• Nie Znaleziono Wyników

On solutions of the differential equation = О

N/A
N/A
Protected

Academic year: 2021

Share "On solutions of the differential equation = О"

Copied!
11
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X V II (1974) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I : PRACE MATEMATYCZNE X Y II (1974)

Z. P

olniakowski

(Poznan)

On solutions of the differential equation у {п)—а (х )У = О

In [2] and [3] we proved theorems concerning the asymptotic prop­

erties of some integrals of the differential equations y " — a(x) у —

0

and y(n) — a{x)y

= 0

(foi* п ^ З ) , where a(x) is a complex function. In this paper we obtain a more complete result in the case of a real a (x).

We shall prove the following

T

heorem

. Suppose that n ^ 2 and that

(

1

) a{x) is a real function and a(x) Ф

0

for x > x 0, (

2

) there exists the derivative a (2n~l\x) for x ^ x 0.

Furthermore suppose that we have for x oo

(3) (a~ll2nf n) = o(xll2~nln~1~ex) and — o(l)

for m —

1

, ..., n —

1

and

(

4

) (a[i-»],»«)' = 0{x~llmh r l~ex)

for n > 4 and m = 3 , . . . , n — 1, with some e > 0.

Then the differential equation

(5) y(n) — a( œ)y =

0

has for х ф x Q the integrals y k{x), к =

1

, ..., n, such that

X

yk{x) ^ a[1~nV2n(x)expek f a lln(t)dt for x-> oo,

Xq

where ek = e2kniln.

I f re Eka lln(x) >

0

for X > x 0, then y ^ (x ) ~ e la vln{x)yk(x) for x oo,

v =

1

, ..., n —

1

, and lim |y ^ (a?)| = oo for v =

0

,

1

, n —

1

.

(2)

430 Z. P ol n i a k o w s k i

I f r eeka 1,n(x) <

0

, then limyk(x) =

0

.

x -> o o

If a(x) < 0 we assume A rg a1In(x) — izjn.

Let us notice that hypotheses (3) and (4) are satisfied by the function a(x) = xp for real p > —n and by a(x) = exP for arbitrary real p.

C

o ro lla ry

. From the above theorem we obtain the following oscillation theorem :

I f hypotheses (l)-(4 ) are satisfied, n ^ 2, if im ek

# 0

in the case of a(x) > 0 and if im ekemln Ф 0 in the case of a(x) < 0, then the differential equation (5) has for x ^ x 0 real integrals y*k{x) and y k*(x) such that

where

and

Ук№) = (cosBk(x) + ôk(x))\all~n]l2n(x)\expCk(x)

(X~> o o ),

Ук*(я) = (sm Bk{x) + r]k(x))\a[1- nV2n(x)\ex.-pCk(x)

X X

B k(x) — ime* j a 1,n(t)dt, Ck(x) —теек J a1/n(t)dt

x0 x0

lini<5Æ(a?) = Ит^(ж) = 0.

X -+ C O X -+ O Q

B y (3) we get Ит|.Вй(а?)| = Ит|(7А.(ж)| = oo. The functions yt(x ) and

X -> o o X -> o o

y*k {x) have infinitely many zeros with the lim it point £ = oo.

We introduce the following definition : We shall say that the function g(x) has the property Ш at the point £ = oo with the constant К and for x > x 0 if there exist К >

1

and a point x 0 such that we have

X

lim|<

7

(a?)| = oo and j \g'(x)\dt < K\g(x)\ for x ^ x 0 x0

or

OO

lim<

7

(a?) = 0 , g(x) Ф 0 and J \g'(t)\dt < K\g(x)\ for x ^ x 0.

x->oo x

L

emma

1. Suppose that n^2> and that the functions f(x ), h(x), <pv(x) (v = 1 , . . . , n —

1

) and гр(х) are locally bounded and locally integrable for x > x 0. We set

X

gv{x) = exp^A Jh (t)d t/ rvj for v — 1, n — 1 and x ф x0, x0

where A and rv are some complex numbers and А ф 0, rv Ф 0.

(3)

Solutions of the differential equation

431

Moreover, suppose that

(

6

) if n > 3, then re(A/rw)

Ф

0 for v =

1

, ..., n —

2

,

(7) lim/(a?) = s (|s| <

00

),

X-+OQ

(

8

) h(x) >

0

for x > x0 and

O O

J h(x)dx — 00, X

q

(9) if n > 3, then lim

99

v(a?) =

0

X-+CQ for v =

1

, w —

2

, (

1 0

) lim

9

> tl_

1

(a?) =

0

ifte (X lrn_j)

ф 0

O O

шгй J 7i(a?) |ç’n_

1

(a?)| <

00

if refA/r^j) =

0

, oo

(

1 1

) f \y>{x)\dx < oo.

Xq

We set for xx (with sufficiently large xl > x 0, defined in the proof) :

00 n — 1

Jo (y) = f y>{t)y(t)dt+ £ K v{y),

X r = l

where

Pi

K x {y) = J g'i (ti)<Pi (tx) y (tf) dtx ; if n > 3, йе?г

■г. (У) Яг if 2) 4>г (fz) У (^г)

^ 2

>

if n > 4, йетг

01

, Рг ,

1

r ^(^i) /*

0

2(У

0 1

(Я) У

®1 0 2 ( < l ) «2

J 03

’( У

Pv

• • J g ' M v M y t t J d t v - d t 1

av

for v = 3 , . . . , n — l . We assume here aj = ж1? Д = if re(A/ri) > 0 and ctj = tj_x, =

00

if re(A/r^) < 0 (j = 1, w —1,

<0

= ®)-

Tftew Йе integral equation

( 12 ) У(®) = / И + ^

о

(

у

И)

üas /or x ^ x x a solution y(x ) such that limy (a?) = s. I f f(x ) is continuous X-+00

for x > , йе?г ÿ (x) is also continuous for x ^ xx.

(4)

432 Z. P o ln i a k o w s k i

P ro o f. It is easy to see, applying l’Hospital’s rule, that the functions gv(x) (for v = 1, n —2 if 3 and for v = n — 1 if re(A/rn_x) Ф 0) have property Л at the point £ = oo with some constant К > ] A/rJ / |re(A/rv) \ and foi* x ^ xQ.

We choose a number de (0,1) and х х ф х 0 such that we have for

X

> x x

OO

l/ (® )l< 1+1*1, f Iv(t)|<««a/», Ж

for © = 1, — 2 if ^ 3, i(^)l ^ ôjnK n~1 if re(A/rn-1) Ф 0 and

oo

j Ht)\<Pn-i(t)\dt < ô\rn_x\ln\X\Kn~2 if re(A/rft_1) = 0.

a?

Setting t/^(y) = (y)) for © = 1 , 2 , . . . and x ^ x x we obtain

|e7

0

(l)I < ôln-\-(n — 1 )д / п ^ ô and

|<7В(1)| < d

w+1

for © =

1

,

2

, ... and x > x x.

OO

We assume y(x) = f(x ) + J v(f)i the series being uniformly convergent

«=0

for x > x x. We infer from this that if f(x ) is continuous for x ^ xx, then y{x) is also continuous for x > x x. The function y (x ) is bounded for x > x x since

O O

\y(x)\ <

( 1

+

1

*|) (l+ 2 à ’+l) = (

1

+ |s|)/(l- Ô).

V = 0

It is easy to see that y(x ) satisfies the integral equation (

1 2

) l^cause

OO

f[x )-{ -J0{y) = f{x) -\-J0{f) + Jo Jv if))

V=Q oo

= /(fl?)+J0(/) + J £ j v+i(f) =ÿ(®).

V = 0

Applying in (

1 2

) in the case of re(X{rv) Ф

0

the l ’Hospital’s rule in the formulation of Theorem C in [1], p. 20, we obtain that limJo(ÿ) = 0, by (9), (10) and (11), and lim^a?) = s. æ_*°°

£ C— >00

L

em m a 2

(Compare Lemma 5 in [3]). Suppose that n >

2

, that there exist A (

2w

-

1

)(

æ

), a%n~2)(x), a ^ +v~l)(x) (© = 0,1, ..., n —

1

), that XA(x) >

0

and an(x) Ф 0 for x ^ x 0.

I f n — 2 we set ôx<px(x) = r xA ' ф гхА (ip — a x/a2) + 1, where ôx = 1 if

те(Л/гх) >

0

and <5^ =

— 1

if re(X/rx) <

0

. (ip(x) will be defined below.)

(5)

Solutions of the differential equation

433

I f n ^ 3 we define the functions cpv{x) (v = 1, . . . , n — 1) as follows:

Ôl<Pl = Ф 10 + ^ 1 ^ ,

( JL о

) t

àjVi = Ф/о ~ ^ - i,o -Г/^фу-

1

,о + riA W for j = 2, ..., n - 1 ,

x ^ x 0, where Sj = ( — !)*•/ and Ц is the number of indices v such that re(A/rv) < 0 and l ^ v ^ j (j =

1

, ..., n — 1). A and rv are defined as in Lemma 1.

The functions <Pj0 (j = 1, n — 1) are defined by the equalities (14) = 0 } v - 0 j - i , v - r j A 0 j - hv,

j = n — 1 , . . . , 2 and v = j —

1

, ...,

1

, x > xQ, where =

0

, and (15) %l- 1,v- 0n^ i , v = r 1 . . . r n_1bv1 v = 0 ,1 , . . . , n - 2, x ^ x 0, where bv = { — T)j~v~1(aj A n~l Janf i ~v~l\

j = v + l

The functions Ajv are defined for x ^ x 0 as follows :

% 0 = 1 , = r x . . . r 5Aj for j = 1, ..., n - 1 ,

(16) .

% , = % - hv + r3 A % _ hv + ^ А % _ х^ _ г for 1 < v < j < n - 1.

Suppose that there exists for x > x 0 a solution у (x) of the integral equation П

(12) w ithf(x) = l,h ( x ) = 1 IXA(x),ip{x) = r x ... rn_1^ ( — l ) v(avAn~1ja n){v)

V = 0

and with <pv (x) defined as above. Then y (x) satisfies for x ^ x 0 the differential equation

П

(17) У > „У м («0 = ° .

v — 0

P roo f. For n > 3 is like that of Lemma 5 in [3]. In the case n = 2 we prove similarly.

L

emma

3 (Compare Lemma 6 in [3]). Suppose that n ^ 2, that there exist J .(

2

n_

1

)(aî), a (f n~2\x), ^ п+®_

1

)(ж) (v = 0, 1 , . . . , n — l ) , that ÂA(x) >

0

and an(x) Ф

0

for х ф x 0. Furthermore suppose that there are satisfied hypotheses (

6

) and (

8

)-(11) of Lemma 1 for h(x), <pv(x) and ip{x) defined as in Lemma

2

.

Then the differential equation (17) has for x~^ x Q an integral y(x ) such that Пт^(ж) =

1

.

Ж — *oo

P ro o f. By Lemma 1 the integral equation (

1 2

) under our hypotheses and for f(x )

= 1

has for х ^ х г a continuous solution y(x) such that Пт^(ж) =

1

. By Lemma 2 the function y(x) satisfies for x > x x the

X->oo

differential equation (17) and may be extended to the point x 0.

(6)

434 Z. P o l n i a k o w sk i

L

emma

4 (Compare Lemma 7 in [3]). Suppose that n > 3, that the functions %v(x) (j =

1

, . . . , n —

1

, v =

0

, ..., n —

1

, v < j) are defined by

relations (16) and that

lim = 0 (s = 1, . . . , n ) , A^s)A s~2 = о (X) ( e = 2 , ...,w ),

Х-+ОЭ

(18)

{A'Y A

1

= o(X) for x-> oo,

where the function X (x ) is defined and different from

0

for large x.

Then

(19a) = i

^ - 1

+ (<,

2 1

) i

, , „ + 1 ^ ' ^ - 1

+ o(X), ( vLjvA r A~l + o(X) for 8 = 1 ,

(19b) A s- v- 4 $ = \ }V K J

\o(X) for s =

2

, . .

. ,

n + v — j , x -+■ oo.

Ljv is the v-th fundamental symmetric function of the numbers r x, ..., r$.

P ro o f. We shall prove (19a) and (19b) successively for v =

1

, n — 1

.

It is easy to see that they hold for v = j = 1

.

Suppose that (19a) and (19b) are true for v = 1 and for some index j

( 1

< j < n — 2). We shall prove that they are true for v = 1 and for j +

1

. By (16) we obtain

A - % +1>1 = A - % 1 + rj+1A ~ % 1 + rj+1A

- 1

= {Lji + r j+0 A -1 + Lj2 A ' A - 1 + rj+1Lj l A ' A " 1 + o{X)

= Lj+ hlA~x -\-Li+ltiA 'A ~ l -\-o(X) for oo,

= А 8~2Щ1> + rj+1A 8~2(A % 1)W + rj+1A s~2A(8\

s =

1

, ..., n —j, where

A 8- 2{A%XY8) = = o(X)

m= 0 ' '

for x — > oo, by hypothesis. We have namely

j^(m) [L jx{A 'Y A -x + o{X) = o (X ) îoT8 = m = l ,

j LjxA ^ A s~2A ,Jro (X ) = o (X ) for s = m >

2

. This proves that (19a) and (19b) are true for v = 1 and for j =

1

, ...

..., n —

1

.

Suppose now that n > 4 and that they are true for the index v ^

1

(and for v < j < n —

1

). It is easy to prove that (19a) holds for v + 1 instead of v, and for j

= 0

+ 1. Belation (19b) is also true for these indices and for s = 1. For s > 2 we obtain

15+1, 15+1

=

r

, Ü+1

A i - V — 2

2

h W i .

(7)

Solutions of the differential equation

435 1?+1

where Wt = -d(A^ ... A {ki> v+l\ V Jcim = s (Я- are constants). If him = 0

m = l

or

1

for some i and for m =

1

, v +

1

, then J s-t,-

2

TFi = (A ')8~2 {A 'f A -1

— o(X) for x -» oo. If for some i and m = M is &г-т > 2, then

v + l

^ s— v— 2 ~w^ — J~l A^kim^ Ак^т ~г ' A ^ ^ ' AkiM~2 — o(X) for x — > oo.

?n= 1

т Ф М

Suppose that (19a) and (19b) are true for the index -y-fl and for some index j (

2

<'y + l < j < n —

2

). We prove that they are true for the indices v + 1 and j + 1. In the case of (19a) we obtain

A - ’ ~ % +liV+1 = A - ’ - % iW + rw A - ’’- % ,„ +1 + r1+1A -'’- % v

= Zl ^ +lA - 1 + ^ A 2) r ly W A 'A - ' + rl+ l(v + l) L j> w A 'A - 1 + + ri +

+

ri

:-i (* 2 ' )

Ц

,

ч

+

1

-

А

- +

o(X)

= Lj + w l A - '+ (* A } L j+ h w A ' A~l + o(X ).

In the case of (19b) and s —

1

we get

12

t

; + 1 ,„+1

= A - ’ -% _ w + r ^ l A -'’- l {A'%,w + A % [w ) + Jr ri+i A v 1(A A%jV)

= (V “b 1)-£/,«

4

.1-4- .d

1

+î^+iXÿ„A -d

1

+ îy+

1

î?iÿtJ-d A l -\-o{X)

= (,y + l)-iÿ +

1

,^+i-d A l j rO (X ).

Relation (19b) for s > 2 we prove as in the case v = 1. The proof of rela­

tions (19a) and (19b) for v ^ 2 and n — 3 is similar.

L

emma

5. Suppose that the functions <&jv (0 < v < j < w — 1 , w > 3) are defined for x ^ x 0 by relations (14) and that

(20) As~v~10^_i>v = o{X ) as x -^ oo (® = 9 ,

1

, ..., v-\-l and v =

0

,

1

, ..., n —

2

),

(

2 1

) lim-d

s - 1

J .(s)

= 0

(s = 1 , n).

X - X X >

Then

(22) As~v~l <f>$ = o{X) as x -^ oo

(s = 0 ,

1

, . . . , «? +

1

and 0 < v < j < n —

1

), w;7iere the function X (x) is defined as in Lemma

4

.

9 — Roczniki PTM — Prace M atem atyczne XVII.

(8)

436 Z. P ol n i a k o w s k i

The proof of Lemma 5 is like that of Lemma

8

in [3].

L

em m a

6 . Suppose that there exists the derivative a ^ ix ) for x ^ x 0 and w > 2, and that a(x) satisfies hypotheses (1), (3) and (4). We set for x > xQ (compare Lemma 14 in [3])

X X

F (x ) = all~n]l2nex-pek J a lln(t)dt, F ±(x) = a[

1

~n]/

2

nexp( - ek J a lln(t)dt),

Xq Xq

where ek = e2kmln with some к

( 1

< к < n).

Then we have for x-> oo, m = 1, n :

(23a) F (n){x) = F (x )a mIn{e% + e%-1m { n - m ) ( a - lln)'l2 + a - lln-o(X)}, (23b) F M (x ) = F 1(x )amln{ ( - l ) me% +

+( — l) m_1 e™

- 1

m (n — m) {a~l,n)r

/2

-f a~1[n • о (X)}, where X = x~l In- 1-6x with some e >

0

.

P ro o f. It is easy to see that Lemma

6

is true for n =

2

. We assume that n ^ 3. We obtain

m x

F im) (*) = T J ( - % / ,

V — 0 Xq

where

Emv = a [v- 1]!n(all- n]l2n)(m- v\

X X

Cv = a[1~vVnexj> ek J a 1/n(t)dt jexp | — ek J al!n(t)d t^ v\

Xq x0

In the proof of Lemma 16 in [3] we proved that

Cv = ( - l f e l a ^ + i - i y ^ e l - ' i a - ^ y a ^ W o i X ) for a?-* oo.

As in the proof of Lemma 16 in [3] we show that

a[1+n~2m]!2nEmv = о(

1

) for v =

1

, m — 1 ,

^ a [3+n-2m]i2nEmv = о (X) for v =

1

, .. •, m -

2

, (a - lln) 'a [3+n- 2m]l2nEmv = o(X ) for v = 1, m - 1 . Since a[1+n~2m]l2nEm>m_1 = (n — l)(a ~ 1,n)' /2, we obtain

X

a [i+n-

2

m]/

2

»expCfc r a lln{t)dtF[m) = m ( n - l) ( a ~ lln)'Cm_1l2 +

Xq

+ Cm + o(X) = ( - l ) ” -

1

e ? -

1

m ( » - l ) ( e -

1

," )V ,"/2+-

+ ( - ! ) ”* a1'" + (

- 1

)“ (” )

^ * - 1

(o-1'”)' a1,n + о (X ).

(9)

Solutions of the differential equation

437

From this there follows (23b). The proof of relation (23a) is similar.

F ro o f of th e th eo rem . For a given le

( 1

< It < n) we substitute y(x) = w (x)a[1~n]!2n(x)ex-pek f a 1/n(t)dt into (

6

) (ek = e21cniln) and we

x0

obtain the differential equation П

(24) ^ а ф ^ ( х ) = 0,

V — 0

where

X X

®o = (®tl-nl/2n(®)expefc J a lln{t)dijn) — a[1+n]l2n (x) ex-p ek J a 1/n(t)dt,

x 0 Xq

l \ x

av = r j |а

11

-в]/

2

пехрей j a lln(t)dt^n~v) foi* v =

1

, ..., n .

x 0

Suppose that

6 = 0

if a(x) >

0

, 0 =

1

if a(x) <

0

for x > &0. We assume first n = 2. (The case a(x) > 0 we proved in [

2

].) The functions

<Pi{x) and y>(x) defined as in Lemma 2 with A (x) = ek l a~ll2(x), X = Xk

— e(k+oi2)m^ r ^ _

2

12f and formed in the case of the differential equation (24) are of the from

ip(x) = ek 1a~ll4(a~lli)" /2, q>i(x) = a“3/4 (a~1/4)" jê .

Then lim <fi(x) =

0

and a ll2(x)<p1(x) = ekxp(x)j2 — o(x~l \nT1~sx) for

x->oo

x — > oo, by (3) (compare [2], p. 245), and hypotheses (10) for h(x) — \all2(x)\ ,

and (

1 1

) are satisfied.

Suppose that n > 3. If there exists the (unique) index v =

( 1

< v0 K n ~

2

) such that

(25) j,Qg(2k+e-{-v0-nl2)niln __

q

we set l/rv = ± — e2vmln £0I. v _ ...^ n — 2 and v A v0, 1 jrVo =

1

- <?(*-№» and

1

Irn_x =

1

- e2v°~iln.

If (25) holds for v0 = n —

1

or if does not exist a positive integer v0 satisfying (25) we set 1 jrv =

1

— e2vm,n for v =

1

, ..., n — 1. Assuming X = Xk = ^2fe+0)m/n we obtain re(X/rv) Ф 0 for v =

1

, ...,% —

2

and hypothesis (

6

) of Lemma 1 is satisfied.

We prove, as in the proof of the theorem in [3], p. 169-171, that the functions <pv(x) (v = l , . . . , n — l ) and \p(x) defined as in Lemma

2

with A (x) = sk 1a~lln(x), with X and rv defined as above, and formed in the case of the differential equation (24), satisfy the conditions limç^Æ) = 0

# x->oo

and tp(%) = o(X ) for x-> oo (X = æ-

1

ln-1_£æ with some s >

0

).

(10)

4 3 8

Z. P o l n i a k o w sk i

We shall prove that a lln{x)cpn_ 1(x) — o{X) for æ -*■ oo. If bv(x) are defined as in (15) for v = 0, 2 and if F ( x ) ,F 1{x) are defined as in Lemma

6

? then

K = ek 2 ( - 1 Г - 1 " j ? [3 m~ )

j = v+ 1 ' ' m = 0 ' '

(compare the proof of the theorem in [3], p. 170). By Lemma

6

we get

F { n - v - m - l ) F (m) = a i - v - i y n e j - v - l ^ fi- l (w _ ^ m _ 1 ) + 1 ) ( a ~ l l n) ' / 2 - f

+ a~1/n • о(X)}• {( - 1 )ma l!n + { - 1 )п- геъ1т { п - т ) (a~lln) 'allnj2 + о(X)}

= <x

[ ~ 1

{( — l) m«1/w -f ( — l ) m~l £frl {v + i) [m — (n — v — i)/2] X x ( a - 1/w)'a1/n + o(X)}, since {(a-

1

/№ )'}

2

a1/n = 4{(а

~ 1/2и)' }2

= o(X) and (a ~lln)' = o( 1) for a?-* oo compare Lemma 13 in [3]). We obtain

4 = ( 4 1)et «,,'‘ + ( * + i ) { - ( „ * 2) + (» » --* -1 ) ( 4 i) / 2 } ( » - ,,”)V'"+

+ ° ( x > = ( , ” i)«*el," + ( * 7 1) (t, “ 2) ( “'‘ ,,")'®1,n+<>(X) for *-*■ ° ° >

since

1

if j = « +

1

,

0

if j >

1

; +

1

. Similarly we get for s = 1, . . . , v + 1

n j + s - v - 1

j(s) = gk ( i ) i —V—1 (^\ V h + s ~ v ~ 1 \ F ( . n + s - v - m - l ) F (m)

^ ' w=o ' m

= a [s- v~1]lnssk- v- 1 {( - 1 )meka l!n + ( - l ) m~l (v + 1 - s) X

X [m — (n + s — v — 1)/2] (a~lln) 'a lln + о (X)},

J — V — 1

2 ( - 1 )’

m=0

j - V - m

A s - v - l b (s) =

llnY alln + о(X) f o r $ = l ,

o(X) for s = 2, ...,г? + 1 if v ^ l .

Let ns observe that conditions (18) are satisfied for A (x) defined as above and for X — x~1ln~1~Bx (compare Lemma 13 in [3]). By Lemma 4 and (15) we obtain

A 8 v 1 Ф{ п-Х^ = о (X ) for v =

0

, — 2 and s = 0, ... ? v + 1 since L n_1>v = г г . .. (compare the proof of the theorem in [3], p. 170). By Lemma 5 we obtain A~l <Pj0 = o(X) and <P'j0 — o(X) for j = 1, . . . , n — 1, x -> 00, and by (13) we get

A~l (pv{x) = o(X) for v — 1, n — 1.

(11)

Solutions of the differential equation

439

Then hypotheses (8 )-(ll) for h(x) = \alln(x)\ and for <pv(x) and tp(x) defined as above, are satisfied.

Applying Lemma 3 for we obtain that the differential equation (24) has for x > x 0 an integral w(x) such that 1шШ(ж) = 1. We set

x->oo

X

y k{x) — м (х )а 11~пУ2п(х)ех-рек f a 1,n(t)dt.

x 0

We complete the proof as in the proof of the theorem in [3].

P ro o f of C o ro lla ry . Suppose that ayk(x) = y l(x ) + iyl*(x), where a = 1 if a(x) > 0, a = e(n_1)îïî/2n if a(x) < 0. We get for x-> oo

(yt + iyl*) (cos B k - i sinB*) | a[n~1]l2n\exp (-<?*)-> 1, (

2 6

a) (

2

/*cosPA. + ^ :,!sinBft)|a[w“1]/

2

n|exp ( _ CrA) _ 1 _> 0?

(26b) { - y t s in B k + yl*eo sB k)\a[n- 1]l2n\ex-p{-Ck) 0.

Multiplying (26a) by cosB k and (26b) by — sinB*. and adding we obtain 2/*|а[’г~1]/2,г|ехр( - C k) cosBk -+

0

for

a > -> o o .

Multiplying (26a) by sinBfe and (26b) by cosBfc and adding we obtain yl*

|a [» - i ]/2 » | e x p (

— Ck) — BinBk ->

0

for

oo.

Applying 1’Hospital’s rule we obtain from (3) a~lln = o(x) and lim|Bfc(a?)| = lim|C*(a?)| =

oo.

X—>00

Ж — >co

References

[1] Z. P o ln ia k o w sk i,

P o ly n o m ia l H au sd o rff transform ations I ,

Ann. Polon. Math.

5 (1958), p. 1-24.

[2]

On the d ifferen tial equation y " — a ( x ) y

= 0, Comment. Math. (Prace Mat.) 13 (1970), p. 241-248.

[3]

On the d ifferen tial equation y№ — a ( x ) y

= 0, ibidem 14 (1970), p. 151-172.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY PO LSKIE J AKADEMII NAUK

Cytaty

Powiązane dokumenty

It follows from the proof that in order to estimate the norms of powers of A it suffices to estimate the dimension and norm of the eigenprojection on the subspace spanned

In the quasidegenerate regime, the vanishing small energy gap does not protect the ground state against mixing with other states from the manifold: If the system’s temperature is of

Krzysztof Jajuga (Statistical Editor) – Wroclaw University of Economics and Business Prof.. Simona Beretta – Università Cattolica del Sacro Cuore

does not use genres that are traditional forms of philosophical expression (such as an essay, treatise, manifesto etc.) or a specialized language and therefore not all critics

Ciekawy i cenny jest krótki fragment dotyczący zastosowania do modelowania i rozwiązywania zadania wieloetapowego podejmowania decyzji znanej z gier uogólnionych

27 and different type of high-pressure measurements. To date, various of materials including solids, liquids and gases have been proposed for pressure transmitting media. In this

Paweł Kukołowicz, Prof., PhD., Head of Department of Medicine Physics, Cancer Center and Institute of Oncology in Warsaw, President of the Polish Medical Physics

Another breakthrough was associated with further improvements of the MOCVD technique, leading to a successful deposition of a high quality InGaN layers, de- signed to form the