since the restriction f|Y satisfies condition (*), it is a regulous function on Y by the induction hypothesis. It is thus the restriction to Y of a regulous function F on Kn (Corollary13.3to Cartan’s theorem B).

Further, the function f and the restriction F|Wcan be glued to a function

g: W = V ∪ W→ K, g(x) =

! f(x) : x ∈ V F(x) : x ∈ W

which satisfies condition (*) as well. Now, it follows from Theorem10.2that g extends to a regulous function G on Kn. Since f is the restriction to V of the function G which

is regulous, so is f , as required. 

Acknowledgements The author wishes to express his gratitude to János Kollár and Wojciech Kucharz for several stimulating discussions on the topics of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Andreotti, A., Bombieri, E.: Sugli omeomorfismi delle varietà algebriche. Ann. Scuola Norm. Sup Pisa 23(3), 431–450 (1969)

2. Andreotti, A., Norguet, F.: La convexité holomorphe dans l’espace analytique des cycles d’une variété algébrique. Ann. Scuola Norm. Sup. Pisa 21(3), 31–82 (1967)

3. Berkovich, V.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys and Monographs. AMS, Providence (1990)

4. Besarab, S.: Relative elimination of quantifiers for Henselian valued fields. Ann. Pure Appl. Logic 53, 51–74 (1991)

5. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1998)

6. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedian Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren der math. Wiss. Springer, Berlin (1984)

7. Bourbaki, N.: Algèbre Commutative. Hermann, Paris (1962)

8. Bruhat, F., Cartan, H.: Sur la structure des sous-ensembles analytiques réels. C. R. Acad. Sci. 244, 988–990 (1957)

9. Cherlin, G.: Model Theoretic Algebra, Selected Topics, Lect. Notes Math., vol. 521. Springer, Berlin (1976)

10. Cluckers, R., Loeser, F.: b-Minimality. J. Math. Logic 7(2), 195–227 (2007)

11. Cluckers, R., Lipshitz, L.: Fields with analytic structure. J. Eur. Math. Soc. 13, 1147–1223 (2011) 12. Cluckers, R., Lipshitz, L.: Strictly convergent analytic structures. J. Eur. Math. Soc.arXiv:1312.5932

[math.LO] (2015)

13. Denef, J.: p-Adic semi-algebraic sets and cell decomposition. J. Rein. Angew. Math. 369, 154–166 (1986)

14. Denef, J., van den Dries, L.: p-Adic and real subanalytic sets. Ann. Math. 128, 79–138 (1988) 15. Engler, A.J., Prestel, A.: Valued Fields. Springer, Berlin (2005)

16. Fichou, G., Huisman, J., Mangolte, F., Monnier, J.-P.: Fonctions régulues, J. Rein. Angew. Math.

(2015). doi:10.1515/crelle-2014-0034

17. Fisher, B.: A note on Hensel’s lemma in several variables. Proc. Am. Math. Soc. 125(11), 3185–3189 (1997)

18. Forey, A.: Motivic local density.arXiv:1512.00420[math.LO] (2015)

19. Grauert, H., Remmert, R.: Analytische Stellenalgebren, Grundlehren der math. Wiss. Springer, Berlin (1971)

20. Grothendieck, A.: Éléments de Géométríe Algébrique. III. Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 11 (1961) and 17 (1963)

21. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics. Springer, Berlin (1977) 22. Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Algebraic Geometry and Number Theory,

Progr. Math., vol. 253, pp. 261–405. Birkhäuser Boston, Boston, MMA (2006)

23. Hrushovski, E., Loeser, F.: Non-Archimedean Tame Topology and Stably Dominated Types, Annals of Mathematics Studies. Princeton University Press, Princeton (2016)

24. Kaplansky, I.: Maximal fields with valuations I and II. Duke Math. J. 9 (1942), 303–321 and 12 (1945), 243–248

25. Kollár, J.: Lectures on Resolution of Singularities, Ann. Math. Studies. Princeton University Press, Princeton (2007)

26. Kollár, J.: Singularities of the minimal model program, (With a collaboration of S. Kovács) Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2013)

27. Kollár, J., Nowak, K.: Continuous rational functions on real and p-adic varieties. Math. Zeitschrift 279, 85–97 (2015)

28. Kucharz, W.: Continuous rational maps into the unit 2-sphere. Arch. Math. 102, 257–261 (2014) 29. Kucharz, W.: Approximation by continuous rational maps into spheres. J. Eur. Math. Soc. 16, 1555–

1569 (2014)

30. Kucharz, W.: Continuous rational maps into spheres. Math. Zeitschrift. (2016). doi:10.1007/

s00209-016-1639-4

31. Kucharz, W., Kurdyka, K.: Stratified-algebraic vector bundles. J. Rein. Angew. Math. (2016). doi:10.

1515/crelle-2015-0105

32. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985) 33. Kurdyka, K.: Ensemble semi-algébriques symétriques par arcs. Math. Ann. 282, 445–462 (1988) 34. Lipshitz, L., Robinson, Z.: Uniform properties of rigid subanalytic sets. Trans. Am. Math. Soc. 357(11),

4349–4377 (2005)

35. Łojasiewicz, S.: Ensembles Semi-Analytiques. I.H.E.S, Bures-sur-Yvette (1965)

36. Milnor, J.: Singular Points of Complex Hypersurfaces. Princeton University Press, Princeton (1968) 37. Nowak, K.J.: On the Euler characteristic of the links of a set determined by smooth definable functions.

Ann. Pol. Math. 93, 231–246 (2008)

38. Nowak, K.J.: Supplement to the paper “Quasianalytic perturbation of multiparameter hyperbolic polynomials and symmetric matrices” (Ann. Polon. Math. 101 (2011) 275–291). Ann. Polon. Math.

103(2012), 101–107

39. Nowak, K.J.: Some results from algebraic geometry over complete discretely valued fields.

arXiv:1311.2051[math.AG] (2013)

40. Nowak, K.J.: Some results from algebraic geometry over Henselian real valued fields.arXiv:1312.2935 [math.AG] (2013)

41. Pas, J.: Uniform p-adic cell decomposition and local zeta functions. J. Rein. Angew. Math. 399, 137–

172 (1989)

42. Pas, J.: On the angular component map modulo p. J. Symb. Logic 55, 1125–1129 (1990) 43. Robinson, A.: Complete Theories. North-Holland, Amsterdam (1956)

44. Scowcroft, P., van den Dries, L.: On the structure of semi-algebraic sets over p-adic fields. J. Symb.

Logic 53(4), 1138–1164 (1988)

45. Wallace, A.H.: Algebraic approximation of curves. Can. J. Math. 10, 242–278 (1958) 46. Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Van Nostrand, Princeton (1960)

Powiązane dokumenty