• Nie Znaleziono Wyników

Influence of ionic association on viscosity of electrolyte solutions. II . Methods of determination of the Jones-Dole equation

N/A
N/A
Protected

Academic year: 2021

Share "Influence of ionic association on viscosity of electrolyte solutions. II . Methods of determination of the Jones-Dole equation"

Copied!
14
0
0

Pełen tekst

(1)

A C T A I I N I V E R S I T A T I S L O D Z I E N S I S FOLIA CHIMICA 9, 1991

Adam Bald*

INFLUENCE OF IUNIC ASSOCIATION ON VISCOSITY CF ELECTROLYTE SOLUTIONS

I I . METHOOS OF DETERMINATION OF THE JONES-DOLE EQUATION

S eve ra l methods of s o lv in n the forms of the Jones-Oole equatation presented e a r l i e r [ l ] have been suggested fo r incom pletely d is s o c ia te d e le c t r o ly t e s of KA, KA2, K2A, KAj and KjA types where K and A are c a tio n arid anion, r e s p e c t i­ v e ly . ihe d if f e r e n t v a ria n ts taking in to account the values of io n ic e q u ilib riu m constant have been considered. The aim of sugested methods is the c o rre c t d eterm ination of B c o e ff ic ie n t s of the Jones-Dole equation.

ELECTROLYTES OF KA TYPE

In the case of 1-1 e le c t r o ly t e s which are com letely d is s o c ia te d the Jones-Dole equation is given in the form:

t] r s 1 + AVcT + Be (1 )

or at higher co n cen tratio n s of e le c t r o ly t e 2

Tjr = 1 ♦ AVcT + Be + Dc (2)

The A and B c o e f f ic ie n t s can be determined i f the above equa­ tio n s are rearranged to the forms:

(2)

( U )

and

- *

= A ♦ BV

c

T ♦ OcJ/2

(2a)

Reationship ( l a ) I s polynomlnal of f i r s t order in r e l a t i o n to

■Jc.

Using the l e a s t squares method the A and

B

c o e f f i c i e n t can be

c a l c u l a t e d . Relation (2a) i s polynomlnal of thir d order in r e l a t i o n

to

and the l e a s t squares method l e t s us to determine the a l l A,

B and 0 c o e f f i c i e n t s . They can be a ls o c a lc u l a t e d by use

other

methods proposed by

H a r t i n u s

e t a l . [2]. In my opinion

the more c e r ta in way of the determination the . a l l parameters of

equations

(1) and (2) i s based on using in the c a l c u l a t i o n s the

t h e o r e t i c a l A c o e f f i c i e n t s . That

i s because for other so l u t i o n s

than

in water

the agreement of the values of t h e o r e t i c a l and empi­

r i c a l A c o e ff ic ie n t s is not r e a lly

s u f f i c i e n t

[3 ]. Hence

A should

be obtain from

the

F a l k e n h a g e n equation

[4].

The symbols in equation (3 ) have their usual meaning. Therefore, the lim itin g io n ic io n ic c o n d u c tiv itie s are required which may be determined from c o n d u c tiv ity measurements in e le c t r o ly t e s o lu tio n s . I f the A c o e f f ic ie n t are known, equations (1 ) and (2 ) can be rearranged in the fo llo w in g way

(3)

( | z 2U ° - |zt | X ° ) 2 U j

1

♦ l z 2 l 1 1 / 2 1 2 T ^ \ J ■rçr - 1 - AVc B ( l b ) c

(3)

and

qr - 1 - AVc*

Equation ( l b ) and (2b ) can be treated as polynim inal of zero and f i r s t order against of molar co n c e n tratio n , c, r e s p e c t iv e ly . The s o lu tio n of equation ( l b ) reduces then to c a lc u la tio n of the a rith m e tic mean and equation (2b ) can be solved the le a s t squares method. The above ways of c a lc u la tio n c o e f f ic ie n t s g ive r e a lly the b e tte r r e s u lts because of the lower number of c a lc u la te d parameters. So lvin g equation ( l b ) and (2b) the in d is p e n s a b ility of taking in to account the 0 c o e f f ic ie n t can be also estim ate. When e le c t r o ly t e is not q u ite d is s o c ia te d the e q u ilib riu m of the process: K+ + A'

I / o

KA can be described the a s s o c ia tio n constan t:

K = I . 9 ! .

a 2 2

cot y +

where cl is the degree of d is s o c ia tio n and y+ the mean a c t i v i t y c o e f f ic ie n t . The Oones-Oole equation fo r th is case, acco rd in g ly with 0 a v i e s and M a 1 p a s s [5 ], is given by:

= l ♦ A V c “ + B ^ c a + B p C ( l - a ) ( 4 a )

where B . * B + B , and B is c o e f f ic ie n t of ion p a ir.

1 K+ A" p

Equation (4 a ) may be rearranged to the form:

- r---- 1A— = c a B . *i Bn p ot (4b)

and hence

the

Bi

and

Bp

c o e f f ic ie n t s can be obtained by the le a s t

s quares

method. The values of A c o e f f ic ie n t s can be obtained in two

ways. The

f i r s t one [6] is based on the e x tra p o la tio n tj - vs. Vc\ taking

the

in te rc e p ts at

VcT

=

0

as the requ ired A valu e s and assumption th at the obtained A values are c o rr e c t. The second one

[3] is based on the c a lc u la tio n the A values from equation (3 ) taking the obtained p re v io u sly values of io n ic c o n d u c tiv it ie s .

(4)

The la s t - mentioned one is more se n s ib le in my opinion.

The values of the degree of d is s o c ia tio n at each co ncentration used can be i t e r a t i v e l y c a lc u la te d from the fo llo w in g equations!

R - i s the distance of c l o s e s t approach of ions,

I - the ionic force of e l e c t r o l y t e

- J T

3 ca.

The mentioned above both methods methods of solution of equation

(4a) are based on indipendent determination of the

A

c o e f f i c i e n t s

and l i n e a r i s a t i o n of equation (4a) to the

e a s i l l y s ol va b le form

(4 b ). In my opinion equation (4a) can be solved using the nonlinear

l e a s t squares methods with simultaneous determination of

a l l

i t s

parameters i . e .

A, Bj

and

Bp .

From equation (4a) and d e f i n i t i o n of the t o t a l d i f f e r e n t i a l

i t

follows tha t:

(5a)

(5b)

where !

(

6

)

where:

- | p = c ( l - a ) ,

P

^ r ' ^ r .e x p . ~ * 2 r , c a l c . ’

Applying the le a s t squares method to the equation (6 ) the system of equation (7 ) is obtained:

(5)

aa£ —k \ i [“t s

* E ^ r 1 [ ^ ] i

AAE[%]i[S[]i ♦

i

* E m c i [ ^ ] 1 ûAE [ -i x ] i

[U;]i +

a b i E = E û t i r i[-a ilrl * ah v M !" ~ à _ l * pH aBn J l L anr dA anr 357

p

ai2r anr aBT arjr

« ¿ [ S ' ].

+ AB

x[

3*ll p H 3Br 3ti

3B

i drl i aB,

(7)

where the unknown quantity are increments of AA, AB^ and ABp .

The f i r s t step in c a l c u l a t i o n must

, ( 0 )

'P

be an e val ua ti on of the

i n i t i a l values of Av“ / ,

and Bp° \ Then the Ka

values are used

to c a l c u l a t e the degree of d i s s o c i a t i o n ,

a

,

from equations

(5)

and the Ai ^,

dt^/dA,

ai

2

r /a B^ , and 3tjr /3Bp

values

for

a l l

experimental po i n t s . The next s u i t a b l e sums, occuring in equation

are obtained

system ( 7 ) , are c a lc u l a t e d and A^1^, B^1^ and B^ ^

i

p

so lv in g i t . As a r e s u l t i t allows us to evaluate more p r e c i s e l y the

a lue s o f : A(1) = A(0) ♦ AA( 1 ) ,

b

[ : ) * fl[0) +

AB^X) and

b

£ L) =

procedure i s repeated

B<°> .

Then the a l l c a l c u l a t i o n

B ; L) and B^l )

p

( 1

\

taking into account as the i n i t i a l values A

,

___

g e t t i n g in the second cy cle of c a l c u l a t i o n the next co rr e ct values

of searched c o e f f i c i e n t s .

The c a l c u l a t i o n s are fin is he d i f :

* n (k>

rfTJ r a n

(k+l )

<

d

(B)

where :

(6)

k - number of c a l c u l a t i o n cy cl e ,

n - number of measurement.

I t should point out that taking Into consideration the number of

p a r a l l e l searching parameters the above-method can be used only for

data of high p r e c i s io n .

I was reported e a r l i e r [l] that in e l e c t r o l y t e s ol ut io n of KA2

type the following e q u i l i b r i a can be expectet:

ELECTROLYTES OF KAj AND KjA TYPES

KA* + A" * = * KA2 and K*2 ♦ A'

* = *

KA+

for which the equilibrium constants are expressed:

K

( 10)

K

(

11

)

where

In y± =

( 12)

1 ♦

rboh

VT

*ao h^

(7)

In equation (12) and (13) the AQH and BDH c o e f f i c i e n t s are the

Debye-Hiickel ones.'The parameter of the c l o s e s t approach of

ions,

R, according to J u s t i c e ' s s ug ges tio n, can be

assumed to the BJer-

rum’ s d ist an ce q * | z j Z 2 | e 2/2kT

[7, 8],

The J o n e s-D o l e equation takes the general form [l ]

tjc = 1 ♦ Ayfcdja^

*

o»^[B^c(l -

0

*

2

) + BjCoij] ♦ c ( l - o(j)Bq (14)

where

and

c ij

are the degrees of d i s s o c i a t i o n s r e l a t e d to the

and Ka2 equilibrium co n s ta n ts , r e s p e c t i v e l y . The Kal and

Ka2

values may be found from conductivity measurement

of e l e c t r o l y t e

s o l u t i o n s .

The degrees of d i s s o c i a t i o n

oi^

and

01

2 for each e l e c t r o l y t e

concentration used are c a lc u l a t e d from Kal and Ka2

so l v i n g the

equation system (1 0 ) - ( 1 3 ) using the

i t e r a t i v e method of succ es ive

approximations. In t h i s aim subroutine c a l l e d ALFA 12 can be used.

Equation (14) contains as many as 4

unknown parameters.

The

simultaneously c a l c u l a t i o n of them would be, in my opinion* theore­

t i c a l l y p o s s i b l e using the nonlinear

l e a s t squares method

i f the

whole procedure was converged. The obtained r e s u l t s would be burden

with s i g n i f i c a n t e r r o r s . I t i s more reasonably

to determine

the

l im it in g ionic c o n d u c t i v i t i e s from conductivity

measurements

in

e l e c t r o l y t e s o l u t i o n s and using them to c a l c u l a t e the A c o e f f i c i e n t

from equation ( 3 ) .

The other parameters B^, B2 and B

q

can be c a l c u l a t e d

in two

ways :

1° Using equation (14) in the form of t o t a l d i f f e r e n t i a l

An r s A 0 i + â B ^ A B 2 +

30

^ * Bo ( 1 5 >

where a n r / 9flo = c ( x " “ i * » 3nr / 3Bi = coli (1 "

a 2^ > dllc / d B 2

3

and from the a p p l ic a ti o n of the l e a s t squares method the following

equation system can be writ te n:’

(8)

anr

4,

o

E [ ^ ] 1 f e ] , *

* “ j l [ 2 j ] l [ 2 j ] i

=I > v i

ABoE[^]i ^ i + ABlE[S[]i[§-"]i * AB2E[^]i[^]i

•£aV i i B o ï t e ] i a0i dn r + AB.

* “ E[

5

î]‘

! 3e dB-' W . i 3Tît dB2 J (16)

Finding increments of ABq, AB^ and AB2 the more p re c is e ly values of the B c o e ff ic ie n t s can be c a lc u la te d and the whole proce­ dure is repeated as mentioned above analogous method for incomple­ t e ly d is s o c ia te d 1-1 e le c t r o ly t e s .

2 ° Equation (14) may be lin e a r iz e d to the form:

Tjr - 1 - c ( l

-cetjO<2

b2

+ B i

I

-(17)

The l e f t hand

assuming the value of Bq c o e f f ic ie n t .

sid e of equation (17) can be c a lc u la te d Then B^ and B2 c o e f f ic ie n t s can be obtained from the le a s t squares method. The c a lc u la tio n must ;,e repeated fo r the Bq values changing w ith the d e f in it e step t i l l to fin d the minimum of the standard d e v ia tio n of the fu n ctio n

(9)

e s ta b lis h in g in th is way the optim al values of the BQ, and B2 c o e f f ic ie n t s .

I t may be noticed th at in both methods the experim ental data of high p re c is io n should be used. L u c k ily , as a ru le , Ka « Ka2 and a d d itio n a lly “ 0. In th is case otj = 1 and equation (14) has a form:

r/r = 1 ♦ Ary6oi2 B jC d - a 2) B2cw2

(

18

)

This equation can be solved with help of the both e a r l i e r pro­ posed methods and only two param eters, B ( and B2 , to be determined. Both the methods w i l l be s ig n if ic a n t y s im p lifie d from the fo llo w in g reaso ns:

1 The determ ination of the c*2 value reduces to the i t e r a t i v e s o lu tio n of the system

1 - oi ‘ a2 co.2( l + oi2) y ^ 2 and OH I f , y --- — K 1 + RBq h-vT where I = c ( l + 2c*2).

2 ° In f i r s t method, above e a r l i e r , only the system of equations remains for so lu tio n :

ratjr ' ABl l [ l 5 7 j i æl-ii a b2 E 3-rjr ABl ^ a e j i

r f — 1

3TIr3B 2-> ao2-1 a J k 3B~ t - E ï k l 3B2j i . ^ r ,1

3 ° In the second method, equation (18) can be rearranged to the form:

1 - ct n r- i - A v ^

(10)

where 8^ and B2 c o e ff ic ie n t s are determined by the le a s t suares method.

I f also the K ^ value is very sm all then a 2 “ 1 and equation (1 8 ) changes i t s form to :

t j f « 1 ♦ A V ? ♦ B jC ( 1 9 )

c h a r a c t e r is t ic fo r com pletly d is s o c ia te d e le c t r o ly t e and which can be solved by one from the e a r l i e r described methods.

ELECTROLYTE OF KAj AND KjA TYPES

As i t was reported e a r l i e r [ l ] in s o lu tio n ' of e le c t r o ly t e of KAj type the fo llo w in g e q u ilib r ia can be expected:

Kai Kj2 K j j

KAg ♦ A" * = * KAj, KA+2 ♦ A" 9 = * KA^, K+3 + A* *= *• KA+2

ch a ra c te riz e d by the co nstan ts:

I - a i K s o 2 (20) ° « l ( l - a 2) ( l + a 2 + o«2a 3) c y i

d , d - ot, )

K . — , --- i---i--- - (21) o i j ^ d - a 3) ( l ♦ a 2 * « 2a , ) c y 2 KA t f i d i d - G U iy * *« * K3j = f 1^ --- (22) o i ^ a j d + a 2 + a 2oi3) c y ± y +J K where; Aq u - v r In

¥±

--- — (23) i ♦ rbdhV T 4a o h v t In y

,2 -

--- ^ ---- (24) K A 1 ♦ R 8 d h V T

(11)

. in y , -

---K 1 + RB0HV Î

(25 )

and I = 201^ 2 (1 + 3 a j)c .

In the case of s o lu tio n of e le c t r o ly t e of KA^ type the Jones- -Oole equation has the form [ l ] :

I f the values of K a l , K ^ and Kaj are known, the d is s o c ia tio n degrees oi^, c*2 and ot^ fo r each c o n c e n tra tio n , c , can be i t e r a ­ t i v e l y estim ated. The subroutine ALFA 123, w ith co n sid erab ly more advanced algorithm than mentioned above subroutine ALFA 12, may be ap p lied fo r i t .

With the aim of reducing the number of parameters ( f i v e ) the values of io n ic c o n d u c tiv it ie s should be in d ip e n d en tly obtained ( I . e . by measurement of e l e c t r i c a l c o n d u c tiv ity of e le c t r o ly t e so­ lu tio n s ) and the A c o e f f ic ie n t s c a lc u la te d from equation (3 ) .

S im ila ry as in the case of e le c t r o ly t e of KA2 type the two methods of determ ination of the Bq, B^, b2 and B-j c o e f f ic ie n t s can be used.

1° From the r a la t io n s h ip :

and by applying the n o n lin ear le a s t squares method the equation system is constru cted , from which s u c c e s iv e ly decreasing increments of ABq, A B j, AB2 and AB3 values are determined and f i n a l l y the proper values of the B c o e f f ic ie n t s are obtained.

2 ° L in e a riz in g equation (26) we haves

rjf * 1 + A-^o^otjcÇ + °*i

1 " a 2^c * 02a 2^1 " a 3^c + 03OI2OI3C^ +

♦ ( 1 - o l j )cBq (26)

y *

= B, + B

- 1 - A-y/cdjOtjOtj - B q C ( 1 - o ^ ) * B jC O I^ 1 - c*2 ) co^o<2oij

(12)

The l e f t - hand sid e of the above aquation is c a lc u la te d assu­ ming the Bq and B j c o e f f ic ie n t s . The fl2 and values are determ in­ ed by the le a s t squares method. The c a lc u la tio n must be repeated fo r Bq and B^ changed w ith fix ed step down to the minimum of the standard d e v ia tio n , This procedure optim izes the values of B0 , B p B2 and B j c o e f f ic ie n t s . In my opinion the f i r s t method is in th is case much more e f f e c t iv e fo r s o lv in g equation (2 6 ). Accuracy of the experim ental must be extremely high and the number of data r e l a t i v e l y la rg e .

G e n e ra lly , the e q u ilib riu m constants f u l f i l l e d the in e q u a lity K a3 > K a2 > Kal " °* i , e ' 011 = 1 and aquation (26) s im p lif ie s to the form:

Tjr = 1 + Ay'ca^a^' + B ^ l - oi2)c + a 2[B 2( l - a 3)c + BjC ijc] (28)

fo r which the values O j, a 2 are e a s ily o b tainable and the above mentioned two method of s o lu tio n can be ap plied (th e n onlinear le a s t squares method and lin e a r is a t io n of equation (2 B ) to the s im p lifie d form of equation ( 2 6 )).

72- - 1 - AJc,oi9a ,' - B , c ( l - a „ ) c l - o / ,

y --- ^ ; c ..*---— ■ b3 * B2 — ^ (29)

F req u en tly, also the r e la t io n Kj3 > K a2 * 0 and oj2 * 1 takes p la ce . In th is case only the parameters B2 and B j remain unknown and the equation (26) changes i t s form:

rit - 1 ♦ A^ca + B2( l - o fj)c * B ^ c

which can be e a s ily rearranged to the form e a s ily s o lv ab le by using the simple le a s t squares method.

In the case of com pletely d isso c ia te d e le c t r o ly t e s of KAj type (oij = oi2 = oi3 1 1) equation (27) s im p lifie s to the form:

(13)

which can be also solved using e a r l i e r mentioned methods a p p lic a b le to the com pletely d is s o c ia te d 1-1 e le c t r o ly t e s .

As a r e c a p itu la tio n , one should claim th at u n t i l now the pro­ posed new methods of s o lv in g the Jones-Dole equation fo r the incom­ p le t e ly d is s o c ia te d e le c t r o ly t e s ( e s p e c ia lly non-sym etric ones) were no reported in the l it e r a t u r e regarded to v is c o s it y of e le c ­ t r o ly t e s o lu tio n .

I hope th at these methods w i l l be u se fu l in determ ination of the c o e f f ic ie n t s A and B of the extended Jones-Dole equation. I t is e s p e c ia lly s ig n if ic a n t , because the values of A and B c o e f f ic ie n t s r e f l e c t ion-lon and ion-aolvent in t e r a c tio n , r e s p e c t iv e ly . They are d ir e c t ly connected with s p e c ifie d io n s, which s u f f i c i e n t l y f a c i l i ­ ta te s in te r p r e ta tio n of obtained data.

REFERENCES

[1] A. B a l d , Acta Univ. Lodz., F o lia Chim ica, 9, 33 (1991). [ 2 ] N . M a r t i n i u s , C . O . S i n c l a i r , C . A . V i n ­

c e n t , E lectro ch im . Acta, 22., H B3 (1977).

[3] J . C r u d d e n , G .M . D e l a n e y , 0. F e a k l n s , P. 3. O ' R e i l l y , W . E . W a g h o r n e , K . G . L a w ­ r e n c e , 3. Chem. S o c ., Faraday Trans. I , 82, 2195, 2207 (1985).

[4] T. E r d e y-G r u z, Transport Phenomena in Aqueous S o lu ­ tio n s , Budapest 1974, p. 12B.

[5] C. W. D a v i e s , V. E. M a 1 p a s s , Trans. Faraday S o c ., 72, 2075 (1964).

[6j C. Q u i n t a n a , M. L. L 1 0 r e n t e, H. S a n c h e s , A. V i v o , J . Chem. Soc. Faraday Trans. I , 82., 3307 (1986). [7] J . C. J u s t i c e , J . Chim. P h y s ., 65, 353 (1968).

(14)

Adam Bald

WPŁYW ASOCJACJI JONOWEJ NA LEPKOŚĆ ROZTWORÓW ELEKTROLITÓW I I . METODY WYZNACZANIA WSPÓŁCZYNNIKÓW RÓWNANIA JONESA-DOLE’ A

Zaproponowano szereg metod rozwiązywania równań Jonesa-D ole’ a dla roztworów e le k tr o litó w n ie c a łk o w ic ie ¿dysocjowanych typu KA, KA„) l^A, KA,, i KtjA (K - k a tio n , A - anion) f l j . Rozważano różne w arianty uwzględniające w artości s ta ły c h równowag jonowych. Propo­ nowane metody mają na celu głównie poprawne wyznaczenie w artości współczynników B równania Jonesa-D ole’ a i powiązania tych w artości ze ś c iś le określonymi jonami.

Cytaty

Powiązane dokumenty

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY PO LSKIE J AKADEMII

To prove (1) on the major arcs we argue as follows. This solution is unique. Here [d, q] denotes the least common multiple of the natural numbers d and q.. Sufficiency of conditions

Periodic solutions — ordinary iterations... Periodic solutions — approximate

Demon Pustki, o którym sam Filippow powie, że jest to jego „опостылевшее alter ego” (s. 213) występuje w roli antagonisty bohatera (podziela- jąc zamiłowanie

Mikos: Variance Component Estimation in the Unbalanced N-way Nested Classification.. Estymacja komponentów wariacyjnych w niezrównoważonej N-krotnej

The formation of the complexes between the calcium ions and the carboxylic groups of the anionic polyamino acid results in the marked reduction of the surface charge

The aim of this paper is to give a new existence theorem for a stochastic integral equation of the Volterra-Fredholm type of [9] and [10] (cf. also [13]) and to investigate

Severi, Endeleichi, Rhetoris et Poetae Christiani, Carmen Bucolicum, De 9 Helbig, „De mortibus boum”, s.. Helbiga nosi tytuł „Musa