• Nie Znaleziono Wyników

The small power PM BLDC motors play a more and more important role in the industry and domestic applications as it was presented in Introduction. Therefore, further thermal and coupled studies of the other machines of this type could fill the literature gap. The fur-ther analyses may be extended to the coupling procedure with the mechanical field. It would allow for the estimation of the thermal and mechanical stress for the specific motor compo-nents.

In the dissertation, thermal numerical models based on the steady state calculations were introduced. Therefore, further research could incorporate the transient models to be investigated. The validation of the future models can be conducted on the basis of the pre-sented experimental part of the dissertation. The transient analysis would also allow for the investigation of the other heat dissipation intensification concepts such as application of the PCM during the short overload periods.

In the further work, the additional active methods could be also investigated. In accor-dance with the methods presented in the Introduction Section, the approaches such as the water jackets, heat pipes, oil spraying on the basis of biodegradable ingredients could be the object of these studies. The multiphase modelling approach of the heat pipes application in the small power electric motors could also be worth studying.

Bibliography

[1] C. Thiel, W. Nijs, S. Simoes, J. Schmidt, A. van Zyl, E. Schmid, The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation, Energy Policy 96 (2016) 153–166. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❡♥♣♦❧✳

✷✵✶✻✳✵✺✳✵✹✸.

[2] K. G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu, V. Srinivasan, Quantifying the promise of lithium–air batteries for electric vehicles, Energy & Envi-ronmental Science 7 (2014) 1555.❞♦✐✿✶✵✳✶✵✸✾✴❝✸❡❡✹✸✽✼✵❤.

[3] L. Chen, L. L. Shaw, Recent advances in lithium-sulfur batteries, Journal of Power Sources 267 (2014) 770–783. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❥♣♦✇s♦✉r✳✷✵✶✹✳✵✺✳✶✶✶.

[4] S. M. Rezvanizaniani, Z. Liu, Y. Chen, J. Lee, Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility, Journal of Power Sources 256 (2014) 110–124. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❥♣♦✇s♦✉r✳

✷✵✶✹✳✵✶✳✵✽✺.

[5] T.-F. Yi, S.-Y. Yang, Y. Xie, Recent advances of Li 4 Ti 5 O 12 as a promising next gen-eration anode material for high power lithium-ion batteries, J. Mater. Chem. A 3 (11) (2015) 5750–5777.❞♦✐✿✶✵✳✶✵✸✾✴❈✹❚❆✵✻✽✽✷❈.

[6] H. Lund, W. Kempton, Integration of renewable energy into the transport and elec-tricity sectors through V2G, Energy Policy 36 (9) (2008) 3578–3587. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳

❡♥♣♦❧✳✷✵✵✽✳✵✻✳✵✵✼.

[7] J. A. P. Lopes, F. J. Soares, P. M. R. Almeida, Integration of Electric Vehicles in the Electric Power System, Proceedings of the IEEE 99 (1) (2011) 168–183. ❞♦✐✿✶✵✳✶✶✵✾✴❏P❘❖❈✳

✷✵✶✵✳✷✵✻✻✷✺✵.

[8] X. D. Xue, K. W. E. Cheng, N. C. Cheung, Selection of electric motor drives for electric vehicles, Power Engineering Conference, 2008. AUPEC ’08. Australasian Universities (2008) 1–6.

[9] K. Hameyer, R. J. M. Belmans, Permanent magnet excited brushed DC motors, IEEE Transactions on Industrial Electronics 43 (2) (1996) 247–255. ❞♦✐✿✶✵✳✶✶✵✾✴✹✶✳

✹✾✶✸✹✽.

[10] K. T. Chau, C. C. Chan, C. Liu, Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles, IEEE Transactions on Industrial Electronics 55 (6) (2008) 2246–2257.❞♦✐✿✶✵✳✶✶✵✾✴❚■❊✳✷✵✵✽✳✾✶✽✹✵✸.

[11] D. Staton, A. Boglietti, A. Cavagnino, Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors, IEEE Transactions on Energy Conversion 20 (2005) 620–628. ❞♦✐✿✶✵✳✶✶✵✾✴❚❊❈✳✷✵✵✺✳

✽✹✼✾✼✾.

[12] V. Madonna, P. Giangrande, L. Lusuardi, A. Cavallini, C. Gerada, M. Galea, Thermal overload and insulation aging of short duty cycle, aerospace motors, IEEE Trans. Ind.

Electron. PP (c) (2019) 1–1. ❞♦✐✿✶✵✳✶✶✵✾✴t✐❡✳✷✵✶✾✳✷✾✶✹✻✸✵.

[13] J. Mróz, Termiczne ograniczenia pracy układów nape¸dowych z silnikami induk-cyjnymi dwuklatkowymi, Przegla¸d Elektrotechniczny 1 (8) (2017) 177–181, (in Polish).

❞♦✐✿✶✵✳✶✺✶✾✾✴✹✽✳✷✵✶✼✳✵✽✳✹✺.

[14] G. Almandoz, I. Gómez, G. Ugalde, J. Poza, A. J. Escalada, Study of Demagnetization Risk in PM Machines, IEEE Trans. Ind. Appl. PP (c) (2019) 1.❞♦✐✿✶✵✳✶✶✵✾✴❚■❆✳✷✵✶✾✳

✷✾✵✹✹✺✾.

[15] W. Xia, Y. He, H. Huang, H. Wang, X. Shi, T. Zhang, J. Liu, P. Stamenov, L. Chen, J. Coey, C. Jiang, Initial irreversible losses and enhanced high-temperature performance of rare-earth permanent magnets, Advanced Functional MaterialsCited By 0 (2019).

❞♦✐✿✶✵✳✶✵✵✷✴❛❞❢♠✳✷✵✶✾✵✵✻✾✵.

URL ❤tt♣s✿✴✴✇✇✇✳s❝♦♣✉s✳❝♦♠✴✐♥✇❛r❞✴r❡❝♦r❞✳✉r✐❄❡✐❞❂✷✲s✷✳

✵✲✽✺✵✻✹✹✽✹✽✷✻✫❞♦✐❂✶✵✳✶✵✵✷✪✷❢❛❞❢♠✳✷✵✶✾✵✵✻✾✵✫♣❛rt♥❡r■❉❂✹✵✫♠❞✺❂

✸✵✷❝✻✷❛❡✶✶❢✶✺✽✷✽✷✷❜✺❜✽✼✷✵✻✷❡✶❡✸✽

[16] M. Korkosz,Wpływ temperatury na charakterystyki statyczne silnika reluktancyjnego przeła¸czalnego, Przegla¸d Elektrotechniczny 90 (2) (2014) 72–74, (in Polish). ❞♦✐✿✶✵✳

✶✷✾✶✺✴♣❡✳✷✵✶✹✳✵✷✳✷✵.

URL❤tt♣✿✴✴✇✇✇✳r❡❞✳♣❡✳♦r❣✳♣❧✴❛rt✐❝❧❡s✴✷✵✶✹✴✷✴✷✵✳♣❞❢

[17] M. Korkosz, P. Bogusz, J. Prokop, Complex Performance Analysis and Comparative Study of Very High-Speed Switched Reluctance Motors, IEEE Trans. Magn. PP (2019) 1–14.❞♦✐✿✶✵✳✶✶✵✾✴t♠❛❣✳✷✵✶✾✳✷✾✶✵✹✾✷.

[18] A. H. Armstrong, A study of the heating of railway motors., Transactions of the Ameri-can Institute of Electrical Engineers XIX (1902) 809–832.

[19] W. Hartnell, Heating of ventilated and enclosed motors., Journal of the Institution of Electrical Engineers 41 (1908) 490–500.

[20] M. Gray, The heating of induction motors, Transactions of the American Institute of Electrical Engineers XXVIII (1909) 527–553.

[21] H. G. Reist, Eden T. S., Method of Determining Temperature of Alternating-Current Generators and Motors and Room Temperature, Trans. Am. Inst. Electr. Eng. XXXII (1913) 177–184.

[22] M. W. Day, R. A. Beekman, Effect of room temperature on temperature rise of mo-tors and generamo-tors, Proc. Am. Inst. Electr. Eng. 32 (2) (1913) 415–436. ❞♦✐✿✶✵✳✶✶✵✾✴

♣❛✐❡❡✳✶✾✶✸✳✻✻✻✶✶✽✼.

[23] G. Semenza, The Relation of Overload to the Inner Temperature of Machines, The American Institute of Electrical Engineers XLI (1922) 872–874.❞♦✐✿✶✵✳✶✶✵✾✴t✲❛✐❡❡✳

✶✾✷✷✳✺✵✻✵✽✹✸.

[24] George E. Luke, The cooling of electric machines, Trans. Am. Inst. Electr. Eng. XLII (1923) 636–652.

[25] E. Hughes, The rise and distribution of temperature in small electrical machines, J.

Inst. Electr. Eng. 62 (331) (1923) 628–648. ❞♦✐✿✶✵✳✶✵✹✾✴❥✐❡❡✲✶✳✶✾✷✹✳✵✵✾✵.

[26] D. A. Lightband, Temperature Rise of Ventilated Railway: Motor Armatures, Trans. Am.

Inst. Electr. Eng. 51 (2) (1932) 502–509. ❞♦✐✿✶✵✳✶✶✵✾✴❚✲❆■❊❊✳✶✾✸✷✳✺✵✺✻✶✵✽.

[27] F. Felix, P. I. Wide-range, Complete Analysis of Motor Temperature Rise, Trans. Am.

Inst. Electr. Eng. 60 (6) (1941) 578–586.

[28] C. P. Potter,The inherent overheating protection of single-phase motors, Electr. Eng.

60 (11) (1941) 993–996. ❞♦✐✿✶✵✳✶✶✵✾✴❊❊✳✶✾✹✶✳✻✹✸✹✺✹✸. URL❤tt♣✿✴✴✐❡❡❡①♣❧♦r❡✳✐❡❡❡✳♦r❣✴❞♦❝✉♠❡♥t✴✻✹✸✹✺✹✸✴

[29] V. Siegfried, C. W. Thulin, Calorimetric Method for Determining Efficiencies of Electric Machines, Trans. Am. Inst. Electr. Eng. 61 (7) (1942) 530–532. ❞♦✐✿✶✵✳✶✶✵✾✴❚✲❆■❊❊✳

✶✾✹✷✳✺✵✺✽✺✺✺.

[30] D. Nair, A. Arkkio, Verification of loss segregation in electrical machines through in-verse thermal modelling, International Journal of Applied Electromagnetics and Me-chanics (2018) 1–7❞♦✐✿✶✵✳✸✷✸✸✴❏❆❊✲✶✼✶✵✹✶.

[31] J. Kaye, Motor Part 1 . Dimensional Analysis of Combined Thermal and Electrical Pro-cesses Analysis (February) (1957) 1463–1467.

[32] R. Kotnik, An equivalent thermal circuit for nonventilated induction motors, AIEE Transactions Pt 3A 73 (2) (1954) 1604–1609.

[33] P. Pescetto, S. Ferrari, G. Pellegrino, E. Carpaneto, A. Boglietti, Short-Time Transient Thermal Model Identification of Multiple Three-Phase Machines, 2018 IEEE Energy Convers. Congr. Expo. ECCE 2018 (2018) 222–228❞♦✐✿✶✵✳✶✶✵✾✴❊❈❈❊✳✷✵✶✽✳✽✺✺✼✽✾✷. [34] P. Mellor, D. Roberts, D. Turner, Lumped parameter thermal model for electrical ma-chines of TEFC design, IEEE Proceedings B Electric Power Applications 138 (5) (1991) 205.❞♦✐✿✶✵✳✶✵✹✾✴✐♣✲❜✳✶✾✾✶✳✵✵✷✺.

[35] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C. Mejuto, Evolution and modern approaches for thermal analysis of electrical machines, IEEE Transactions on Industrial Electronics 56 (2009) 871–882. ❞♦✐✿✶✵✳✶✶✵✾✴❚■❊✳✷✵✵✽✳✷✵✶✶✻✷✷.

[36] Y. A. Cengel, Heat Transfer: A Practical Approach 2nd Edition, McGraw-Hill, London, 2007.

[37] A. Boglietti, A. Cavagnino, M. Lazzari, A. Pastorelli, A simplified thermal model for variable speed self cooled industrial induction motor, Conf. Rec. 2002 IEEE Ind. Appl.

Conf. 37th IAS Annu. Meet. (Cat. No.02CH37344) 2 (4) (2002) 945–952. ❞♦✐✿✶✵✳✶✶✵✾✴

■❆❙✳✷✵✵✷✳✶✵✹✷✻✹✵.

[38] J.-G. Lee, H.-K. Yeo, H.-K. Jung, T.-K. Kim, J.-S. Ro, Electromagnetic and thermal analysis and design of a novel-structured surface-mounted permanent magnet mo-tor with high-power-density, IET Electr. Power Appl. 13 (4) (2019) 472–478. ❞♦✐✿

✶✵✳✶✵✹✾✴✐❡t✲❡♣❛✳✷✵✶✽✳✺✸✷✷.

[39] A. Boglietti, M. Cossale, M. Popescu, D. Staton, Electrical Machines Thermal Model : Advanced Calibration Techniques 9994 (c) (2019).❞♦✐✿✶✵✳✶✶✵✾✴❚■❆✳✷✵✶✾✳✷✽✾✼✷✻✹. [40] A. Boglietti, M. Cossale, M. Popescu, D. Staton, Calibration Techniques of Electrical Machines Thermal Models, Proc. - 2018 23rd Int. Conf. Electr. Mach. ICEM 2018 (2018) 1108–1115❞♦✐✿✶✵✳✶✶✵✾✴■❈❊▲▼❆❈❍✳✷✵✶✽✳✽✺✵✼✷✶✹.

[41] N. Neisi, E. Sikanen, J. E. Heikkinen, T. Sillanpää, J. Sopanen, Power loss and tempera-ture growth in the backup bearing of amb-supported high-speed electric motor during a dropdown, in: K. L. Cavalca, H. I. Weber (Eds.), Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, Springer International Publishing, Cham, 2019, pp. 144–156.

[42] B. Melka, J. Smolka, Z. Bulinski, J. Hetmanczyk,An experimental and numerical anal-ysis of temperature and velocity field in PM BLDC motor, Przeglad Elektrotechniczny 1 (3) (2016) 94–97. ❞♦✐✿✶✵✳✶✺✶✾✾✴✹✽✳✷✵✶✻✳✵✸✳✷✷.

URL❤tt♣✿✴✴s✐❣♠❛✲♥♦t✳♣❧✴♣✉❜❧✐❦❛❝❥❛✲✾✼✵✶✹✲✷✵✶✻✲✸✳❤t♠❧

[43] O. Meksi, A. O. Vargas, Numerical and experimental determination of external heat transfer coefficient in small TENV electric machines, 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015 (3) (2015) 2742–2749.❞♦✐✿✶✵✳✶✶✵✾✴❊❈❈❊✳✷✵✶✺✳

✼✸✶✵✵✹✹.

[44] M. Fasil, D. Plesner, J. H. Walther, N. Mijatovic, J. Holbøll, B. B. Jensen,Numerical and Experimental Investigation of Heat Flow in Permanent Magnet Brushless DC Hub Mo-tor, SAE International Journal of Alternative Powertrains 4 (1) (2014) 2014–01–2900.

❞♦✐✿✶✵✳✹✷✼✶✴✷✵✶✹✲✵✶✲✷✾✵✵.

URL❤tt♣✿✴✴♣❛♣❡rs✳s❛❡✳♦r❣✴✷✵✶✹✲✵✶✲✷✾✵✵✴

[45] D. Staton, E. So, Determination of optimal thermal parameters for brushless permanent\nmagnet motor design, Conference Record of 1998 IEEE Industry Appli-cations Conference. Thirty-Third IAS Annual Meeting 1 (1998) 41–49.

[46] M. Grabowski, K. Urbaniec, J. Wernik, K. J. Wołosz, Numerical simulation and experi-mental verification of heat transfer from a finned housing of an electric motor, Energy Convers. Manag. 125 (2016) 91–96. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❡♥❝♦♥♠❛♥✳✷✵✶✻✳✵✺✳✵✸✽.

[47] D. I. Tan, H. Xue, K. U. N. Yang, A. N. Li, H. Wang, Study on the Thermal Characteristics of In-Wheel Motor Drive System Based on Driving Cycles 3536 (c) (2019) 14463–14471.

❞♦✐✿✶✵✳✶✶✵✾✴❆❈❈❊❙❙✳✷✵✶✽✳✷✽✽✼✶✹✸.

[48] Y. Zhang, J. Ruan, T. Huang, X. Yang, H. Zhu, G. Yang, Calculation of temperature rise in air-cooled induction motors through 3-d coupled electromagnetic fluid-dynamical and thermal finite-element analysis, IEEE Transactions on Magnetics 48 (2) (2012) 1047–1050.❞♦✐✿✶✵✳✶✶✵✾✴❚▼❆●✳✷✵✶✶✳✷✶✼✹✹✸✸.

[49] M. Popescu, D. Staton, D. Dorrell, F. Marignetti, D. Hawkins, Study of the thermal aspects in brushless permanent magnet machines performance, Proc. - 2013 IEEE

Work. Electr. Mach. Des. Control Diagnosis, WEMDCD 2013 (March) (2013) 60–69.

❞♦✐✿✶✵✳✶✶✵✾✴❲❊▼❉❈❉✳✷✵✶✸✳✻✺✷✺✶✻✺.

[50] M. Lefik, K. Komeza, S. Member, E. Napieralska, J. Senior, D. Roger, Comparison of the Reluctance and Permanent Magnet Synchronous Machine operating at High Tem-peratures, 2018 IEEE Transp. Electrif. Conf. Expo - ITEC 2018 (2018) 418–423❞♦✐✿

✶✵✳✶✶✵✾✴■❚❊❈✳✷✵✶✽✳✽✹✺✵✵✽✼.

[51] G. D. Nam, H. J. Sung, C. Kim, M. Park, I. K. Yu, Design and characteristic analysis of a 1 MW superconducting motor for ship propulsions, IEEE Trans. Appl. Supercond. 29 (5) (2019) 1–5. ❞♦✐✿✶✵✳✶✶✵✾✴❚❆❙❈✳✷✵✶✾✳✷✾✵✷✽✼✷.

[52] S. Moon, High-Reliable Temperature Prediction Considering Stray Load Loss for Large Induction Machine, IEEE Trans. Magn. PP (2019) 1–5. ❞♦✐✿✶✵✳✶✶✵✾✴❚▼❆●✳✷✵✶✾✳

✷✾✵✶✽✻✷.

[53] M. Popescu, D. Staton, A. Boglietti, A. Cavagnino, D. Hawkins, J. Goss, Modern heat extraction systems for electrical machines - A review, Proc. - 2015 IEEE Work. Electr.

Mach. Des. Control Diagnosis, WEMDCD 2015 (2015) 289–296❞♦✐✿✶✵✳✶✶✵✾✴❲❊▼❉❈❉✳

✷✵✶✺✳✼✶✾✹✺✹✷.

[54] Y. Gai, M. Kimiabeigi, Y. C. Chong, J. D. Widmer, X. Deng, M. Popescu, J. Goss, D. A.

Staton, A. Steven, Cooling of Automotive Traction Motors : Schemes , Examples , and Computation Methods, IEEE Trans. Ind. Electron. 66 (3) (2019) 1681–1692. ❞♦✐✿✶✵✳

✶✶✵✾✴❚■❊✳✷✵✶✽✳✷✽✸✺✸✾✼.

[55] C. Jungreuthmayer, T. Bauml, O. Winter, M. Ganchev, H. Kapeller, a. Haumer, C. Kral, A Detailed Heat and Fluid Flow Analysis of an Internal Permanent Magnet Synchronous Machine by Means of Computational Fluid Dynamics, IEEE Transactions on Industrial Electronics 59 (12) (2012) 4568–4578.❞♦✐✿✶✵✳✶✶✵✾✴❚■❊✳✷✵✶✶✳✷✶✼✻✻✾✻.

[56] Z. Rehman, K. Seong, Three-D numerical thermal analysis of electric motor with cool-ing jacket, Energies 11 (1) (2018). ❞♦✐✿✶✵✳✸✸✾✵✴❡♥✶✶✵✶✵✵✾✷.

[57] R. Wrobel, P. H. Mellor, D. Holliday, Thermal modeling of a segmented stator wind-ing design, IEEE Trans. Ind. Appl. 47 (5) (2011) 2023–2030. ❞♦✐✿✶✵✳✶✶✵✾✴❚■❆✳✷✵✶✶✳

✷✶✻✶✼✹✶.

[58] K. H. Lee, H. R. Cha, Y. B. Kim, Development of an interior permanent magnet motor through rotor cooling for electric vehicles, Appl. Therm. Eng. 95 (2016) 348–356. ❞♦✐✿

✶✵✳✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✺✳✶✶✳✵✷✷.

[59] J. Montonen, J. Nerg, M. Polikarpova, J. Pyrhonen,Integration Principles and Thermal Analysis of an Oil-Cooled and -Lubricated Permanent Magnet Motor Planetary Gear-box Drive System, IEEE Access 7 (2019) 69108–69118. ❞♦✐✿✶✵✳✶✶✵✾✴❆❈❈❊❙❙✳✷✵✶✾✳

✷✾✶✾✺✵✻.

URL❤tt♣s✿✴✴✐❡❡❡①♣❧♦r❡✳✐❡❡❡✳♦r❣✴❞♦❝✉♠❡♥t✴✽✼✷✸✹✼✵✴

[60] H. Li, Cooling of a permanent magnet electric motor with a centrifugal impeller, Int.

J. Heat Mass Transf. 53 (4) (2010) 797–810. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳✐❥❤❡❛t♠❛sstr❛♥s❢❡r✳

✷✵✵✾✳✵✾✳✵✷✷.

[61] W. M. Yan, H. Y. Teng, C. H. Li, M. Ghalambaz, Electromagnetic field analysis and cool-ing system design for high power switched reluctance motor, Int. J. Numer. Methods Heat Fluid Flow (2019).❞♦✐✿✶✵✳✶✶✵✽✴❍❋❋✲✵✽✲✷✵✶✽✲✵✹✺✵.

[62] M. H. Park, S. C. Kim, Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles, Appl. Therm. Eng. 152 (2019) 582–593. ❞♦✐✿✶✵✳

✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✸✳✶✶✳✵✺✼.

[63] D. H. Lim, S. C. Kim, D. Hyun Lim, S. Chul Kim, Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles, Appl. Therm. Eng. 63 (2) (2014) 577–587. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✸✳✶✶✳✵✺✼.

[64] M. R. Guechi, P. Desevaux, P. Baucour, C. Espanet, R. Brunel, M. Poirot, Spray cooling of electric motor coil windings, J. Comput. Multiph. Flows 8 (2) (2016) 95–100. ❞♦✐✿

✶✵✳✶✶✼✼✴✶✼✺✼✹✽✷❳✶✻✻✺✸✽✾✺.

[65] G. Zhu, X. Liu, L. Li, H. Chen, W. Tong, J. Zhu, Cooling System Design of a High-Speed PMSM Based on a Coupled Fluidic-Thermal Model, IEEE Trans. Appl. Super-cond. 29 (2) (2019) 1–5. ❞♦✐✿✶✵✳✶✶✵✾✴❚❆❙❈✳✷✵✶✾✳✷✽✾✷✸✵✺.

[66] F. Zhang, D. Gerada, Z. Xu, X. Zhang, C. Tighe, H. Zhang, C. Gerada, Back-iron Ex-tension Thermal Benefits for Electrical Machines with Concentrated Windings, IEEE Trans. Ind. Electron. PP (c) (2019) 1–1. ❞♦✐✿✶✵✳✶✶✵✾✴t✐❡✳✷✵✶✾✳✷✾✵✸✼✺✽.

[67] S. Zhang, K. Tang, Y. Tang, Y. Sun, W. Yuan, J. Li, Applicability study of the potting ma-terial based thermal management strategy for permanent magnet synchronous mo-tors, Appl. Therm. Eng. 149 (November 2018) (2019) 1370–1378. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳

❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✽✳✶✷✳✶✹✶.

[68] M. Polikarpova, P. M. Lindh, J. A. Tapia, J. J. Pyrhönen, Application of Potting Material for a 100 kW Radial Flux PMSM, 2014 Int. Conf. Electr. Mach. (2014) 1–6.

[69] M. Polikarpova, P. Lindh, C. Gerada, M. Rilla, V. Naumanen, J. Pyrhönen, Thermal ef-fects of stator potting in an axial-flux permanent magnet synchronous generator, Appl.

Therm. Eng. 75 (2015) 421–429.❞♦✐✿✶✵✳✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✹✳✵✾✳✵✹✹. [70] S. Nategh, D. Barber, A. Boglietti, D. Lindberg, O. Aglen, R. Brammer, A Study on

Ther-mal Effects of Different Potting Strategies in Traction Motors, 2018 IEEE Int. Conf.

Electr. Syst. Aircraft, Railw. Sh. Propuls. Road Veh. Int. Transp. Electrif. Conf. ESARS-ITEC 2018 (2019) 1–6❞♦✐✿✶✵✳✶✶✵✾✴❊❙❆❘❙✲■❚❊❈✳✷✵✶✽✳✽✻✵✼✻✵✵.

[71] Y. Querel, L. Garbuio, A. Kedous-Lebouc, L. Gerbaud, Y. Querel, T. Boussey, J. C. Mipo, S. Personnaz, Axial flux machine design taking into account cooling and convection heat transfer, 2019 10th Int. Power Electron. Drive Syst. Technol. Conf. PEDSTC 2019 (2019) 718–722❞♦✐✿✶✵✳✶✶✵✾✴P❊❉❙❚❈✳✷✵✶✾✳✽✻✾✼✷✽✶.

[72] M. A. Mueller, J. Burchell, Y. C. Chong, O. Keysan, A. McDonald, M. Galbraith, E. J.

Echenique Subiabre, Improving the thermal performance of rotary and linear air-cored permanent magnet machines for direct drive wind and wave energy applica-tions, IEEE Trans. Energy Convers. 34 (2) (2019) 773–781. ❞♦✐✿✶✵✳✶✶✵✾✴❚❊❈✳✷✵✶✽✳

✷✽✽✶✸✹✵.

[73] E. Armando, A. Boglietti, E. Carpaneto, A. Castagnini, M. Seita, Thermal Performances of Induction Motors for Applications in Washdown Environment, IEEE Trans. Ind.

Appl. PP (c) (2019) 1–1. ❞♦✐✿✶✵✳✶✶✵✾✴t✐❛✳✷✵✶✾✳✷✾✶✼✹✶✾.

[74] J. Samek, C. Ondrusek, J. Kurfurst, A review of thermal conductivity of epoxy com-posites filled with Al2O3 or SiO2, 2017 19th Eur. Conf. Power Electron. Appl. EPE 2017 ECCE Eur. 2017-January (2017) 1–6. ❞♦✐✿✶✵✳✷✸✾✶✾✴❊P❊✶✼❊❈❈❊❊✉r♦♣❡✳✷✵✶✼✳

✽✵✾✾✸✾✻.

[75] S. Wang, Y. Li, Y.-Z. Li, J. Wang, X. Xiao, W. Guo, Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging (2016). ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳✷✵✶✻✳✵✽✳✵✸✻.

[76] G. Fang, W. Yuan, Z. Yan, Y. Sun, Y. Tang, Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor, Appl. Therm. Eng. 152 (February) (2019) 594–604.❞♦✐✿✶✵✳✶✵✶✻✴❥✳❛♣♣❧t❤❡r♠❛❧❡♥❣✳

✷✵✶✾✳✵✷✳✶✷✵.

[77] A. Lindner, I. Hahn, Practical evaluation of a passive stator cooling concept with-out thermal stacking, Proc. - 2017 IEEE Work. Electr. Mach. Des. Control Diagnosis, WEMDCD 2017 (2017) 132–139❞♦✐✿✶✵✳✶✶✵✾✴❲❊▼❉❈❉✳✷✵✶✼✳✼✾✹✼✼✸✻.

[78] L. Cheng, X. Yi, B. H. Min, K. Haran, Ring Motor Front Wheel for Electric Motorcy-cle, 2019 IEEE Power Energy Conf. Illinois, PECI 2019 (2019) 1–8❞♦✐✿✶✵✳✶✶✵✾✴P❊❈■✳

✷✵✶✾✳✽✻✾✽✾✶✶.

[79] J. Huang, S. Shoai Naini, R. Miller, D. Rizzo, K. Sebeck, S. Shurin, J. Wagner, A Hybrid Electric Vehicle Motor Cooling System- Design, Model, and Control, IEEE Trans. Veh.

Technol. 68 (5) (2019) 1–1. ❞♦✐✿✶✵✳✶✶✵✾✴t✈t✳✷✵✶✾✳✷✾✵✷✶✸✺.

[80] X. Zhang, J. Yu, G. Su, Z. Yao, P. Hao, F. He, PIV measurement and simulation of turbu-lent thermal free convection over a small heat source in a large enclosed cavity, Build.

Environ. 90 (2015) 105–113. ❞♦✐✿❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❜✉✐❧❞❡♥✈✳✷✵✶✺✳

✵✸✳✵✶✺.

[81] A. Aubert, S. Poncet, P. Le Gal, S. Viazzo, M. Le Bars, Velocity and temperature measure-ments in a turbulent water-filled Taylor-Couette-Poiseuille system, International Jour-nal of Thermal Sciences 90 (2015) 238–247. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳✐❥t❤❡r♠❛❧s❝✐✳✷✵✶✹✳

✶✷✳✵✶✽.

[82] B. Melka, J. Smolka, Z. Bulinski, J. Hetmanczyk, D. Makiela, A validated numerical model of heat and mass transfer in a PM BLDC electric motor(2016) 1409–1413❞♦✐✿

✶✵✳✶✶✵✾✴❙P❊❊❉❆▼✳✷✵✶✻✳✼✺✷✺✽✽✺.

URL❤tt♣✿✴✴✐❡❡❡①♣❧♦r❡✳✐❡❡❡✳♦r❣✴st❛♠♣✴st❛♠♣✳❥s♣❄❛r♥✉♠❜❡r❂✼✺✷✺✽✽✺

[83] B. Melka, J. Smolka, J. Hetmanczyk, Z. Bulinski, D. Makiela, A. Ryfa, Experimen-tally validated numerical model of thermal and flow processes within the perma-nent magnet brushless direct current motor, Int. J. Therm. Sci. 130 (2018) 406–415.

❞♦✐✿✶✵✳✶✵✶✻✴❥✳✐❥t❤❡r♠❛❧s❝✐✳✷✵✶✽✳✵✹✳✵✷✾.

[84] B. Melka, J. Smolka, J. Hetmanczyk, P. Lasek, Numerical and experimental analysis of heat dissipation intensification from electric motor, Energy (jun 2019).❞♦✐✿✶✵✳✶✵✶✻✴

❏✳❊◆❊❘●❨✳✷✵✶✾✳✵✻✳✵✷✸.

[85] Constant Termperature Anemometers equipment.

URL❤tt♣✿✴✴✐♠❣♣❛♥✳♣❧✴♦❢❡rt❛✴❝③✉❥♥✐❦✐✲t❡r♠♦❛♥❡♠♦♠❡tr②❝③♥❡✲❤♦t✲✇✐r❡✴

[86] Constant Termperature Anemometers principle of operation.

URL ❤tt♣s✿✴✴✇✇✇✳s❝✐❡♥❝❡❞✐r❡❝t✳❝♦♠✴t♦♣✐❝s✴❡♥❣✐♥❡❡r✐♥❣✴

❝♦♥st❛♥t✲t❡♠♣❡r❛t✉r❡✲❛♥❡♠♦♠❡t❡r

[87] Documentation describing the bearing losses estimation.

URL❤tt♣✿✴✴t✐♥②✉r❧✳❝♦♠✴②①❡r③✻✺✸✴

[88] ANSYS®Academic Research Fluent, Release 17.0, Help System, ANSYS, Inc.

[89] J. Smolka, User-Defined Functions programming in Ansys Fluent. Fundamentals of numerical modelling of thermal processes in electric devices and machines, Silesian University of Technology, Institute of Thermal Technology, Gliwice, Poland, 2019, (in Polish).

[90] R. Wrobel, P. H. Mellor, A general cuboidal element for three-dimensional thermal modelling, IEEE Transactions on Magnetics 46 (8) (2010) 3197–3200. ❞♦✐✿✶✵✳✶✶✵✾✴

❚▼❆●✳✷✵✶✵✳✷✵✹✸✾✷✽.

[91] Material: Aluminum 6061-O.

URL ❤tt♣✿✴✴✇✇✇✳♠❛t✇❡❜✳❝♦♠✴s❡❛r❝❤✴❉❛t❛❙❤❡❡t✳❛s♣①❄▼❛t●❯■❉❂

✻✷✻❡❝✽❝❞❝❛✻✵✹❢✶✾✾✹❜❡✹❢❝✷❜❝✻❢✼❢✻✸

[92] Material: Alliance N-33 Neodymium Iron Boron Magnetic Material.

URL ❤tt♣✿✴✴✇✇✇✳♠❛t✇❡❜✳❝♦♠✴s❡❛r❝❤✴❉❛t❛❙❤❡❡t✳❛s♣①❄▼❛t●❯■❉❂

✼❢✽❜✼✽❝✽✾❜✵✺✹❜✶✻❛❝❝❡❡✽✵❢✾❛✸✻✸✻✷✻

[93] K. Azar, J. Graebner, Experimental determination of thermal conductivity of printed wiring boards, in: Twelfth Annual IEEE Semiconductor Thermal Mea-surement and Management Symposium. Proceedings, IEEE, 1994, pp. 169–182.

❞♦✐✿✶✵✳✶✶✵✾✴❙❚❍❊❘▼✳✶✾✾✻✳✺✹✺✶✵✼.

URL ❤tt♣✿✴✴✐❡❡❡①♣❧♦r❡✳✐❡❡❡✳♦r❣✴❧♣❞♦❝s✴❡♣✐❝✵✸✴✇r❛♣♣❡r✳❤t♠❄❛r♥✉♠❜❡r❂

✺✹✺✶✵✼

[94] S. W. Churchill, H. H. Chu,Correlating equations for laminar and turbulent free con-vection from a vertical plate, International Journal of Heat and Mass Transfer 18 (11) (1975) 1323 – 1329. ❞♦✐✿❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✵✶✼✲✾✸✶✵✭✼✺✮✾✵✷✹✸✲✹. URL ❤tt♣✿✴✴✇✇✇✳s❝✐❡♥❝❡❞✐r❡❝t✳❝♦♠✴s❝✐❡♥❝❡✴❛rt✐❝❧❡✴♣✐✐✴

✵✵✶✼✾✸✶✵✼✺✾✵✷✹✸✹

[95] Material: Aluminum, Al.

URL ❤tt♣✿✴✴✇✇✇✳♠❛t✇❡❜✳❝♦♠✴s❡❛r❝❤✴❉❛t❛❙❤❡❡t✳❛s♣①❄▼❛t●❯■❉❂

✵❝❞✶❡❞❢✸✸❛❝✶✹✺❡❡✾✸❛✵❛❛✻❢❝✻✻✻❝✵❡✵✫❝❦❝❦❂✶

[96] Material: High Density Polyethylene (HDPE), Injection Molded.

URL ❤tt♣✿✴✴✇✇✇✳♠❛t✇❡❜✳❝♦♠✴s❡❛r❝❤✴❉❛t❛❙❤❡❡t✳❛s♣①❄▼❛t●❯■❉❂

❢❝❡✷✸❢✾✵✵✵✺❞✹❢❜❡✽❡✶✷❛✶❜❝❡✺✸❡❜❞❝✽

[97] Shaft material.

URL❤tt♣s✿✴✴❜r❡✳✐s✴♠❖❨❱❉❈❲❱❩

[98] Material: AISI 1045 Steel, hot rolled.

URL ❤tt♣✿✴✴✇✇✇✳♠❛t✇❡❜✳❝♦♠✴s❡❛r❝❤✴❉❛t❛❙❤❡❡t✳❛s♣①❄▼❛t●❯■❉❂

✹❜✵✺✺✸❞❛❢✾❝✷✹✺❡✻✽✹❢✷✶✾✾❛✹✽✶✼✾❞✽✾

[99] A. Boglietti, E. Carpaneto, M. Cossale, S. Vaschetto, M. Popescu, D. A. Staton, Stator winding thermal conductivity evaluation: An industrial production assessment, IEEE Trans. Ind. Appl. 52 (5) (2016) 3893–3900. ❞♦✐✿✶✵✳✶✶✵✾✴❚■❆✳✷✵✶✻✳✷✺✽✷✼✸✵.

[100] ANSYS®Academic Research Electronics - Maxwell, Release 17.0, Help System, ANSYS, Inc.

[101] P. HAMMOND, Electromagnetism for Engineers (Third Edition), Pergamon, 1986.

❞♦✐✿❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❇✾✼✽✲✵✲✵✽✲✵✸✷✺✽✹✲✷✳✺✵✵✵✹✲✶.

[102] G. Bertotti, General Properties of Power Losses in Soft Ferromagnetic Materials., IEEE Trans. Magn. 24 (1) (1987) 621–630. ❞♦✐✿✶✵✳✶✶✵✾✴✷✵✳✹✸✾✾✹.

[103] G. Bertotti, A. Boglietti, M. Chiampi, D. Chiarabaglio, F. Fiorillo, M. Lazzari, An im-proved estimation of iron losses in rotatinf electrical machines, IEEE Trans. Magn.

27 (6) (1991) 5007–5009.

[104] W. Hayt, J. Buck, Engineering electromagnetics, McGraw-Hill Higher Education, Boston, 2006. ❞♦✐✿❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❇✾✼✽✲✵✲✵✽✲✵✸✷✺✽✹✲✷✳✺✵✵✵✹✲✶. [105] N. Boubaker, D. Matt, P. Enrici, F. Nierlich, G. Durand, Measurements of iron loss in

PMSM stator cores based on CoFe and SiFe lamination sheets and stemmed from dif-ferent manufacturing processes, IEEE Trans. Magn. 55 (1) (2019) 1–9. ❞♦✐✿✶✵✳✶✶✵✾✴

❚▼❆●✳✷✵✶✽✳✷✽✼✼✾✾✺.

[106] I. Mayergoyz, C. Serpico, Nonlinear diffusion of electromagnetic fields and excess eddy current losses, J. Appl. Phys. 85 (8) (1999) 4910–4912.❞♦✐✿✶✵✳✶✵✻✸✴✶✳✸✻✾✶✸✾.

[107] G. Bertotti, Hysteresis in magnetism : for physicists, materials scientists, and engi-neers, Academic Press, 1998.

[108] Y. Zhang, M. C. Cheng, P. Pillay, Magnetic characteristics and excess eddy current losses, Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc. (2) (2009) 1–5.❞♦✐✿✶✵✳✶✶✵✾✴

■❆❙✳✷✵✵✾✳✺✸✷✹✽✶✹.

[109] M. L. Hosain, R. B. Fdhila, K. Rönnberg, Air-gap Flow and Thermal Analysis of Rotating Machines using CFD, Energy Procedia 105 (May) (2017) 5153–5159. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳

❡❣②♣r♦✳✷✵✶✼✳✵✸✳✶✵✹✺.

Abstract Ph.D. Thesis, Bartłomiej Melka

Coupled thermal electromagnetic numerical modelling of an effective heat dissipation process from an electric motor

Bartłomiej Melka

Institute of Thermal Technology, Silesian University of Technology, Gliwice, Poland, Bartlomiej.Melka@polsl.pl

Environmental and political tendencies prompt the industry to reduce the usage of non-renewable energy sources to mitigate anthropogenic degradation of the environment. It leads to, e.g. increase of the meaning of electrical power drives in transport and other branches of industry, at the same time replacing internal combustion engines that are characterised by a lower efficiency of energy conversion. In this case, the electric motor construction process ought to be based on the best engineering achievements grounded on the multi-physical analyses. Therefore, in the electric motor design process, the thermal analysis should play an important role. It allows to estimate the maximum temperature in the machine and to find the location of the potential overheating. The motor construction should also be protected from reaching a temperature higher than allowable that may lead to the machine failure. It is especially important for motor elements such as winding insulation. Moreover, thermal analysis allows for reduction of the machine size with maintaining the safety margin and thus also allows for the material cost reduction. On the other hand, the heat dissipation in-tensifications implemented on the basis of thermal analysis allows to overload the machine and reduce the temperature of the specific motor elements, e.g. windings. The amount of the copper losses is connected with windings resistance that is temperature-dependent. There-fore, the thermal motor behaviour optimisation could also lead to the reduction of the cop-per losses in the machine. As a result, the lower temcop-perature of the internal motor compo-nents could also ensure maintaining the operational point beyond demagnetization of the permanent magnets in motors such as Permanent Magnet Brushless DC (PM BLDC) mo-tor. This all mean that the thermal analysis should always be included in the electric motor design process.

Therefore, the main aim of the dissertation is the thermal analysis of the selected PM BLDC low power motor. Moreover, the heat dissipation intensifications, based on passive techniques, were proposed and then verified experimentally and numerically.

Firstly, the dissertation describes experimental activities carried out during the research.

The measurement procedures are described as two independent experimental campaigns performed on the dedicated test rig. The first one focused on the measurements of the air velocity within and around the analysed motor and simultaneously on the temperature mea-surements. In the first experimental campaign, constant temperature anemometers were positioned in 28 positions to collect the values of the vertical velocity component of the hot air above the motor installed in the test rig. Moreover, two velocity components were recorded using Laser Doppler Anemometry technique within the rear part of the investigated motor. During the first experimental campaign, thermal measurements were also conducted using a set of 22 calibrated thermocouples. The temperature and velocity measurements al-lowed to investigate the natural convection phenomena occurring in the motor losses dis-sipation. First experimental campaign allowed to measure 11 operating points of the motor work. The second experimental campaign was focused only on the thermal measurements using a set of calibrated thermocouples and infrared thermography. In this campaign, differ-ent passive heat dissipation intensification concepts were investigated. During the second experimental campaign, 6 operating points were recorded for each variant of heat dissipa-tion enhancement.

Abstract Ph.D. Thesis, Bartłomiej Melka

The experimental part of the research was used to validate the created computational fluid dynamics (CFD) models. These models were built on the basis of the motor complex geometry. During the numerical research, two thermal models were introduced to investi-gate thermal motor behaviour. The first one was formulated and validated in the conditions occurring in the first experimental campaign. The second thermal model was created and next validated on the base of the second experimental campaign. Moreover, it covered the proposed heat dissipation intensifications. The models were based on the standard govern-ing equations used in CFD, while many of the model properties were implemented as the user defined functions. The motor losses were implemented in thermal models as the

The experimental part of the research was used to validate the created computational fluid dynamics (CFD) models. These models were built on the basis of the motor complex geometry. During the numerical research, two thermal models were introduced to investi-gate thermal motor behaviour. The first one was formulated and validated in the conditions occurring in the first experimental campaign. The second thermal model was created and next validated on the base of the second experimental campaign. Moreover, it covered the proposed heat dissipation intensifications. The models were based on the standard govern-ing equations used in CFD, while many of the model properties were implemented as the user defined functions. The motor losses were implemented in thermal models as the