• Nie Znaleziono Wyników

The yield of phthalide increases with rise of temp., being negligibly small below 60° and nearly

2-benzoylfluorenone-7-sulphonic acid, an oil (Na salt),

III. The yield of phthalide increases with rise of temp., being negligibly small below 60° and nearly

quant, at 80°. For the largest yield the

pn

of the

electrolyte should lie between 10-5 and 12.

F. L. U.

Rotenone. XX. Structure of tuhaic acid.

H . L. H a l l e r and F . B . L a F o r g e . XXI. Struc­

ture of isorotenone, p-dihydrorotenone, and de- hydrorotenol. II. L. H a l l e r (J. Amer. Chem.

Soc., 1932, 54, 1988—1994, 2126—2128).—X X . Mainly a more detailed account of work previously reviewed (this vol., 165) (Part XVIII). The following is new. The

Ac,,

derivative, m. p. 143°, of tetra- hydrotubaic acid (2 : 4-dihydroxy-3-isoamylbenzoic acid) (I) is hydrolysed by EtOH-KOAc to the

Ac

derivative, m. p. 156°. (I) and Me2S 0 4 in 5% KOH give

2-hydroxyA-methoxy-^-is.oamylbenzoic acid,

m. p.

156°.

Tetrahydrotubanol

(2-iso

amylresorcinol),

m. p.

85°, formed when (I) is heated to 215—225°, is con­

verted by boiling with saturated NaHCOs into (I).

Ozonolysis of acetyltubaic acid gives a

compound,

C13H 120 6, m. p. 145°, probably a Mo ketone. The hydrogenation of tubaic acid is analogous to that of deoxycodeine-(7. An explanation of tho mechanism of oxidation of rotenone derivatives by H20 2 is given.

X X I. A criticism of the rotenone formula of Takei

et al.

(this vol., 400). Structures are assigned to isorotenone, (3-dihydrorotenone, and dehydrorotenol.

C. J. W. (6) Substituted phenylacetonitriles and deriv­

atives. 1-Cyano-l-phenylcyciopropane, y-hydr- oxy-a-pbenylbutyronitrile, y-chloro-a-phenyl- butyronitrile, and a-phenylcrotononitrile. E. C.

K n o w l e s and J. B. C l o k e (J. Amer. Chem. Soc., 1932, 54, 2028—2037).—1 - O y a n o-1 - p h e n y l o y c lo p r o p a n e (I), b. p. 98— 100°/1 mm., 250—253°/751 mm., results in 40—45% yield when CH2Ph-CN is treated first with NaNH2 and then with CH2Cl-CH2Br or s-C2H4Br2 (special apparatus described). y - H y d r o x y - a - p h e n y l- b u ty r o n itr ile , b. p. 146— 149°/l-5-2 mm., formed in 40% yield from 0H-CH2-CH2C1 and the Na compound

(II) of CH2Ph-CN, with S0C12 gives y - c h lo r o - a -p h c n y l- b u ty r o n itr ile , b. p. 127— 129°/3— 4 mm., converted by NaNH2 into (I). Propylene dibromide and (II) give l - c y a n o - l - p h e n y l- 2 - m e th y l c y c lo p r o p a n e , b. p.

257—260°/761 mm. Hydrolysis of (I) with H 3P 0 4 (or alkaline H20 2) gives \ - p h e n y l c y c \ o p r o p a n c - \ - c a r b o x y la m id c , m. p. 100—101° (corr.) (also formed when the hydrochloride of E t imino-l-phenylcycfo- propaneearboxylate is heated to 110°), and (mainly) a-phenylcrotonic acid. CyanocycZopropane is simi­

larly hydrolysed to cycfopropanecarboxylic acid.

CH2Ph-CN, MeCHO, and NaOEt in EtOH give 36% of

a-phenylcroto7ionitrile,

b. p. 244246°/751 mm., converted by alkaline H 20 2 into

x-phenyl- acetoacetamide,

m. p. 177— 178°, hydrolysed by conc.

HC1 to CHgPh-COMe. a-Phenylcrotonic acid is prepared by hydrolysis of the nitrile with H3P 0 4, and by the isomerisation of a-phenyl-A^-butenoic acid with 10% NaOH. C. J. W. (5)

Stereochem istry of diphenyl. XXI. R esolu­

tion of 2 : 4 : 6 : 2' : 4' : 6'-hexachlorodiphenyl- 3 : 3'-dicarboxylic acid. J. W h i t e and R. A d a m s

(J. Amer. Chem. Soc., 1932, 54, 2104—2108).—

7 4 0 B R IT IS H C H E M IC A L A B S T R A C T S . A .

2 : 4 : G -T r ic h lo r o -3 -io d o to lu e n e , m. p. 95— 97° (from fcho trichlorotoluidine), and Cu bronze at 235—250°

give 2 : 4 : 6 : 2' : 4' : 6 '-h e x a c h lo r o -3 : 3 '- d im c th y ld i-

p h e n y l , m. p. 119—120°, oxidised by KM n04 and

HNÓj (d 1-15—1*2) to 2 : 4 : 6 : 2' : 4' : 6'-h e x a c h lo r o - d i p h e n y l-3 : 3'- d ic a r b o x y lic a c i d (I), m. p. 318—320°.

(I) is resolved by brucine into d-, m. p. 293—294°, [«]$ + 1-8° in EtOH (b r u c in e salt, m. p. 209°), and

1 -fo rm s, m. p. 292—293°, [<x]g. - 1 - 7 ° in EtOH

(b r u c in e salt, ra. p. 206—210°), which are not ordinarily racemised, 2 : 4 : 6 : 2' : 4' : 6 '-H e x a c h lo r o -3 : 3'- d i- n i t r o d i p h e n y l, m. p. 230—231°, from hoxachlorodi- phenyl and H N 0 3 ( d 1-5), is reducod to tho 3 : 3'- (fia.infno-derivative, m. p. 167-5—168-5° [d i(c h lo r o - a c e t y l) derivativo, m. p. 125—126°], which could not be condensed with oxyniethylenecamplior or d -

campliorsulphonic acid. G. J. W. (b)

Isom érisation of tetraphenylsuccinonitrile.

G. WiTTiG and W. H op f (Ber., 1932, 65, [B], 760—

766).—Tetraphenylsuccinonitrile! (I) becomes coloiu-ed in solution in boiling anisóle or C10I i 8 or molten camphor owing to dissociation into cyanodiphenyl- methyl. The colourless solutions in N H 2Ph, NPhMe2, p-C6H4Me-ISÍH2, p-CeH4Me-NMc2, or G6H4Me2 con­

taining NHEto or 2 : 6-dimethylpyrone become coloured when heated, but the colour suddenly dis­

appears and docs not return on protracted boiling owing to isomérisation of (I) to p - a - c y a n o b e n z y l- tr ip lie n y la c e to n itr ile (II), CN-CPh2-GfiH4-CHPh-CN, m. p. 161—161-5°. Treatment of (II) in dioxan under N2 with Na-IC involves combination with 4 atoms of K ; tho product with EtOH gives a non- uniform material oxidised by Cr03 in AcOH to terephthalophenone, C6H4Bz2, m. p. 160—162°.

Oxidation of (II) with KM n04 in COMe, gives p-

b e n z o y ltr ip h e n y la c e tc m itr ile (HI), m. p. 122—123°, which yields (3-acetyl-p-nitrophenylhydrazine when heated with p-NO2-C0H4-NHdSiH2 in AcOH. Tereph- thalophenone and MgPhBr yield a mixed product or p-bisdiphenylhydroxymethylbenzene if an excess of the reagent is used. BzCl and CPhyCN do not react in presence of A1C13 and CS2 or P h N 0 2. p -

Benzoylbenzotrichloride, C6H fi, and A1C13 afford

p - b e n z o y ltr ip h e n y lm e th y l c h lo r id e , readily hydrolysed to p - b e n z o y ltr ip h e n y lc a r b in o l, m. p. 131— 132°, and converted by Hg(CN).> into (III). The mechanism of the isomérisation is fully discussed. H. W.

Alkylcyclopentanones. II. Effect of the m ethylcyciopentane rin g on the carbon tetra­

hedral angle. R. D . D e s a i (J.C.S., 1932, 1065—

1079; cf. A., 1931, 843).—The effect of the methyl- cycZopentane ring is similar to that of the unsub­

stituted ring. E t H 3 - m e t h y l c y c l o p e n t a n e - l : 1 - d i- a c e ta te (from the anhydride» lo c. c it.) after estérific­

ation of the product of bromination of the acid chloride gives E t a .-b r o m o -3 - m e th y lc y c \o p e n ta n e - l : 1-

d ia c e ta te (I), b. p. 163°/7 mm. [and a little of the

E t E b r o m o d ia c e ta te (II)], converted by distillation into the la c to n e , b. p. lS8°/20 mm., of E t H a-hydroxy-3-methylcycZopentane-l : 1-diacetate, and EtBr. (I) with 64% KOH gives the corresponding la c to n ic a c id , A , m. p. S7° ( N H 2P h salt, m. p. 95°) [also obtained from (I) with Na2C03; similar treatment of (II)

gives an isomeride, B , m. p. 75°], and trans-, A ,

m. p. 230° (d i a n i l i d e , m. p. 295°), trans-, B , m. p.

215° ( d i a n i li d e , m. p. 275°), and cis-3-meiZi.yZcyclo-

p e n ta n e s p r c o e y c lo p r o p a n e - 2 ': 3' - d ic a r b o x y lic a c id ,

m. p. 175°, separated by means of the a n h y d r id e ,

m. p. 75° ( a n i l ic a c id , m. p. 190°), and also obtained by heating the trans-acids, which are hydrolysed by HC1 at a high temp. 3-MethylcycZopentane- 1 : 1-diacetic acid (loc. c it.) [( i/e 2 ester (III), b, p.

137°/15 mm.], after esterification of the product of bromination of tho acid chloride, gives (II), E t H

(IV) and E t 2 a c t'- d ib r o m o - 3 - n ie th y lc y c lo p e n ta n e - l : 1-

d ia c e ta te (V) [a c id s , A , m. p. 195° (decomp.), and B .

m. p. 163°, obtained from the chloride with anhyd.

H C 02H], which, on distillation, gives a b ro m o la cto n ic

e s te r , b. p. 195—196°/15 mm. (V) with 64% KOH

gives 5% of 3 - m e th y l e y c \ o p c n t y l i d e n e a c e t i c a c id (VI), m. p. 112°, 45% of a - k e to - 3 - m e t h y l e y c l o p e n t a n e - l: 1-

d ia c e tic a c i d (VII), m. p. 121° [ q u in o x a lin e derivative, m. p. 226—227°; 2 : l- d in it r o j i h e n y lh y d r a z o n e , m. p.

185° (decomp.); M e ester, b. p. 169°/19 mm. (p h e n y l-

to liy d r a z o n e , m. p. 163°)] [oxidised by H 20 2 in Na.2C03 l-earboxy-3-methylcycZopentane-l-acetic acid (VIII), corrected m. p. 120° (lo c. c it .) ] , and a little of the trans-factowe, m. p. 146° ( A c derivative, m. p.

151°), of ty.tx’- d i h y d r o x y - 3 - m e t h y l c y c l o p e n t a n e - l : 1-di­

a c e tic a c id , also obtained from tho esterified product of interaction of Ka2C03 on (IV), together with the cis-la c to n e , m. p. 125°,"and a little (VII). The hydrogen sulphite compound of 3-methylct/cZopentanone gives a

c y a n o h y d r i n , b. p. 128— 130°/25 mm. (slight decomp.), which with E t sodiocyanoaeetate gives a dicyano- ester, hydrolysed to (VHI). 3-Methylcycfopentanone with Zn and E t bromoacetate gives unchanged ketone, 4 ,-m e th y l - 2 - ( 3 '- m e th y lc y c lo p e n ty lid e n e ) o y c \o - p e n ta n o n e , b. p. 132— 133°/12 mm. (sem ica rb a zo n e,

m. p. 142—143°) (oxidised by K M n04 to 3-methyl- eyefopentanone and (3-methylglutaric acid), and

E t 3 - ? n e t h y k y c lo p c n t a n - l- o l - l- a c c ta l e , b. p. 121°/20 mm., the a c id , m. p. 56°, from which, with Ac20, gives (VI) and a little a c id , m. p. Sl°. (V) with KOH in MeOH gives a - h y d r o x y - a -m eth o x y -3 -m e th y l- c y c \ o p e n t a n e - \ : 1 - d ia c e tic a c id , m. p. 145°, its

la c to n e , m. p. 150° (previous sintering), trans-, A ,

m. p. 190°, trans-, B , m. p. 178°, cis-, A , m. p. 175°, and cis - 3 m e th y lc y c lo p e n ta ? ie s p ir o 2 m eth o x y c y c lo -p r o -p a n e - 2 ' : 3 ’- d ic a r b o x y lic a c id , B , m. p. 162° (the two latter separated through the a n h y d r id e s , A ,

m. p. 87°, and B , m. p. 60°, also obtained by distill­

ation of the i?-arw-acids). Tho above acids with fuming HBr give (VII) and a little (VIH). (IH) with Me oxalate and NaOMe gives a little methyl- cycZopentanediacetic acid, and M e 3-m e th y le y c \o - p e n t a n espiro-3' : 4' - d ik e to c y c \o p e ? itm ie - 2' : 5' - d icarb - o x y la te , m .p. 1250 [s e m ic a r b a z o n e , m .p. 182° (decomp.)], converted by 20% H2S 0 4 into 3 -m e th y lc y c \o p ic n ta n e -

spirocyclope?ifcme-3': 4'-d io n e , m. p. 108° [d ise m i- c a r b a z o n e , m. p. 245° (decomp.)]. The chloride from the acid ester of (VIH) with ZnMel gives E t

l- a c e ty l - 3 - m e t h y lc y c \ o p e n ta n e - l - a c e t a te , b. p. 135°/11 mm. (s e m ic a r b a z o n e , m. p. 105°), isolated as the

s e m ic a r b a z o n e , m. p. 200° (decomp.) (with a little of an isomeric s e m ic a r b a z o n e , m. p. 177°), of the a cid ,

m. p. 83°, which is oxidised to (VII). The above ester with NaOEt gives S m e th y le y c lo p e r ita n e s p ir o

-O R G A N IC C H E M IS T R Y . 7 41

c j c \ o p e n t a n e - 2 ' : 4 1 -d io h e , m. p. 101° (20% yield), (Br-compound, in. p. 185°). A. A. L.

F orm ation an d sta b ility of sjn ro -co m p ou n d s.

XIV. E ffect of th e m ethylcycZohexane r in g on the carbon tetrah ed ral a n g le. It. D. D e s a i

(J.C.S., 1932, 1047— 1065).—The properties of the spirocycZopropane derivatives obtained from 3- and 4-methylcycZohexane-l : 1-diacetic acid indicate a strainless structure for 3- and 4-methylcycZohexane, whereas cycZohexane is strained. There may be some factor in the methylcycZphexane ring which invalidates the methods used to demonstrate strain in other rings. The co-imide of 4-mothylcycZohexano- 1 : 1-dicyanoacetic acid (J.C.S., 1913, 103, 1593) gives in cold H 2S 0 4 the m - im id e , m. p. 260° (decomp.), of 4-methylcycZohexane-l : 1-dicarbamylacetic acid, or in hot H 2S 0 4 4-methylcyeZohexane-l : 1-diacetic acid (I) (E t ester, b. p. 178°/24 mm.), the anhydride (two a n i l i c a c id s , A , m. p. 184°, and B , m. p. 148°, both giving the same a n i l , m. p. 140°) of which gives

E t H 4 - m e t h y l c y c l o h e x a n e - l : 1 -d ia c e ta te . The acid chloride of this wdtli Br and subsequent estorifieation gives a little E t E l a - b r o m o A - m e th y lc y c lo h e x a n e - l : 1-

d ia ce ta te , and the E t 2 ester, which, when distilled, gives EtBr and a l a c to n ic e s te r , b. p. 205°/20 mm., whilst hydrolysis with 64% KOH at 150° gives trans-, m. p. 212°, and c is -n ie lh y lc y c lo h e x a n e s -p iv o - c y c lo p r o jia n e - 2 ' : 3'- d ic a r b o x y lic a c id , m. p. 165°

(separated by conversion of the latter with AcCl into the a n h y d r id e , m. p. 72°), and a little la c to n ic a c id ,

m. p. 145° ( E t ester, b. p. 199—203°/18 mm.). Similar treatment of the acid chloride of (I) gives mono- and d ib r o m o - a c id e s te r s , and E t a y .'- d ib r o m o A - m e th y l- c y c lo h e x a n e -1 : 1 - d ia c e ta te (II), which gives a b ro m o - la cto n ic e s te r , b. p. 235°/21 mm., on being distilled, and with anhyd. formic acid gives a little of the a c id ,

m. p. 185° (deeomp.), from (II), and the la c to n e ,

m. p. 206°, of cc-bromo-a'-hydroxy-4-methylcycZo- hexane-1 : 1-diacetic acid. (II) with 64% KOH at 150° gives a little 4-methylcycZoliexenylacetic acid (A., 1907, i, 616), and two isomeric a - k e to A - m e th y l- c yc lo h e x a n e -1 : 1 - d ia c e tic a c id s (III), m. p. 147°

[q u in o x a lin e derivative, m. p. 226°; 2 : i - d i n i t r o -

•p h en ylh yd ra zo n e, m. p. 220° (decomp.); M e ester, b. p. 192°/25 mm. ( p h e n y lh y d r a z o n c , m. p. 163°)], and (IV), m, p. 128—129° [q u in o x a lin e derivative, in. p. 245°; 2 : 4-d i n i lr o p h e n y lh y d r a z o n e, m. p. 205°;

y h e n y lh y d r a z o n e , m. p. 204° (deeomp.); M e ester, b. p. 187°/20 mm. (p h e n y lh y d r a z o n e , m. p. 227°)].

(Ill) and (IV) are oxidised respectively by H 20 2 in Na2C03 to isomerides of 1 - c a r b o x y A - m e th y lc y c lo - h e x a n e -l-a c e tic a c id (V), m. p. 136° (previous sinter­

ing), and (VI), m. p. 173° (efferv.) ( a n h y d r id e , m. p.

104°; a n i l i c a c id , m. p. 184°) (cf. A., 1931, 1055).

(II) with KOH in MeOH gives a mixture of trans- (VII), m. p. 190° (previous sintering), and two cis-4-

i n e th y lc y c \o h e x a n e s p \v o - 2 '- m e th o x y c y c \o p r o p a n e - 2' : 3'-

d ica rb o x ylic a c id s (VIII), m. p. 182° (efferv.), and (IX), m. p. 162° (efferv.), the cis-acids being separated by means of their a n h y d r id e s , A , m. p. 148° ( a n ilic acids, m. p. 183° and 160°; a n i l , m. p. 134°), and m. p. 90° [a n i l i c a c id s , m. p. 193° (efferv.) and 157°; a n il, m. p. 96°], the latter being also obtained oy distillation of (VII). (VIII) and (IX) with

fuming HBr give (IV) and (VI), and (III) and (V), respectively. The following derivatives of 3-methyl- cycZohexane are similarly obtained: a - i m i d e , m. p.

272° (decomp.), of 3-methylcycZohexano-l : 1-diacetic acid ( E t2 ester, b. p. 174°/22 m m .; a n i l i c a c id s , m. p.

172° and 141°; a n il, m.p. 137°); E t z and E t I I a b ro m o -3 - m e th y lc y c lo h e x a n e - l : 1 -d ia c e ta te (la c to n e e s te r , b. p.

196°/16 mm.); trans- ( A ) , m. p. 270° ( d i a n i li d e ,

m. p. 280°), trans- (B), m. p. 245° ( d i a n i li d e , m. p.

260°), and c is - S - r n e th y lc y c lo h e x a n e s p iv o c y c lo q ir o p a n c - 2': 3'- d ic a r b o x y lic a c id , m. p. 205°; E t I I , m. p.

162°, and E t z a A - d i b r o m o A - m c l h y lc y c l o h e x a n e - l : 1-

d ia c e ta te (b r o m o la c to n ic e ste r , b. p. 234°/21 mm., in. p.

130°; b r o m o la c to n ic a c id s , m. p. 225° and 201°);

cycZohexenylacetic acid (A., 1906, i, 563); a k e to -3 - m e th y lc y c lo h e x a n e - l : 1 - d ia c e tic a c id s , A , m. p.

139—140° [ q u in o x a lin e derivative, m. p. 217°;

2 :1 - d in itr o p lie n y lh y d r a z o n e , m. p. 198° (deeomp.)], and B (X), m. p. 126—127° [ q u in o x a lin e derivative, m. p. 239°; 2 :‘1 - d in itr o p h e n y lh y d r a z o n e , m. p. 194°

(decomp.); M e ester, b. p. lS5°/23 mm. ( p h e n y l ­ h y d r a z o n e , m. p. 220° (deeomp.)], oxidised to 1-

c a r b o x y - 3 - m e th y lc y c lo h e x a n e - l- a c e tic a c id (XI), m. p.

163° (efferv.) [ a n h y d r id e , m. p. 41°, b. p. 166°/22 m m .;

a n i l i c a c id , m. p. 170° (efferv.); a n i l , m. p. 139°];

trans-, m. p. 201° (previous sintering), and cis-3-

m e t h y lc y c \o h e x a n e s p iv o - 2 '- n ie th o x y c y c \o p r o p a n e - 2 ’ : 3'-

d ic a r b o x y lic a c id , A (XII), m. p. 194° [ a n h y d r id e ,

m. p. 140—141°; a n i l i c a c id s , m. p. 195° (efferv.) and 135°; a n i l , m. p. 112°], B , m. p. 195° (efferv.)

[ a n h y d r id e , m. p. 116°; a n i l i c a c id , m. p. 215° (efferv.)],

C , m. p. 197° (efferv.) ( a n h y d r id e , m. p . 101°; a n i l i c a c id , m. p. 212°), and D , m. p. 196° (efferv.) [ a n h y d r id e ,

m. p. 85°; a n i l i c a c id , m. p. 192° (efferv.); a n i l ,

m. p. 118°]. The m. p. of the acids in the above group are taken in a bath preheated to 140—150°.

(XII) with fuming HBr gives (X) and (XI), isolated through the corresponding esters. A. A. L.

C ondensation of su ccin d iald eb yd e, m e th y l- am in e, and m a lo n ic acid . C. M a n n i c h and H.

B u d d e (Arch. Pharm., 1932, 270, 283—290).—

Succindialdehyde (prepared in 70% yield from succindialdoxime and E t nitrite in cold dioxan) (condensation p r o d u c t with dimethyldihydroresorcinol, m. p. 218°), malonic acid, and cold aq. N H 2Me give C 02 and 3 - m e ih y la m in o - 2 : 2 - d i c a r b o x y c y c l o p e n ta n e - l - a c e tic a c i d (I), m. p. 186—187° (deeomp.) ( h y d r o ­ c h lo r id e , decomp. 153°; A g z salt; H - p - n itr o b e n z o y l

derivative, m. p. 168°; i¥e3 ester, an oil, which with Mel gives the m e th io d id e , m. p. 168°, of the N M e 2-

compound), which in hot lLO yields 3-m e th y l- a m in o - 2 - c a r b o x y c y c lo p e n ta n e - l- a c e tic a c id (II), m. p.

202° (deeomp.) [ N - p - n itr o b e n z o y l derivative, + H 20 , m. p. 126°; M e 2 ester, b. p. 129— 131°/l-5 m m .;

AO-derivative, an oil; m e th io d id e (III), m. p. 134°, of the A7J¥e2-compound]. (I ll) with hot 15% NaOH yields NMe3 and 2 - c a r b o x y - A 2- c y c lo p e n t e n e - l- a c e t i c a c id (IV),m. p. 156° ( P b , A g , and C u salts,amorphous), reduced (Pd-C) to 2 - c a r b o x y c y c lo p e n ta n e-1 - a c e tic a c i d

(V), m. p. 60—61°. When heated at 200°, (I) affords NH,Me, C 02, H 20 , (IV), (II), and the c is - and trans­

forms, m. i). 178° and 201—202°, of the l a c ta m

of (II). Succindialdehyde, malonic acid, and aq.

N H ,E t at room temp, give C 02; (V) is obtained by

7 4 2 B R IT IS H C H E M IC A L A B S T R A C T S . A .

evaporating the solution and heating the residue

at 200°. R. S. C.

f* L ichen a cid s. II. C on stitu tion of evern ic acid an d sy n th e sis of m e th y l evern ate. A.

R o b e r t s o n and R . J. S t e p h e n s o n (J.C.S., 1932, 1388— 1395; ci. A., 1930, 472).—Everninaldehyde (I) (modified prep.) with hot Ac20 and NaOAc gives the

Ac

derivative, m. p. 84°, oxidised by K M n04 and MgS04 in aq. COMe2 at 50° to 0

-acetyleveminic acid

(II), m. p. 117°, hydrolysed by A-NaOH in 10 mm.

at room temp, to everninic acid, which is best acetyl - ated by A c ,0 and pyridine at 37°. O-Diacetylevernic acid (modified prep.), m. p. 159° (lit. 144°), gives no colour with FeCl3. (I) with E tl and Ag20 in hot COMe, gives

O-ethyleverninaldehyde,

m. p. 64°, oxidised (KMnOJ to

O-elhyleverninic acid

(III), m. p.

87°. p-Carbometlioxyorsellinic acid is similarly etliyl- ated to the

Et

ester, m. p. 89°. Evernic acid (IV), Mel, and AgaO in hot COMe2 give Me 0-dimethyl- evernate, and using E t l (or diazoethane)

Et

O-

dielhylevernale,

m. p. 123°, which by hydrolysis with 2-5% KO H-EtOH at 40—50° affords (III) and E t I -O-ethylorsellinate. (I ll) with PC1S in CHC13 gives the

acid chloride

(V), m. p. 6S° [whence the anilide, m. p. 178° (lit. 175°), was prepared], which does not react with orsellinic acid in alkaline aq. COMe2 at

— 15° and hi C6H 6, (CHC12)2, pyridine, or NPhMe, gives oily products resolved into the original acids by H„0. Dicarbomethoxyorsellinic acid, Mel, and Ag20 in hot COMe2 afford Me orsellinate, which with (V) in pyridine slowly gives

Me O-acetylevernate,

m. p. 119°, rapidly hydrolysed by AXNaOH at room temp, to

Me evernate

(VI), m. p. 148°, identical with that obtained from natural evernic acid and C H ^ a in E t20 .

Et evernate

(prepared by diazoethane) has m. p. 152°. Hydrolysis of (VI) under different conditions gives either Me everninate and a mixture of acids, m. p. 160° (decomp.), or Me orsellinate, orsellinic and everninic acids. The constitution of evernic acid (A., 1914, i, 417) is thus confirmed.

R. S. C.

B ile a cid s. XXX IV. M. S c h e n c k (Z. physiol.

Chem., 1932, 207, 207—274; cf. this vol., 383).—

The aminoamide, CojHggOjjN,, by the Van Slyke method loses the N H 2 group with AcOH and 75—

82% of th e amide group with HC1 in 61 hr. The

“ oxidation product ” (I), C24H3S (36)0 9N 2, was prepared from the crude oximino-aeid (II) hydrochloride. On boiling with HC1 (I) loses NH3 probably from an acid amide group. HC1 does not eliminate NH 3 from the

“ inversion product ” of (II), which is probably a mixture of § lactamamino-acid and § diaminopenta-

carboxylic acid. J. H. B.

D e co m p o sitio n b y w a ter of th e b ro m id es of S c h iff’s b a se s. J. T u r c a n (Bull. Soc. chim., 1932, [iv], 51, 486—500).—Dibromides of Schiff’s bases of the type CHRINR' in which tautomerism is not possible are decomposed by H ,0 normally : CHRBr-NR'Br— >H B r+R -C H O +K H R 'B r (with subsequent migration of Br to the nucleus if R = A r), but with bases of the type CH2R ’CHINR', Br addition may occur to the enamic form resulting in the ab­

normal decomp, observed by Berg (A., 1925, i, 817) : CHRBr-CHBr-NHR' — > R-CHBr-CHO - f HBr +

N H 2R', irrespective of whether R = a r y l or alkyl group. In addition to cases already recorded, abnormal decomp, is observed with the

dibromide

of

amylideneamylamine and tsobutylidene -

p

- bromo-

aniline. The

dibromides

of benzylidene-a-naphthyl- amine and -p-bromoaniline decompose to give PhCHO and4-bromo-a-naphthylamineor 2 : 4-dibromoaniline, respectively, Mechanisms for these reactions and the polymerisation of Schiff’s bases are discussed.

J. W. B.

Io d id es of a ro m a tic S c h iff’s b a s e s . J. T u r c a n

(Bull. Soc. chim., 1932, [iv], 51, 500—502).—In the hydrolysis of di-iodides of Schiff’s bases of the type CHArl-NArT, migration of the I in the NHAr'I formed occurs only if the p-position is free. Thus the

di-iodide

of CHPh:N-C10H 7(a) gives PhCHO and iodonaphthyamine, but that of CHPh IN* C6H4Br

bp)

gives only PhCHO, p-CrH ,Bi'-EH0, and I.

" J. W. B.

S c h iff’s rea ctio n for a ld eh yd es. P. Rumpf

(Bull. Soc. chim., 1932, [iv], 51, 503—528).—The recoloration of Schiff’s reagent by aldehydes is not due to oxidation, since it occurs in complete absence of 0 2, is unaffected by the presence of the antioxygen quinol, and is a sp. reaction of the -CHIO group (ethylene oxide reacts only because of its ready isomerisation to MeCHO, and both CG'lyCHO and salicylaldehyde give the reaction under suitable conditions). The main results of a detailed spectro­

scopic examination with different aldehydes in varying concns. and with varying concn. of S 0 2 are as follows, pure pararosaniline (same spectrum as fuschin) being used throughout. The spectrum of the solution after recoloration by an aldehyde (max. absorption, 5600—5700 A.) is markedly different from those of fuschin itself, its unstable additive products with aldehydes, or the Schiff’s bases (azomethines), and is due to a single chemical individual. With MeCHO, EtCHO, BuCIIO, and Bu^CHO the intensity of the colour rapidly increases to a max. and then slowly fades (accelerated by excess of S 0 2), whilst with CH20 and CHMelCH'CHO it increases slowly to a stable max. The curve obtained for a mixture of CH20 and MeCHO is intermediate, only the colour due to the former persisting after 24 hr. (analytical distinction). With a deficiency of SO, the spectrum changes progressively (without fading) to that of fuschin in acid solution (max. 5560 A.), whilst with excess of aldehyde de- colorisation occurs with formation of a violet ppt., the spectrum of which in HC1 proves it to be the Schiff’s base. Under identical conditions all aldehydes (except CH20 ) give closely similar but not identical spectra. Ketoses do not give the reaction, whilst the colour obtained only with large concn. of aldoses is that of fuschin in acid solution. Determination of the intensities of the max. with increasing quantities of an aldehyde after 35 min. give a four-branch curve (which is discussed) from which vals. converging on 2 are obtained for the no. of mols. of aldehyde reacting with each mol. of fuschin. The reaction does not occur unless at least 2 of the N atoms have an H atom attached. On the basis of these results the following mechanism is deduced (cf. Wieland and Scheuing, A., 1922, i, 58). In Schiff’s reagent (with

O R G A N IC C H E M IS T R Y . 7 4 3

excess of S 0 2, intermediate stages discussed) the equilibrium

-H„0 =

. o - n h 3-c6h 4. . c gh 4-n h 2,h 2o U-b^ O -N H 3-CeH > L<-SO.,H

(Q = H 0 2S,0'N H 2!GcH4) occurs : (I) + 2R -C H 0 (except CH„0)— >

/GgHpNM-CHR-OH ' Q:C\ C h -NH ^ ° - S ° 2H — >

b o -<'CHR,OH

,,C0H4-NH- -GR-OH q:< c.h, Hh, < £ ; |r h o d completely displacing the equilibrium in favour of (I). With CH„0, which contains 2 reducing H atoms, a similar complex Q !o fcfiH4-NH!,<^'> jj-QIl) is obtained, and in this case reaction does occur with a pentamethylated dye. With deficiency of S 0 2 and without excess of R-CIIO, slow and complex hydrolysis (mechanism given) to fuschin and R -C H (0H )-0\S0JI occurs (cf. above), whilst with excess of R-CIIO the liberated fuschin forms the in­

soluble azomethine. The mechanism of colour fading is also discussed, and the analytical applications of a spectroscopic study of Schiff’s reaction permitting the characterisation of an aldehyde, and determin­

ation of the effective concn. of free -OHIO group in a solution, are outlined. J. W. B.

Transform ation of dithiocarboxylic acids into aldoxim es. H. W u y t s and H. K o e c k (Bull. S o c .

ehim. Belg., 1932, 41, 196—201).—Mg p-chloro- phenyl bromide and CS2 in Et„0 yield p - c h lo r o d ith io -

b en zo ic a c id , m. p. approx. 30°, which with N H 2OH,HCl

in pyridine at 70° gives p-chlorobenzaldoxime, m. p.

110-5°. The appropriate dithiocarboxylic acids yield similarly benz-, o - and p-tolu-, and a-naphth-aldoxime;

f i-n a p h th a ld o x im a , similarly prepared, has m. p.

156°. ' R. S. C.

Evidence for the H antzsch-W erner theory and for the configuration of oxim es. J. M e i s e n - h e i m e r , W. T h e i l a c k e r , and 0 . B e i s s w e n g e r

(Annalen, 1932, 495, 249—283).—The 3 -N 0 2-deriv- ative of 2 : 6-dichlorobenzaldeliyde [a-oxime, m. p.

149—150° ( A c derivative, m. p. 51°)] with NH,0H,HC1 in aq. M e0H -N a2C 03 gives a-2 : 6 - d ic h lo r o - 3 - n itr o - b e n z a ld o x im e (I), m. p. 156—157° ( A c derivative, m. p. 119°), converted by PC15 in E t20 into 2 : 6-

d ic M o r o -3 -n itr o b e n z o n itr ile , m. p. 106—107°, and by boiling Et0H -2iV -N a2C03 into 6 -c h lo r o -3(or 5 ?)-

n itr o - 2 - h y d r o x y b e n z o n itr ile (II), m. p. 129—130°

(also formed in small amount during the oximation).

(I) is equilibrated by HC1 in EtOH-conc. HC1 to a mixture of 25% of (I) and 75% of [3-2 : G -d ic h lo ro -3 - n itr o b e n z a ld o x im e (III), m. p. 154— 155° [readily convertible by cold 0-5iV-NaOH into (II)]. Reduc­

tion of (I) with Fe(OH)2 gives a-2 : 6 -d ic h lo r o -3-

to n in o b e n z a ld o x im e , m. p. 158—159°, which is not resolved by a-bromo-d-camphor-a- or -r-sulphonic acids. Similar reduction (below 10°) of the mixture

°f (I) and (III) affords a little 2 : 6 d ic h lo r o d a m in o

-b e n z o n itr ile , m. p. 169— 170°, and (3-2 : 6 - d ic h lo r o -3 - a m in o b e n z a ld o x im e (obtained pure by fractional crystallisation from C6H c), in. p. 174°, which is converted into the a-form by boiling with charcoal and C6H c or by dll. HC1 at 0°; the (3-oxime could not be resolved. 2 : 6-Dichloro-3-aminobenzaldehyde, m. p. 122°, which polymerises (partly) readily, is oximated to the a-oxim e; with NHMe-OH, the labile a-, m. p. 171—172°, resolidifying with m. p.

207°, and stable (3-2 : Q -d ic h d o ro -'S -a m in o b e n za ld o x im e

N- M e e th e r s, m. p. 207° [d- g lu c o s id o s a lic y lid e n e

derivative (+ 2 H 20 ,3 E t0 H ), m. p. 167°], result.

Both ethers are converted by dil. HC1 into the anhydro- derivative, m. p. above 325°, of the original NH„- aldehyde.

E t 2-acetoxy-3-naphthoate and A1C13 in P h N 0 2 give the E t ester (IV), m. p. 116—117°, of 2 h y d r o x y -l - a c e to - 2 - n a p h th o ic a c id (V), m. p. 194° [ l i e ester, m. p. 144° (a-o x im e , m. p. 191— 192°); M e e th er,

m. p. 191-5° ( M e ester, m. p. 42-5°)]. (V) is converted by Br in AcOH into l-bromo-2-hydroxy-3-naphthoic acid and by boiling 25% IIC1 into 2 : 3-hydroxy- naphthoic acid, whilst (IV) and N H 2OH,HCl in dil.

KOH afford 2 - h y d r o x y - l- a c e to - d - n a p h th h y d r o M m ic a c id ,

m. p. 192— 193° (decomp.). (IV) and NHMe-OH,HC1 in EtOH-NaOAc give (ct)-‘2 - h y d r o x y - 3 - c a r b e th o z y-1 -

n a p h t h y l M e k e to x im e lA -M e e th e r (+CC14), m. p.

158°, which does not give a Cu complex, is hydrolysed by cone. HC1 to 2 : 3-hydroxynaphthoic acid, and by EtOH-HCl at 140° to (IV). Hydrolysis with 30% MeOH-KOH gives (a ) - 2 - h y d r o x y - 3 - c a r b o x y-1 -

n a p h th y l M e k e to x im e N-Afe e th e r (+A cO H ), m. p.

265°, which affords a c in c h o n in e salt, m. p. 165—

175°, [a% + 11 9° in EtOH, [a]“ + 6 9 ° — >-+49°

in pyridine, decomposed by 2A-HC1 in MeOH at 0°

to an active AT-Me ether, [a]]? + 1 2 4 ° in 0-lAT-NaOH (time of half change at 70° is 74 mm.). (IV) and NHoOH.HCl in MeOH-NaOAc give a mixture of a- (VI), m. p. 198°, and (3- (VII), m. p. 185-5°, -2-

h y d r o x y - 3 - c a r b e t h o x y - l - n a p h t h y l M e k e to x im e s , both of which are converted by boiling GeH 0 into an equilibrium mixture of 90% a and 10% (VI) and PC15 in E t20~dioxan afford E t l a c e ta m id o 2 h y d r o x y

-3- n a p h th o a te (VIII), m. p. 214°, also prepared by acetylation of the N H 2-e s te r , m. p. 108-5°, formed by reduction of E t l-nitro-2-hydroxy-3-naphthoate, m. p. 155° (lit. 160°). Beckmann rearrangement of (VII) gives E t 2 - h y d r o x y-1 -N - m d h y lc a r b a m y l- 2 - n a p h th o a te , m. p. 190-5°, hydrolysed by AcOH-HCl and conc. HC1 at 180— 190° to NHJVIe and 2 : 3- hydroxynaphthoic acid. (VI) is converted by boiling H C02H into (VIII) [the free acid passes when heated into (probably) 2-m ethyl-2': l'-naphthoxazole-9-carb- oxylie acid (IX), m. p. 295— 297°], a c o m p o u n d ,

Ci5II150 4N, m. p. 163° [hydrolysis and subsequent heating also gives (IX)], and a s u b s ta n c e , C15H 130 3N, m. p. 69—70° [probably the E t ester of (IX)].

Hydrolysis of (Vi) with 30% MeOH-KOH gives

a - 2 - h y d r o x y - Z - c a r b o x y - l- n a p h th y l M e k e to x im e , m. p.

288—297° (darkens about 220°) according to rate of heating [c in c h o n in e , m. p. 170—173° (decomp.),

and c o n iin e salts], which could not be resolved.

and c o n iin e salts], which could not be resolved.