• Nie Znaleziono Wyników

Przestrzeń Y jest proksymalna, jednostajnie sztywna i zawiera

W dokumencie Index of /rozprawy2/11038 (Stron 67-71)

sność specyfikacji i ich dynamika

Twierdzenie 5.22. Przestrzeń Y jest proksymalna, jednostajnie sztywna i zawiera

parę DC2.

Dowód. Bezpośrednio z definicji przestrzeni Y wynika, że funkcje wn : R → [0, 1] wykorzystane w konstrukcji są okresowe i dodatkowo blok 12cn występuje relatywnie gęsto w słowie ω(n) = wn(0)wn(1)wn(2) · · · ∈ I dla dowolnego n ∈ N. Wynika stąd, że także w słowie α generującym przestrzeń Y blok 12cn występuje relatywnie gęsto. Rozumowanie analogiczne jak w dowodzie twierdzenia 5.17 dowodzi, że Y jest przestrzenią proksymalną.

Dla dowodu jednostajnej sztywności oraz istnienia pary DC2 wystarczy skorzy-stać z lematów 5.20 oraz 5.21.

Bibliografia

[1] R. Adler, A. Konheim, M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.

[2] E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Conver-gence in ergodic theory and probability (Columbus, OH, 1993), 25–40, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996.

[3] E. Akin, Lectures on Cantor and Mycielski sets for dynamical systems, Chapel Hill Ergodic Theory Workshops, Contemp. Math., Vol. 356, Amer. Math. Soc., Providence, R.I., (2004), 21-79

[4] E. Akin, S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433. [5] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications,

Genera-lizations, Cambridge University Press, Cambridge, UK, 2003,

[6] Ll. Alseda, J. Libre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Sec.Ed., World Scientific, Andvanced Series of Nonlinear Dy-namics, 5, Singapore, 2000,

[7] F. Balibrea, J. Sm´ıtal, Strong distributional chaos and minimal sets, Topology Appl., 156(9) (2009), 1673-1678.

[8] F. Balibrea, J. Sm´ıtal, M. St´efankova, The three versions of distributional chaos, Chaos Solitons Fractals, 23(5) (2005), 1581-1583.

[9] J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley, B. Trotta, Dynamics of spacing shifts, Disc. Cont. Dyn. Sys., 33(9) (2013), 4207-4232.

[10] A. Bertrand, Specification, Synchronization, Average Length, Coding Theory and Applications, Lect. Notes in Comp. Sci., 311 (1988), 86-95.

[11] F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, J. Reine Agnew. Math. 547 (2002), 51-68.

[12] F. Blanchard, B. Host, A. Maass, Topological Complexity, Ergod.Th. and Dyn. Sys., 20(3) (2000), 641-662.

[13] F. Blanchard, B. Host, S. Ruette, Asymptotic pairs in positive-entropy systems, Ergod. Th. and Dynam. Sys., 22 (2002), 671-686.

[14] F. Blanchard, W. Huang, L. Snoha, Topological size of scrambled sets, Colloq. Math. 110(2) (2008), 293-361.

[15] L. S. Block, W. A. Coppel, Dynamics in one dimension, Lecture Notes in Ma-thematics, 1513, Springer-Verlag, Berlin, (1992).

[16] R. Bowen, Topological entropy and axiom A, Global Analysis (Proc. Sympos. Pure Math., Vol.XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., (1970), 23-41.

[17] T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.

[18] T. Downarowicz, Survey on odometers and Toeplitz flows, Algebraic and Topo-logical Dynamics, 385 (2005), 7-37.

[19] M. Foryś, On the Growth Rate of Words in Generalized Thue-Morse Sequence, Int. J. Comp. Math., 91(8) (2014), 1627-1634.

[20] M. Foryś, W. Huang, J. Li, P. Oprocha Invariant scrambled sets, uniform rigi-dity, and weak mixing, Israel Journ. Math., accepted.

[21] M. Foryś, P. Oprocha, P. Wilczyński, Factor maps and invariant distributional chaos, J. Diff. Eq., 256 (2014), 475-502.

[22] H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Math. Syst. Theory, 1(1) (1967), 1-49.

[23] T. N. T. Goodman, Topological Sequence Entropy, Proc. London Math. Soc.

29(3) (1974), 331-350.

[24] G. Harańczyk, D. Kwietniak, When a lower entropy implies stronger Devaney chaos, Proc. Amer. Math. Soc., 137 (2009), 2063-2073.

[25] W. Huang, X. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357(2) (2005), 669-694.

[26] W. Huang, X. Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergod.Th.and Dynam.Sys., 21 (2001), 77-91.

[27] W. Huang, X. Ye, Minimal sets in almost equicontinuous systems, Tr. Mat. Inst. Steklova, 244 Din. Sist. i Smezhnye Vopr. Geom., (2004), 297-304. [28] K. Jankova, J. Sm´ital, A characterization of chaos, Bull. Austral. Math. Soc.

34(2) (1986), 283-292.

[29] T. Kamae, Maximal pattern complexity as topological invariants, preprint, To-kyo University, available via http://www14.plala.or.jp/kamae/invariants.pdf, 25.XI.2012,

[30] T. Kamae, L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory and Dynamical Systems, 22(4) (2002), 1191-1199.

[31] Y. Katznelson, B. Weiss, When all points are recurrent/generic, Ergodic Theory Dynam. Systems, 9 (1989), 309-320.

[32] B. G. Klein, Homomorphisms of symbolic dynamical systems, Math. Systems Theory, 6 (1972), 107-122.

[33] S. Kolyada, L. Snoha, Some aspects of topological transitivity - a survey, Proc.ECIT-94, Grazer Math. Ber., 335 (1997), 3-35.

[34] P. Kurka, Topological and symbolic dynamics, Soci´et´e Math´ematique de France, 2003,

[35] A. G. Kushnirenko, On metric invariants of entropy type, Russian Math. Su-rveys, 22 (1967), 53-61.

[36] J. Kwiatkowski, A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France, 115(1) (1987), 19-33.

[37] T. Y. Li, J. A. Yorke, Period three implies chaos, Amer.Math.Monthly, 82(10) (1975), 985-992.

[38] G. Liao, L. Wang, Alomst periodicity and distributional chaos, Amer. Math. Monthly, 82(10), (1975), 985-992.

[39] A. Maass, S. Shao, Structure of bounded topological-sequence-entropy minimal systems, Journ. Lond. Math. Soc., 76(3) (2007), 702-718.

[40] B. Marcus, D. A. Lind, Symbolic dynamics and coding, Cambridge University Press 1995,

[41] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc., 232 (1977), 343-355.

[42] M. Misiurewicz, J. Smital, Smooth chaotic maps with zero topological entropy, Ergodic Theory Dynamic. Systems 8(3) (1988), 421-424.

[43] M. Morse, G. A. Hedlund, Symbolic dynamics, American Journal of Mathema-tics, 60(4) (1938), 815-866.

[44] P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc., 361(9) (2009), 4901-4925.

[45] P. Oprocha, Minimal systems and distributionally scrambled sets, Bull. Soc. Math. France 140(3) (2012), 401-439.

[46] P. Oprocha, M. ˇStef´ankov´a, Specification property and distributional chaos al-most everywhere, Proc. Amer. Math. Soc., 136(11) (2008), 3931-3940.

[47] R. Pikuła, On some notions of chaos in dimension zero, Colloq. Math., 107 (2007), 167-177.

[48] B. Schweizer, J. Sm´ital, Measures of chaos and a spectral decomposition of dynamical system on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.

[49] P. S´e´ebold, On some generalizations of the Thue-Morse morphism, Theoret. Comput. Sci., 292 (2003), 283-298.

[50] K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.

[51] A. Sklar, J. Sm´ital, Distributional chaos on compact metric spaces via specifi-cation property, Journ. of Math. Anal. and Applic., 241 (2000), 181-188. [52] J. Sm´ıtal, A chaotic function with some extremal properties, Proc. Amer. Math.

Soc. 87(1) (1983), 54-56.

[53] J. Sm´ıtal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297(1), (1986), 269-282.

[54] J. Sm´ıtal, Distributional chaos and topological entropy, Real Analysis Exchange, Summer Symposium (2006), 61-66.

[55] B. Solomyak, A. Vershik, The adic realization of the Morse transformation and the extension of its action to the solenoid, Journ. Math. Sci., 156(6) (2009), 809-818,

[56] F. Tan, J. Xiong, Chaos via Furstenberg family couple, Topology Appl., 156(3) (2009), 525-532.

[57] J. Tromp, J. Shallit, Subword complexity of a generalized Thue-Morse word, Inform. Process. Lett., 54(6) (1995), 313-316.

[58] P. Walters, An introduction to ergodic theory, Graduate Texts in Math., 79 Springer-Verlag, New-York-Berlin, 1982,

[59] L. Wang, G. Liao, Z. Chu, X. Duan, The set of reccurent points of a continuous self-map on an interval and strong chaos, J. Appl. Math. Comput. 14 (2004), 277-288

[60] B. Weiss, Multiple recurrence and doubly minimal systems, Contemp. Math,

215 (1998), 189-196.

[61] B. Weiss, Subshifts on finite type and sofic systems, Monatschefte f¨ur Mathe-matik 77 (1973), 463-474.

[62] J. C. Xiong, A chaotic map with topological entropy, Acta Math. Sci., 6(4) (1986), 439-443.

W dokumencie Index of /rozprawy2/11038 (Stron 67-71)

Powiązane dokumenty