• Nie Znaleziono Wyników

1. Weber, G., Molecular mechanisms of cancer. 2007, Dordrecht the Netherlands: Springer.

2. Bozzone, D., Cancer genetics. 2007, New York NY: Chelsea House.

3. Lodish, H., Molecular cell biology 5th ed. 2004, New York: W.H. Freeman and Company.

4. Heisterkamp, N., Stam, K., Groffen, J., et al., Structural organization of the bcr gene and its role in the Ph' translocation. Nature, 1985, 315, 758-61.

5. Evans, J.P., Wickremasinghe, R.G.,Hoffbrand, A.V., Tyrosine protein kinase substrates in Philadelphia-positive human chronic granulocytic leukemia derived cell lines (K562 and BV173): detection by using an immunoblotting technique. Leukemia, 1987, 1, 524-5.

6. Naldini, L., Stacchini, A., Cirillo, D.M., et al., Phosphotyrosine antibodies identify the p210c-abl tyrosine kinase and proteins phosphorylated on tyrosine in human chronic myelogenous leukemia cells. Mol Cell Biol, 1986, 6, 1803-11.

7. Matthews, D., Targeting protein kinases for cancer therapy. 2010, Hoboken N.J.: John Wiley &

Sons.

8. Hanahan, D.,Weinberg, R.A., The hallmarks of cancer. Cell, 2000, 100, 57-70.

9. Sporn, M.B.,Roberts, A.B., Autocrine growth factors and cancer. Nature, 1985, 313, 745-7.

10. Bayne, S.,Liu, J.P., Hormones and growth factors regulate telomerase activity in ageing and cancer. Mol Cell Endocrinol, 2005, 240, 11-22.

11. Salomon, D.S., Kim, N., Saeki, T., et al., Transforming growth factor-alpha: an oncodevelopmental growth factor. Cancer Cells, 1990, 2, 389-97.

12. Normanno, N., Bianco, C., De Luca, A., et al., The role of EGF-related peptides in tumor growth. Front Biosci, 2001, 6, D685-707.

13. Salomon, D.S., Brandt, R., Ciardiello, F., et al., Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol, 1995, 19, 183-232.

14. Ferguson, K.M., Berger, M.B., Mendrola, J.M., et al., EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell, 2003, 11, 507-17.

15. Yarden, Y., The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer, 2001, 37 Suppl 4, S3-8.

16. Olayioye, M.A., Neve, R.M., Lane, H.A., et al., The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 2000, 19, 3159-67.

17. Guy, P.M., Platko, J.V., Cantley, L.C., et al., Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A, 1994, 91, 8132-6.

18. Yarden, Y.,Sliwkowski, M.X., Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001, 2, 127-37.

19. Carraway, K.L., 3rd, Weber, J.L., Unger, M.J., et al., Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 1997, 387, 512-6.

20. Chang, H., Riese, D.J., 2nd, Gilbert, W., et al., Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature, 1997, 387, 509-12.

21. Harari, D., Tzahar, E., Romano, J., et al., Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 1999, 18, 2681-9.

22. Zhang, D., Sliwkowski, M.X., Mark, M., et al., Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A, 1997, 94, 9562-7.

23. Gullick, W.J., The Type 1 growth factor receptors and their ligands considered as a complex system. Endocr Relat Cancer, 2001, 8, 75-82.

24. Schlessinger, J., Cell signaling by receptor tyrosine kinases. Cell, 2000, 103, 211-25.

25. Marmor, M.D.,Yarden, Y., Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene, 2004, 23, 2057-70.

26. Yaffe, M.B., Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol, 2002, 3, 177-86.

27. Carpenter, G., ErbB-4: mechanism of action and biology. Exp Cell Res, 2003, 284, 66-77.

28. Citri, A., Skaria, K.B.,Yarden, Y., The deaf and the dumb: the biology of ErbB-2 and ErbB-3.

Exp Cell Res, 2003, 284, 54-65.

29. Jorissen, R.N., Walker, F., Pouliot, N., et al., Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res, 2003, 284, 31-53.

30. Biswas, D.K., Cruz, A.P., Gansberger, E., et al., Epidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci U S A, 2000, 97, 8542-7.

31. Cutry, A.F., Kinniburgh, A.J., Krabak, M.J., et al., Induction of c-fos and c-myc proto-oncogene expression by epidermal growth factor and transforming growth factor alpha is calcium-independent. J Biol Chem, 1989, 264, 19700-5.

32. O'Hagan, R.C.,Hassell, J.A., The PEA3 Ets transcription factor is a downstream target of the HER2/Neu receptor tyrosine kinase. Oncogene, 1998, 16, 301-10.

33. Olayioye, M.A., Beuvink, I., Horsch, K., et al., ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem, 1999, 274, 17209-18.

34. Quantin, B.,Breathnach, R., Epidermal growth factor stimulates transcription of the c-jun proto-oncogene in rat fibroblasts. Nature, 1988, 334, 538-9.

35. Yamamoto, T., Hihara, H., Nishida, T., et al., A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell, 1983, 34, 225-32.

36. Decker, S.J., Phosphorylation of the erbB gene product from an avian erythroblastosis virus-transformed chick fibroblast cell line. J Biol Chem, 1985, 260, 2003-6.

37. Gilmore, T., DeClue, J.E.,Martin, G.S., Protein phosphorylation at tyrosine is induced by the v-erbB gene product in vivo and in vitro. Cell, 1985, 40, 609-18.

38. Di Fiore, P.P., Pierce, J.H., Fleming, T.P., et al., Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell, 1987, 51, 1063-70.

39. Rosenthal, A., Lindquist, P.B., Bringman, T.S., et al., Expression in rat fibroblasts of a human transforming growth factor-alpha cDNA results in transformation. Cell, 1986, 46, 301-9.

40. Watanabe, S., Lazar, E.,Sporn, M.B., Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor gene. Proc Natl Acad Sci U S A, 1987, 84, 1258-62.

41. Di Marco, E., Pierce, J.H., Fleming, T.P., et al., Autocrine interaction between TGF alpha and the EGF-receptor: quantitative requirements for induction of the malignant phenotype.

Oncogene, 1989, 4, 831-8.

42. Normanno, N., Bianco, C., De Luca, A., et al., Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer, 2003, 10, 1-21.

43. Abd El-Rehim, D.M., Pinder, S.E., Paish, C.E., et al., Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma.

Br J Cancer, 2004, 91, 1532-42.

44. Lee, J.C., Wang, S.T., Chow, N.H., et al., Investigation of the prognostic value of coexpressed erbB family members for the survival of colorectal cancer patients after curative surgery. Eur J Cancer, 2002, 38, 1065-71.

45. Lockhart, A.C.,Berlin, J.D., The epidermal growth factor receptor as a target for colorectal cancer therapy. Semin Oncol, 2005, 32, 52-60.

46. Furstenberger, G.,Senn, H.J., Insulin-like growth factors and cancer. Lancet Oncol, 2002, 3, 298-302.

47. Durai, R., Yang, W., Gupta, S., et al., The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis, 2005, 20, 203-20.

48. Grimberg, A.,Cohen, P., Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol, 2000, 183, 1-9.

49. Jansson, M., Hallen, D., Koho, H., et al., Characterization of ligand binding of a soluble human insulin-like growth factor I receptor variant suggests a ligand-induced conformational change. J Biol Chem, 1997, 272, 8189-97.

50. Ullrich, A., Gray, A., Tam, A.W., et al., Insulin-like growth factor I receptor primary structure:

comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J, 1986, 5, 2503-12.

51. Massague, J.,Czech, M.P., The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem, 1982, 257, 5038-45.

52. Xu, Y.Q., Grundy, P.,Polychronakos, C., Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor. Oncogene, 1997, 14, 1041-6.

53. Frasca, F., Pandini, G., Scalia, P., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol, 1999, 19, 3278-88.

54. Sciacca, L., Costantino, A., Pandini, G., et al., Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene, 1999, 18, 2471-9.

55. Siddle, K., Soos, M.A., Field, C.E., et al., Hybrid and atypical insulin/insulin-like growth factor I receptors. Horm Res, 1994, 41 Suppl 2, 56-64; discussion 65.

56. Soos, M.A., Nave, B.T.,Siddle, K., Immunological studies of type I IGF receptors and insulin receptors: characterisation of hybrid and atypical receptor subtypes. Adv Exp Med Biol, 1993, 343, 145-57.

57. Belfiore, A., The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des, 2007, 13, 671-86.

58. Samani, A.A., Yakar, S., LeRoith, D., et al., The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev, 2007, 28, 20-47.

59. Pandini, G., Vigneri, R., Costantino, A., et al., Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res, 1999, 5, 1935-44.

60. Baxter, R.C., Binoux, M.A., Clemmons, D.R., et al., Recommendations for nomenclature of the insulin-like growth factor binding protein superfamily. Endocrinology, 1998, 139, 4036.

61. Kim, H.S., Nagalla, S.R., Oh, Y., et al., Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci U S A, 1997, 94, 12981-6.

62. Kostecka, Y.,Blahovec, J., Insulin-like growth factor binding proteins and their functions (minireview). Endocr Regul, 1999, 33, 90-4.

63. Jones, J.I.,Clemmons, D.R., Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995, 16, 3-34.

64. Giorgetti, S., Ballotti, R., Kowalski-Chauvel, A., et al., The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem, 1993, 268, 7358-64.

65. Petley, T., Graff, K., Jiang, W., et al., Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses. Horm Metab Res, 1999, 31, 70-6.

66. Grey, A., Chen, Q., Xu, X., et al., Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells. Endocrinology, 2003, 144, 4886-93.

67. Hermanto, U., Zong, C.S.,Wang, L.H., Inhibition of mitogen-activated protein kinase kinase selectively inhibits cell proliferation in human breast cancer cells displaying enhanced insulin-like growth factor I-mediated mitogen-activated protein kinase activation. Cell Growth Differ, 2000, 11, 655-64.

68. Gual, P., Baron, V., Lequoy, V., et al., Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinology, 1998, 139, 884-93.

69. Zong, C.S., Chan, J., Levy, D.E., et al., Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem, 2000, 275, 15099-105.

70. Zong, C.S., Zeng, L., Jiang, Y., et al., Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth. J Biol Chem, 1998, 273, 28065-72.

71. Sekharam, M., Nasir, A., Kaiser, H.E., et al., Insulin-like growth factor 1 receptor activates c-SRC and modifies transformation and motility of colon cancer in vitro. Anticancer Res, 2003, 23, 1517-24.

72. Baron, V., Calleja, V., Ferrari, P., et al., p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J Biol Chem, 1998, 273, 7162-8.

73. Poiraudeau, S., Lieberherr, M., Kergosie, N., et al., Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes:

voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. J Cell Biochem, 1997, 64, 414-22.

74. Morrione, A., DeAngelis, T.,Baserga, R., Failure of the bovine papillomavirus to transform mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor genes. J Virol, 1995, 69, 5300-3.

75. Sell, C., Rubini, M., Rubin, R., et al., Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci U S A, 1993, 90, 11217-21.

76. Kaleko, M., Rutter, W.J.,Miller, A.D., Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol, 1990, 10, 464-73.

77. Werner, H.,LeRoith, D., The role of the insulin-like growth factor system in human cancer. Adv Cancer Res, 1996, 68, 183-223.

78. Renehan, A.G., Zwahlen, M., Minder, C., et al., Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 2004, 363, 1346-53.

79. Senger, D.R., Galli, S.J., Dvorak, A.M., et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219, 983-5.

80. Connolly, D.T., Heuvelman, D.M., Nelson, R., et al., Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest, 1989, 84, 1470-8.

81. Ferrara, N.,Henzel, W.J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989, 161, 851-8.

82. Ferrara, N., Gerber, H.P.,LeCouter, J., The biology of VEGF and its receptors. Nat Med, 2003, 9, 669-76.

83. Klein, A., Peptydy regulujące wzrost i różnicowanie komórek. Czynniki wzrostowe i cytokiny.

Seria Wydawnicza Wydziału Biochemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego, ed. A. Dubin. 2006, Kraków.

84. Meyer, M., Clauss, M., Lepple-Wienhues, A., et al., A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J, 1999, 18, 363-74.

85. Ogawa, S., Oku, A., Sawano, A., et al., A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem, 1998, 273, 31273-82.

86. Ferrara, N., Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol, 1999, 237, 1-30.

87. Matsumoto, T.,Mugishima, H., Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb, 2006, 13, 130-5.

88. Pajusola, K., Aprelikova, O., Pelicci, G., et al., Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene, 1994, 9, 3545-55.

89. Shibuya, M., Ito, N.,Claesson-Welsh, L., Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol, 1999, 237, 59-83.

90. Shibuya, M., Yamaguchi, S., Yamane, A., et al., Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene, 1990, 5, 519-24.

91. Tanaka, K., Yamaguchi, S., Sawano, A., et al., Characterization of the extracellular domain in vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn J Cancer Res, 1997, 88, 867-76.

92. Shibuya, M.,Claesson-Welsh, L., Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006, 312, 549-60.

93. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., et al., Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem, 1994, 269, 26988-95.

94. Fong, G.H., Rossant, J., Gertsenstein, M., et al., Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 1995, 376, 66-70.

95. Takahashi, T., Ueno, H.,Shibuya, M., VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells.

Oncogene, 1999, 18, 2221-30.

96. Matsumoto, T., Bohman, S., Dixelius, J., et al., VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J, 2005, 24, 2342-53.

97. Chung, G.G., Yoon, H.H., Zerkowski, M.P., et al., Vascular endothelial growth factor, FLT-1, and FLK-1 analysis in a pancreatic cancer tissue microarray. Cancer, 2006, 106, 1677-84.

98. Parikh, A.A., Fan, F., Liu, W.B., et al., Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol, 2004, 164, 2139-51.

99. Fakhari, M., Pullirsch, D., Paya, K., et al., Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J Pediatr Surg, 2002, 37, 582-7.

100. Lee, T.H., Seng, S., Sekine, M., et al., Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med, 2007, 4, e186.

101. Tsuchida, R., Das, B., Yeger, H., et al., Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling.

Oncogene, 2008, 27, 3923-34.

102. Knizetova, P., Ehrmann, J., Hlobilkova, A., et al., Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay.

Cell Cycle, 2008, 7, 2553-61.

103. Aesoy, R., Sanchez, B.C., Norum, J.H., et al., An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells. Mol Cancer Res, 2008, 6, 1630-8.

104. Garcia M, J.A., Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ, Global Cancer Facts &

Figures 2007. 2007, GA: American Cancer Society: Atlanta.

105. AmericanCancerSociety, Colorectal Cancer Facts & Figures 2008-2010. 2008, American Cancer Society: Atlanta.

106. Van Cutsem, E.,Geboes, K., The multidisciplinary management of gastrointestinal cancer. The integration of cytotoxics and biologicals in the treatment of metastatic colorectal cancer. Best Pract Res Clin Gastroenterol, 2007, 21, 1089-108.

107. AmericanCancerSociety, Cancer Facts & Figures 2010. 2010, American Cancer Society:

Atlanta.

108. AmericanCancerSociety, Colorectal Cancer Facts & Figures 2008-2010. 2010, American Cancer Society: Atlanta.

109. Kohne, C.H.,Lenz, H.J., Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist, 2009, 14, 478-88.

110. Yoshikawa, R., Kusunoki, M., Yanagi, H., et al., Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res, 2001, 61, 1029-37.

111. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J Clin Oncol, 1992, 10, 896-903.

112. Thirion, P., Michiels, S., Pignon, J.P., et al., Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J Clin Oncol, 2004, 22, 3766-75.

113. Goldberg, R.M., Advances in the treatment of metastatic colorectal cancer. Oncologist, 2005, 10 Suppl 3, 40-8.

114. Ng, K.,Zhu, A.X., Targeting the epidermal growth factor receptor in metastatic colorectal cancer. Crit Rev Oncol Hematol, 2008, 65, 8-20.

115. Hurwitz, H., Fehrenbacher, L., Novotny, W., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004, 350, 2335-42.

116. Cunningham, D., Humblet, Y., Siena, S., et al., Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med, 2004, 351, 337-45.

117. Saltz, L.B., Lenz, H.J., Kindler, H.L., et al., Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol, 2007, 25, 4557-61.

118. Tol, J., Koopman, M., Rodenburg, C.J., et al., A randomised phase III study on capecitabine, oxaliplatin and bevacizumab with or without cetuximab in first-line advanced colorectal cancer, the CAIRO2 study of the Dutch Colorectal Cancer Group (DCCG). An interim analysis of toxicity. Ann Oncol, 2008, 19, 734-8.

119. Thomas, A.L., Trarbach, T., Bartel, C., et al., A phase IB, open-label dose-escalating study of the oral angiogenesis inhibitor PTK787/ZK 222584 (PTK/ZK), in combination with FOLFOX4 chemotherapy in patients with advanced colorectal cancer. Ann Oncol, 2007, 18, 782-8.

120. Drewinko, B., Romsdahl, M.M., Yang, L.Y., et al., Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line. Cancer Res, 1976, 36, 467-75.

121. Herlyn, M., Kath, R., Williams, N., et al., Growth-regulatory factors for normal, premalignant, and malignant human cells in vitro. Adv Cancer Res, 1990, 54, 213-34.

122. Mendelsohn, J., Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J Natl Cancer Inst Monogr, 1992, 125-31.

123. Normanno, N., De Luca, A., Salomon, D.S., et al., Epidermal growth factor-related peptides as targets for experimental therapy of human colon carcinoma. Cancer Detect Prev, 1998, 22, 62-7.

124. Tahara, E., Growth factors and oncogenes in human gastrointestinal carcinomas. J Cancer Res Clin Oncol, 1990, 116, 121-31.

125. Andreis, P.G., Neri, G., Tortorella, C., et al., Tyrphostin-23 enhances steroid-hormone secretion from dispersed human and rat adrenocrotical cells. Endocr Res, 2000, 26, 319-32.

126. Gazit, A., Yaish, P., Gilon, C., et al., Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem, 1989, 32, 2344-52.

127. Strawn, L.M., McMahon, G., App, H., et al., Flk-1 as a target for tumor growth inhibition.

Cancer Res, 1996, 56, 3540-5.

128. Wang, Y., Miao, H., Li, S., et al., Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol, 2002, 283, C1540-7.

129. Neagoe, P.E., Lemieux, C.,Sirois, M.G., Vascular endothelial growth factor (VEGF)-A165-induced prostacyclin synthesis requires the activation of VEGF receptor-1 and -2 heterodimer. J Biol Chem, 2005, 280, 9904-12.

130. Cho, S.J., George, C.L., Snyder, J.M., et al., Retinoic acid and erythropoietin maintain alveolar development in mice treated with an angiogenesis inhibitor. Am J Respir Cell Mol Biol, 2005, 33, 622-8.

131. Brakenhielm, E., Substrate matters: reciprocally stimulatory integrin and VEGF signaling in endothelial cells. Circ Res, 2007, 101, 536-8.

132. Lee, K.S., Min, K.H., Kim, S.R., et al., Vascular endothelial growth factor modulates matrix metalloproteinase-9 expression in asthma. Am J Respir Crit Care Med, 2006, 174, 161-70.

133. Parrizas, M., Gazit, A., Levitzki, A., et al., Specific inhibition of insulin-like growth factor-1 and insulin receptor tyrosine kinase activity and biological function by tyrphostins. Endocrinology, 1997, 138, 1427-33.

134. Camirand, A.,Pollak, M., Co-targeting IGF-1R and c-kit: synergistic inhibition of proliferation and induction of apoptosis in H 209 small cell lung cancer cells. Br J Cancer, 2004, 90, 1825-9.

135. Cosaceanu, D., Carapancea, M., Alexandru, O., et al., Comparison of three approaches for inhibiting insulin-like growth factor I receptor and their effects on NSCLC cell lines in vitro.

Growth Factors, 2007, 25, 1-8.

136. Deutsch, E., Maggiorella, L., Wen, B., et al., Tyrosine kinase inhibitor AG1024 exerts antileukaemic effects on STI571-resistant Bcr-Abl expressing cells and decreases AKT phosphorylation. Br J Cancer, 2004, 91, 1735-41.

137. von Willebrand, M., Zacksenhaus, E., Cheng, E., et al., The tyrphostin AG1024 accelerates the degradation of phosphorylated forms of retinoblastoma protein (pRb) and restores pRb tumor suppressive function in melanoma cells. Cancer Res, 2003, 63, 1420-9.

138. Gillies, R.J., Didier, N.,Denton, M., Determination of cell number in monolayer cultures. Anal Biochem, 1986, 159, 109-13.

139. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65, 55-63.

140. Givan, A.L., Flow Cytometry: First Principles, Second Edition, ed. I. A John Wiley & Sons.

2001: A John Wiley & Sons, Inc.

141. Shapiro, H.M., Practical Flow Cytometry, 4th Ed., ed. I. A John Wiley & Sons. 2003: A John Wiley & Sons, Inc.

142. Rabinowitch, P., Basics of DNA Cell Cycle Analysis, in INTRODUCTION TO CELL CYCLE ANALYSIS, Phoenix Flow System: San Diego.

143. Quackenbush, J., Microarray data normalization and transformation. Nat Genet, 2002, 32 Suppl, 496-501.

144. Stanisz, A., Przystępny kurs statystyki z zastosowaniem STATISTICA PL

na przykładach z medycyny. Vol. Tom 3. Analizy wielowymiarowe. 2007, Kraków: StatSoft Polska. 500.

145. Shankar, V., Ciardiello, F., Kim, N., et al., Transformation of an established mouse mammary epithelial cell line following transfection with a human transforming growth factor alpha cDNA.

Mol Carcinog, 1989, 2, 1-11.

146. Bouche, O., Beretta, G.D., Alfonso, P.G., et al., The role of anti-epidermal growth factor receptor monoclonal antibody monotherapy in the treatment of metastatic colorectal cancer.

Cancer Treat Rev, 2010, 36 Suppl 1, S1-10.

147. Burtness, B., Clinical use of monoclonal antibodies to the epidermal growth factor receptor in colorectal cancer. Oncology (Williston Park), 2007, 21, 964-70; discussion 970, 974, 976-7.

148. Capdevila, J., Elez, E., Macarulla, T., et al., Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev, 2009, 35, 354-63.

149. Cohen, R.B., Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin Colorectal Cancer, 2003, 2, 246-51.

150. Diasio, R.B.,Fourie, J., Targeting the epidermal growth factor receptor in the treatment of colorectal cancer: state of the art. Drugs, 2006, 66, 1441-63.

151. Galizia, G., Lieto, E., De Vita, F., et al., Cetuximab, a chimeric human mouse anti-epidermal

151. Galizia, G., Lieto, E., De Vita, F., et al., Cetuximab, a chimeric human mouse anti-epidermal

Powiązane dokumenty