• Nie Znaleziono Wyników

Pokazano też znaczenie jonów w danych symulacjach

• Wykorzystując model gruboziarnisty ( Go ) zbadano wypływ tłoku

mole-kularnego na dynamiki trzech białek: 1CRN, 1YPC oraz 6LYZ. Pokazano,

że znaczenie ma ilość oraz wielkość kul stanowiących tłok i że kule o

wiel-kości zbliżonej do aminokwasu bardziej zmieniają dynamikę białka od kul

większych oraz, że ruchliwość obszarów białka bez wyraźnej struktury

dru-gorzędowej jest najbardziej podatna na wpływ otoczenia.

Literatura

[1] J.J. Gray. The interaction of proteins with solid surfaces.

Curr.Opin.Struct.Biol. 2004, 14 110-115

[2] K. Nakanishi, T. Sakiyama i K. Imamura. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J.

Biosci. Bioeng. 2001, 91 233-244

[3] B.J. Yoon i A.M. Lenhoff. Computation of the Electrostatic Interaction Energy between a Protein and a Charged Surface. J. Phys. Chem. 1992, 96 3130-3134

[4] A.R. Bizzarri, B. Bonanni, G. Constantini i S. Cannistraro. A Combined Atomic Force Microscopy and Molecular Dynamics Simulation Study on a Plastocyanin Mutant Chemisorbed on a Gold Surface. Chem. Phys.

Chem. 2003, 4 1189-1195

[5] M. Hoefling, F. Iori, S. Corni i K-E Gottschalk. The Conformations of Amino Acids on a Gold(111) Surface. Chem. Phys. Chem 2010, 11 1763-1767

[6] Z. Adamczyk, M. Nattich, M. Wasilewska, M. Sadowska. Deposition of colloid particles on protein layers: Fibrinogen on mica. J. Coll. Inter.

Sci. 2011, 356 454-464

[7] G. Nawrocki i M.Cieplak. Amino acids and proteins at ZnO–water in-terfaces in molecular dynamics simulations. Phys. Chem. Chem. Phys.

2013, 15 13628-13636

[8] Y.K. Gao, F. Traeger, O. Shekhah, H. Idriss, C. W¨ oll. Probing the in-teraction of the amino acid alanine with the surface od ZnO(1010). J.

Coll. Inter .Sci. 2009, 338 16-21

[9] J.B.L. Martins, E. Longo, O.D.R. Salmon, V.A.A. Espinoza, C.A. Taft.

Tne interaction of H

2

, CO, CO

2

, H

2

O and N H

3

on ZnO surfaces:an Oniom Study. Chem. Phys. Lett. 2004, 400 481-486

[10] L. Calzolai, F. Franchini, D. Gilliland i F. Rossi. Protein - Nanoparticle Interaction: Identification of the Ubiquitin-Gold Nanoparticle Interac-tion Site. Nano Lett. 2010, 10 3101-3105

[11] A.R. Bazzarri. Topological and dynamical properties of Azurin anchored to a gold substrate as investigated by molecular dynamics simulation.

Biophys. Chem. 2006, 122 206-214

[12] M. Hoefling, F. Iori, S. Corni, K-E. Gottschalk. Interaction of Amino Acids with the Au(111) Surface: Adsorption Free Energies from Mole-cular Dynamics Simulations. Langmuir 2009, 26 8347-8351

[13] S. Ravichandran, J.D. Madura i J. Talbot. A Brownian Dynamics Study of the Initial Stage of Hen Egg-White Lysozyme Adsorption at a Solid Interface. J. Phys. Chem. B, 2001, 105 3610-3613

[14] F. Carlsson, E. Hyltner, T. Arnebrant, M. Malmsten, P. Linse. Lysozyme Adsorption to Charged Surfaces. A Monte Carlo Study. J. Phys. Chem.

B 2004, 108 9871-9881

[15] M. Skep¨ o, P. Linse, T. Arnebrant. Coarse-Grained Modeling of Proline Rich Protein 1 ( PRP-1 ) in Bulk Solution and Adsorbed to a Negatively Charged Surface. J. Phys. Chem. B 2006, 110 12141-12148

[16] D. Asthagiri i A.M. Lenhoff. Influence of Structural Details in Modeling Electrostatically Driven Protein Adsorption. Langmuir 1997 13 6761-6768

[17] C.M. Roth i A.M. Lenhoff. Electrostatic and van der Waals Contribu-tions to Protein Adsorption: Comparison of Theory and Experiment.

Langmuir 1995 11 3500-3509

[18] D. Halliday, R. Resnick. Fizyka. Wydawnictwo Naukowe PWN, War-szawa, 1999

[19] P.P. Pompa, A. Bramanti, G. Maruccio i R. Cingolani. Retention of nativelike conformation by protein embedded in high external electric fields. J. Chem. Phys. 2005, 122 181102-1 - 181102-4

[20] P. Ojeda-May i M.E. Garcia. Electric Field-Driven Disruption of a Na-tive β-Sheet Protein. Conformation and Generation of a Helix-Structure.

Biophys. J. 2010, 99 595-599

[21] F. Toschi, F. Lugli, F. Biscarini i F. Zerbetto. Effects of Electric Field Stress on a β-Amylod Peptide. J. Phys. Chem. B 2009, 113 369-376 [22] A. Budi, F.S. Legge, H. Treutlein i I. Yarovsky. Electric Field Effects

on Insulin Chain-B Conformation. J. Phys. Chem. B 2005, 109 22641-22648

[23] N.J. English i D.A. Mooney. Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study. J. Chem. Phys.

2007, 126 091105-1 - 091105-4

[24] M. Feig i Y. Sugita. Variable Interactions between Protein Crowders and Biomolecular Solutes Are Important in Understanding Cellular Crow-ding. J. Phys. Chem. B 2012, 116 599-605

[25] A.C. Miklos, M. Sarkar, Y. Wang, G.J. Pielak. Protein crowding tunes protein stability. J.Am.Chem.Soc. 2011, 133 7116 - 7120

[26] M.S. Cheung, D. Klimov i D. Thirumalai. Molecular crowding enhances native state stability and refolding rates of globular proteins. PNAS 2005, 102 4753-4758

[27] Dieter W. Heermann. Podstawy Symulacji komputerowych w fizyce.

Wydawnictwo Naukowo-Techniczne. Warszawa. 1989.

[28] T. Hansson, Ch.Oostenbrink i W.F van Gunsteren. Molecular dynamics symulations. Curr. Opin. Struct. Biol. 2002, 12 190–196

[29] M. Cieplak i Sz. Niewieczerzał. Hydrodynamic interactions in protein folding. J.Chem.Phys. 2009, 130 124906

[30] H.J. Risselada i S.J. Marrink. The molecular face of lipid rafts in model membranes PNAS 2008, 105 17367-17372

[31] A.M. Smondyrev, M.L. Berkowitz. Molecular Dynamics Simulations of DPPC Bilayer in DMSO. Biophys.J. 1999, 76 2472-2478

[32] T.E. Cheatham, J.L. Miller, T. Fox, T.A. Darden i P.A. Kollman. Mo-lecular Dynamics Simulations on Solvated BiomoMo-lecular Systems: The Particle Mesh Ewald Method Lead to Stable Trajectories of DNA, RNA and Proteins. J.Am.Chem.Soc. 1995, 117 4193-4194

[33] S.T. Ngo i M.S. Li. Curcumin Binds to Aβ

1−40

Peptides and Fi-brils Stronger Than Ibuprofen and Naproxen J.Phys.Chem.B 2012, 116 10165-10175

[34] Ch. Oostenbrink, A. Villa, A.E. Mark i W.F. van Gunsteren. A Bio-molecular Force Field Based on the Free Enthalpy of Hydration and So-lvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6. J Comput Chem 2004, 25 1656-1676

[35] Ch. Oostenbrink, T.A. Soares, N.F.A. van der Vegt, W.F. van

Gunste-ren. Validation of the 53A6 GROMOS force field. Eur Biophys J 2005,

34 273-284

[36] M.V. Maslova, L.G. Gerasimova i W. Forsling. Surface Properties of Cleaved Mica. Coll. J. 2004, 66 322-328

[37] G. Qi, Y. Yang, H. Yan, L. Guan, Y. Li, X. Qiu, C. Wang. Quantifying Surface Charge Density by Using an Electric Force Microscope with a Referential Structure. J. Phys. Chem. 2009, 113 204-207

[38] P. Mulheran i K. Kubiak. Protein adsorption mechanism on solid sur-faces: lysozyme-on-mica. Mol.Sim. 2009, 35 561-566

[39] K. Kubiak i P.A. Mulheran. Molecular Dynamics Simulations of Henn Egg White Lysozyme Adsorption at a Charged Solid Surface. J. Phys.

Chem. B 2009, 113 12189-12200

[40] A. Starzyk i M. Cieplak. Denaturation of proteins near polar surfaces.

J. Chem. Phys. 2011, 135 235103-1 - 235103-10

[41] A. Starzyk i M. Cieplak. Proteins in the electric field near the surface of mica. J. Chem. Phys. 2013, 139, 045102-1 - 045102-9

[42] J.W. Neidigh, R.M. Fesinmeyer i N.H. Andersen. Designing a 20-residue protein. Nat. Struct. Biol. 2002, 9 425-430

[43] A.M. Gronenborn, D.R. Filpula, N.Z. Essig, A. Achari, M. Whitlow, P.T. Wingfield, G.M. Clore. A Novel, Highly Stable Fold of the Immu-noglobulin Binding Domain of Streptococcal Protein G. Science 1991, 253 657-661

[44] J. Hakanp¨ a, G.R. Szilvay, H. Kaljunen, M. Maksimainen, M. Linder i J. Rouvinen. Two crystal structures of Trichoderma reesei hydrophobin HFBI - The structure of a protein amphiphile with and without detergent interaction. Protein Sci. 2006, 15 2129-2140

[45] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C.

Berendsen. GROMACS: Fast, Flexible, and Free. J. Comput. Chem.

2005, 26 1701-1718

[46] H.J.C. Berendsen, J.R. Grigera i T.P. Straatsma. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91 6269-6271

[47] M.J Abraham, J.E. Gready. Optimization of Parameters for Molecular

Dynamics Simulation Using Smooth Particle Mesh Ewald in GROMACS

4.5. J.Comput.Chem. 2011, 32 2031-2040

[48] B. Kasemo. Biological surface science. Curr. Opin. Sol. St. & Mat. Sci.

1998, 3 451-459

[49] M. Wojciechowski, P. Szymczak i M. Cieplak. The influence of hydrody-namic interactions on protein dyhydrody-namics in confined and crowded spaces - assessment in simple models. Phys. Biol. 2010, 7 046011

[50] O. Szklarczyk, K. Staroń i M. Cieplak. Native state dynamics and me-chanical properties of human topoisomerase I within a structure-based coarse-grained model. Proteins 2009, 77 420-431

[51] J.I. Sułkowska i M. Cieplak. Selection of Optimal Variants of Go-Like Models of Proteins through Studies of Stretching. Biophys. J. 2008, 95 3174-3191.

[52] M. Sikora, P. Szymczak, D. Thompson, M. Cieplak. Linker-mediated assembly of gold nanoparticles into multimeric motifs. Nanotechnology 2011, 22 445601

[53] W.J. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey i M.L.

Klein. Comparison of Simple Potential Functions for Simulating Liquid Water. J.Chem.Phys. 1983, 79 926-935

[54] A. Kuzmanic i B. Zagrovic. Determination of Ensemble-Average Pair-wise Root Mean-Square. Deviation from Experimental B-Factors. Bio-phys. J. 2010 98 861-871

[55] M.M. Teeter. Water structure of a hydrophobic protein at atomic reso-lution: Pentagon rings of water molecules in crystals of crambine. Proc.

Natl. Acad. Sci. 1984, 81 6014-6018

[56] Y. Harpaz, N. Elmasry, A.R. Fersht i K. Henrick. Direct observation of

better hydration at the N terminus of an α helix with glycine rather than

alanine as the N-cap residue. Proc. Natl. Acad. Sci. 1994, 91 311-315

8 Aneks

THE JOURNAL OF CHEMICAL PHYSICS 135, 235103 (2011)

Powiązane dokumenty