• Nie Znaleziono Wyników

The SSPA standard propeller family open water characteristics

N/A
N/A
Protected

Academic year: 2021

Share "The SSPA standard propeller family open water characteristics"

Copied!
30
0
0

Pełen tekst

(1)

MEDDELANDEN FRAN

STATENS SKEPPSPROVNINGSANSTALT

(PUBLICATIONS OF THE SWEDISH STATE SHIPBUILDING EXPERIMENTAL TANK)

Nr 60 GOTEBORG 1967

THE SSPA STANDARD PROPELLER

FAMILY

OPEN WATER CHARACTERISTICS

BY

HANS LINDGREN AND E. BJARNE

SCANDINAVIAN UNIVERSITY BOOKS

(2)

SCANDINAVIAN UNIVERSITY BOOKS

Denmark: navNzsoAAzi,D, Copenhagen Norway: IINlyEBSITETSFORLAGET, Oslo, Bergen-Sweden: ASADEDILFORLAGET-GUIEPERTS, Goteborg SVENSKA BOICTSRLAGET/NOT8tedtS B011EllerS, Stockholm

PRINTED IN SWEDEN BY

ELANDERS BOICTILYCKERL AKTIEBOLAG, GUTEBORG 1967

(3)

Summary

A family of 3, 4, 5 and 6-bladed conventional merchant ship

propellers of simple geometrical shape is presented. Propeller

char-acteristics obtained from open water tests are given. The results

from each propeller group are presented on the base of J, KTIJ4 and ICQ/J5. The ranges covered by experiments correspond to:

1. Introduction

The SSPA standard propeller family has been developed primarily

to be used in connection with preliminary project studies and

systematic model tests. At present it consists of about 100 propeller models with different blade numbers Z, diameters D, pitch ratios PID and blade area ratios A D/A0. The dimensions have been chosen so

that for every normal merchant ship project, it is possible to find

at least one suitable propeller model. For the preliminary

deter-mination of wake and thrust deduction factors, studies of the optimum

propeller diameter and influence of the number of blades, this propeller

family is very useful.

All the propeller models have been tested in the towing tank as well as in the cavitation tunnel and the test program comprises:

Open water tests

Cavitation tests in homogeneous flow

Cavitation tests in different wake distributions

In the present report, the geometric characteristics of the propellers

as well as the results of the open water tests are presented.

Number of blades Pitch ratios Blade ratios 3 0.55-0.75 0.45 4 5 0.65-1.15 0.65-1.15 0.47, 0.53, 0.60 0.60 0.75 0.60

(4)

4

(5)

2. Symbols and Units

ir D2

di \

=

propeller disc area (

.

VA = propeller speed of advance

Z = number of blades

a = profile angle of attack

no = propeller open efficiency

= mass density of water = kinematic viscosity

Dimensionless coefficients and ratios are used throughout.

5

4 i

A,

= developed blade area

Ci, = drag coefficient

C Dm; = minimum drag coefficient

CL = lift coefficient

c = blade section chord length

D = propeller diameter DR = hub diameter

J

= advance number ( DT7 An ) KQ = torque coefficient Q pD5n2) T \KT = thrust coefficient pD4n2) n = rate of revolution

P

-= propeller pitch (mean value = 0.9794 P max)

P max = maximal propeller pitch Q = propeller torque

R = propeller radius (=D/2)

= Reynolds number. For propellers lifi+ (0.75 TT Dn)2

= blade section radius -= blade section thickness T = propeller thrust

(6)

6

3. The Propeller Family

The geometry of the propellers is defined in Appendix I. The

outline of the propeller blades is illustrated in Fig. 3 and the profile

shape in Fig. 4. Dimensions and profile ordinates are given in Tables

1 and 2.

The radial thickness distribution is almoSt linear and the

thick-ness diameter ratio, silD is about 0.05.

The hub diameter was kept constant within a group of propellers with different diameters. This means that the hub-diameter ratio

DHID varies within the ranges 0.15<DH/D<0.20. This variation

does not significantly influence the test results.

4. Tests and Method for Fairing the Test Results The propellers were tested in the towing tank over the range

0-100 per cent slip. The rate of revolutions was kept constant, whilst the speed V, was varied.

05 003 PIO a769 0.856 a' 0950 1.052 da t.163 -- Faired Ponies (40.1 aqua,* method) .2 -6 -6

Profile angle of <Moak. Profile angle of-attack

(7)

7

The method for fairing the test results follows the scheme outlined

in ref. [1],). All the material was analysed in accordance with the principles published by Lerbs [2]. For each propeller, lift and drag coefficients for the equivalent profile were calculated. Within each group of propellers, common lift and drag curves were determined

by the aid of the least square method. In Fig. 2, the primary test

spots converted to lift and drag coefficients for the 4.47 propeller group are presented. The faired mean curves used for the further. calculations are also given. The pitch ratio seems not to have any

significant influence on the results within the range tested.

Starting from the lift and drag curves obtained as above, faired J, KT, KQ and 770-curves could be calculated for arbitrary pitch ratios. No corrections for Reynolds' number effects have been in-troduced. The minimum drag values and Reynolds' numbers for

the different propeller groups are given in the table below:

All the analysis and fairing of the test material has been carried out on an electronic computer of the type FACIT EDB 3. The

prin-ciples have also been discussed in ref. [3].

5. Presentation of the Test Results

All the test results, faired and partly extrapolated as outlined

above, are presented in the diagrams in Appendix 11. The presentation

is quite dimensionless and the same parameters are adopted as in

ref. [1].

1) The numbers within brackets refer to the list of references in Section 7.

Type of propeller ./?. CD 3.45 4.99 105 0.0074 4.47 3.93 10 0.0086 4.53 4.68 105 0.0076 4.60 5.41 10' 0.0078 5.60 4.00 10' 0.0088 6.60 3.63 10' 0.0103

(8)

8

For each group of 3, 4 and 5-bladed propellers three kinds of

diagranis are given. In these diagrams the curves have been based on

KT K

J --and

Q-J4 J5

respectively.

The well-known Taylor variables B. and Bp are related to the

abovementioned variables by the equations

B.----0.05541N ,V8=Ci

r

N 1

/jr4 = c 1lirQ

V A2 17,2 V v 2 J5

where N -= number of revolutions in r/min

P = power in HP (HP=76 kprci/sec), fresh water

S =- thrust in lbs, fresh water

VA = speed of advance in knots

The factors C, and C2 can be obtained from the table below.

For the time being only one 6-bladed propeller belonging to the family has been tested. Complete diagrams have therefore not been

worked out. Preliminary curves representing 6-bladed propellers with optimum diameters have, however, been determined with the method

described in Section 4. These curves are given in Fig. 20 together with the corresponding curves for 4 and 5-bladed propeller with

ADIA0=0.60.

6. Acknowledgement

The authors are indebted to Dr. HANS EDSTRAND, director general

oftheSwedish State Shipbuilding Experimental

Tank for having stimulated and granted the work with this survey.

Thanks are also due to Mr. EDGAR FREIMANIS, who designed the

parent propeller form and worked out the preliminary plans for the

propeller family, to Mr. ARNE HANSSON who assisted in most of the

analysis work and to other members of the staff for their assistance

in various stages of the work.

Cl C2

Fresh water (p=102.0 kp see2/m4)

Salt water ( p = 104.5 kp see2/m4)

13.19 13.36

33.08 33.48

(9)

9

7. References

LINDGREN, Hs "Model Tests with a Family of Three and Five Bladed

Pro-pellers", The Swedish State Shipbuilding Experimental Tank, Publication No.

47, 1961.

LERBS, H. W.: "On the Effect of Scale and Roughness on Free Running Propellers", Journal Am. Soc. Nay. Eng. No. 1, 1951.

LINDGREN, laws and KILBORN, JAN: "Datamaskinverksamheten vid statens skeppsprovningsanstalt", The Swedish State Shipbuilding Experimental Tank, Allman rapport nr 10, 1965.

(10)

Appendix I

(11)

TABLE 1 SSPA 3.45 rIR , 0.3 0.4 0.5 0.6 0.7 ' 0.8 I 0.9 1.0

Total blade width

Multiplied by: 1.936 2.109 2.225 2.271 2.229 2:038 1.591

Leading edge to generator line

Z 1.195 1.265 L301 1.279 1.175 0:972 0.617 -0.327

Trailing edge to generator line

D , AD/AO 0.741 0.844 0.924 0.992 1.054 1.066 0.974 0.327

Length of face lift (lead. edge)

0.143

0.081

0.025

Length of face lift (trail. edge)

Divided by:

0:276

0.131

0.014

Distance of the point of max.

c.

thickness from the leading edge

0.360 0.374 0.399 0.430 0.458 0.481 0.500 Divided by: . Blade thickness D 0.0344 0.0300 I 0.0256 0.0211 0.0168 0.0124 ' 0.0079 00035

Distance of the ordinates from the point of max. thickness (pan.t.)

Radius

From p.m.t. to trailing edge

From p.m.t. to leading edge

Divided by: s Table of Trailing Leading back ordinates rIR 1.00 ' 0.76 050 0.25 0.25 0.50 0.75 1:00 rIR edge edge Divided by: s 0.3 0.159 0.488 . 0.740 0.932 0.945 0:819 0.603 0.219 0.3 0:041 0.104 0.4 0.110 0.469 0736 0925 0950 0.818 .0.582 0.148 0.4 0.035 0.082 0.5 0.063 0.456 0.728 0.919 0.949 , 0.816 0.566 0.074 0.6 0.026 0052 . 0.6 0.031 0.464 0.732 0.920 0.955 0.817 0563 0.031 0.6 0.031 0.031 0.7 0039 0.472 0742 0.921 0.955 0.815 0.562 0.039 07 0.039 0.039 0.8 0.053 0.521 0.763 , 0.931 0.954 0.817 0.573 0053 08 0053 0.053 0.9 0.083 0.607 0.821 0.952 0,952 0.821 0.607 0.083 0.9 0.083 0.083

(12)

TABLE 2

SSPA 4-, 5- and 6-bladed propellers

rIR 0.3 0.4 0.5 0.6 0.7 0.8. 0.9 1.0

Total blade width

Multiplied by: 1.777 1.976 2.123 2.197 2.177 2.003 1.581

Leading edge to generator line

Z 1.079 1.172 1.215 1.199 1.115 0.925 0.578--0.323

Trailing edge to generator line

D AD/A0 0:698 0.804 0.908 0.998 1.062 1.078 1.003 0.323

Lengtli'of face lift (lead. edge)

0:115

0:066

0025

Length of face lift (trail. edge)

Divided by:

0.180

0.112

0:058

0.013

Distance of the point of max.

c

thickness from the leading edge

0.360 0.377 0.401 0.430 0.466 0:494 0:500 Divided by: Blade thickness D 0.0332 0.0282 0.0235 0.0190 0:0148 0:0107 0.0068 0.0029

Distance of the ordinates from the point of max. thickness (p.m.t.)

Radius

From p.m.t. to trailing edge

From p.m.t. to leading edge

,

Divided by: 8

Table of back ordinates

rIR 1.00 0.75 0.50 0.25 0.25 050 0.75 1.00 rIR Trailing Leading edge edge Divided by:. 8 0.3 0.208 0.538 0.795 0.949 0958 0.833 0.624 0.208 0.3 0:031 0.130 0.4 0128 0497 0.777 ' 0.944 0.954 0.832 0.582 0.128 0.1 0.022 0:071 0.5 0.065 ' 0.463 0.761 0:940 0.949 0.797 0.544 0:065 0.5 0.019. 0:035 0.6 0025 0.441 0.752 0.938 0.946 0.784 0:513 0.025 0.6 0.021 0:025 0.7 0.027 0.436 0.749 0.937 0.943 0.774 0A91 0.027 0.7 0027 0027 0.8 0.038 0.446 0.754 0938 0.943 0:771 0.484 0.038 0.8 0:038 0:038 0.9 0:061 0.493 0.775 0.944 0.945 . 0.779 0.502 0.061 0:9 0:061 0:061

(13)

14

moi--Asub

1 11111,4111111L

IN511111111.511a111111111lli

1 09948 P...

Nlinalillell

I

09382 P

AlliiiiM a I I

11 540P

/Mar a I I IN I I

1 09 077 SSPA 3.45 (Trodirig edge( 100 5.60

OMNI

OMR

0111

OM"

4s'

Fig. 3. Outlines of the propellers.

050 015

Fig. 4. Profile shapes.

6.60 025 050 0.75 1.00 (Leading edge/ 4.60 SSR4 447 4.53

(14)

Appendix II Open Water Diagrams

(15)

=COMM

MagragerdaVOISEME

misommemmEENENE

MINIMIENNENZERIMI

miamMErrorritmom

mamarmsgagismimmi

Penwelemmonem

mina.Aleall11111111111

ENNEMENBERGIMININ

/1771EMITERELNESEME

IFAIMMEREMINEMEEM

14111111121EMEIMEME

-0.8 Jo as -0.5 t 0.*

L.

-0.2 01

(16)

OFIt.r

A 0,01 06 09 OZ I oir

9r

ZC O'C BZ 9'? oe

MBERNEIREINNIMIERMAVA2r

ErEiratria tal

11111111

MILIONIEMINEWMAININEMMONNEFIPES:710K1111111111111

MOIMMIDENEMPIPAINM211111MIll MENS:;f1M111111111

NIPOSTANDANIPSNEEMBERWAMMENIZIOr

;AM

MMENOMMENNWORENFAMMIWAMINW, FRC,

ENNEEKSIONNEINANEMEE ArlitrAWARIBFAMIC:- litinE111

PIIIIMMEMELIWANNEF ISKINICIMIUMME WOMEN

REEMOREINVIVAWATMEMMERNMEGVANUM AIMEE

PrEIZEMEMEWARIMMEMEMENNEWHOUNIMM Mit11111

IMMEMIUMITMEMINVINNWASNMERNMEAMMENVIEll

MAZININNIENOMMVSNINNUMMEMNINWATIII

NEENNUENUMFAIMANNAMMINVIENIZEMINII

NEM IMENNINAPNATMENNUMNIMMENMEME

NAIBMSEINPINCOUNEISIMIMENIMEME

IMEINNEENUMMENIMMIAMIVAIVINFICAMEI

FREEMEWNSBNONVIIMIRECIERIEMINIMMIIIIII

2.3 OD S'S'374.110

r

ua I.

r

a 1 AN VO &IVY V3SV 301/79 C 530V79 .d0 t1313A10N 'S'Or Vci SS'

k) ANN.Nc

,6b 0:51 & D 90 66 9ve V.IS'S '9 '2L1 09 O O Or 01 SO 00. ,10 000 0 I I I I II I

II

?? O's 07 91 04 07 01 90 90 '70 00

(17)

0 0

00 0 0 0

0 ,""")(1o.... Ch cb

000 0

0.5

IIMINELVZIFIWIONEUREIMPUINENSIIMUMEMINIEN

miggionyoutudgmumwmanwomArom

IIIIMOKIIIIIIMMINCREMENIMINISENEGYANOINE.

111\!KMAMENNERWEINNETIENMESAIREINIM

linfinklatiMMIMINOWAZOINANWAVNIMMIA

111111MHADMMIUMINNANKFA WEBERMINEMENE

MONNIMEWSHNENSMEk WAGWAWANNEFIEM

INUMINIMMUMENNONATAINEVAN 4ESNIMIREMEIM

INILUSINEWRINUMMEDIGNMEL WEEMZIONOMPNIMEME

111111WREMEIMMONAIWAY ANENOMEMISMI OMER=

IMEMAIRMIMITAIEVANFIAMWARIMENNEMINOMMEMMEM

IMILIVIMEINEMIWASIEFS, ANEMEREPIORMNBENESSIE

MIELVIVAMMINMSIM AVEMBEIMMEMBEENNEWINO

1111111SOMENVIUMMOBWEENUMNIESERNIMMEN:

IMMIALMCW/MIEMMESEMEME.EMELIEMMINIENNEN

INIIMECTIMENNANNININEMICHEMENNMENIIMMISM

2:6 2.8 3.0 3:2 q559 3.6

BLADE AREA RATIO

NUMBER OF BLADES 3. J COEFF 9 J 0 5 flY15 DIM-LESS On-1 SSPA 3.45

III

06 0.8 . 1.0 1.2 1.4 1.6 78 2.0 2.2 . 2.4

Fig. 7. SSPA 3.45 propellers.

0.2 0.4 L I I t 0.02 01 02 05 1.0 15 20 3.0 4.0 50 6.0 70 8.0 9.0 100 \I #4-13.0 1.3 P1D 1.2 1.1 1.0 0.9, 0.8 0.7 0.6

(18)

-07 - 05 0.4 02 0.1

(19)

PID 12 1.1 1.0 09 0.8 6.7 06 11

Aiiitigiii.0.4616i 11A,A1110.88,1

mow

glifilgt*Orgh)110w-T,71

5 FTS7vAP A .

Alt/MBER Or' BLADES 4

'

wrivimmirtms Awm

i'

:J004:40000

-Nororffirlq,

4i

BLADE AREA RATIO 047

0 OW

46

0040

VS+i

44 44

4

400

4

) .

*fl'il

' 3

I r#400000VONAP

40

It;

cD 0/M.E- FL FES, S

0#4184'

'Id

0,440)1\100014#4*

iti

0

44%

itittl,F44r0Orrikiiit,411100$4,640104.141r

gArk1A4A6t&iyvty

irlirAidtitollog

lv,Iproorn,

Aso

whaivir-Aitrdr

gatew

4 ..49;stditaisraii

,

rtl-S'OrA5-4".47/

MAW : Isagra

".' pr

r '''''

4LV4V-4-71PiP00//)7

F

1P,4.',P-ztarrgyln.,44-4 __, 0.5 0 02 I '

Fig. 9. SSPA 4.47 propellers.

2.0 2.2 2.4 2.6 2:8 I I ' I I 30 32 4{}47 3 6 0

,6)

0 002 01 02 05 10 1.5 2.0 30 40 50 60 70 8.0 90 10.0 110 f'13.0 1.6 1.8 08 .F.0 0.4 0. 6 1.4

III

II

(20)

.s.miedoad Lt't V(ISS '01 '2!.3 01 I kri jk 06 0:9 OZ 09

090P

or az gr 01 go

0 10

ZOO 0 11 1 1 1 1 1 1 1 1

11111111111111111111)111111

K.

4-4 or

ge ve ez az 9.1 9.1 vi e.1 al

:id .4 iiAO AL..

tt

4/. IhiligrefeliNEEMEN

EMEMELIMISKIMUCal I MU Mr

Amegoommum

possmarionsommatammanummEragz,; mum

VpINFO.

NNNAPPPNOWOMrs1

04* 'VN44#0104400000 ASO VON

LOW64604) 4,4004,4400000

FE& MILUMMAILA MIA

A

0.11,alk Taft& ARM

nagolowanomownme;TMEMPMEWIIIIIIIMMANN

4?; 7311111MIREVAIROMMINII

rrfFPFFP"vireAVIRFTW"Mrill

AAAAAAMAAALkwii,

A

OW

simemonormunswaiwwwwwal..

rwrimprwrrrilM171111

Vd30.9 SS37-t11/0 9VA sr OLLIAI Vo:Alte 30V7G S30 V79 dO 1139P1/7N LIY.0 IfidS'S"

11111111111111,

eo

9.0 .O0

SO

g og

90 ZO 90 60 0/d

(21)

02

04;

7

ormommouncroorm

gammomparderair4.,

emmosordin4igrA

---snommitsowl=ir

41911

Fimmounx*0111"--

morme-P4ATIIIII

,;

bukr,104

,-0...k

MEE=

vorrg.

ireAftevrassmumalm

JPAIIJIUU

41.

Liummeramestomm

113 J-5 0 n 0 CU Q2 03 04 09 1.0 1.1 12 04 as - 07 0.3 06

(22)

sdonacioad ETV VdSS 'ZI or" oor 0.6 Op Oz 09 09 -or .97 07

00 io

sr .i.)/ 4 zr or

III

iliii

Ve 9? O'z ez az 97 97 0'1 e7 L A

W

4_

:4

44 44

..ANPAT-4-7.-7-0._,

timworamassommissigmargromegREtaa, TANN

Av445 OAPARNWAINFIfirtrailll

mowevic WHI. WAX TRWRIMENVE61.W.::

516747A

FW074

r4

Nr4S owfrovorirovrtgAr

11.4.

JOLAVA4.4.00041AVAIMitent 111

`CC AVIIISIES1111111111111NIM

.WBVIVROWOMEMEKIVEMEMEterff

Vj30.9

r

'4Ner 1L'fil

VLIVEVIFyiNvvvssa

fy witkyo

"3744a

£kahhiniAMANAillAMARLIIIN

ttk

8ft30V76'

k71111WANNISNMENIEMEMMIRMWE

C30V7cgs fte:c3.6814/7N

li4r'1V4101141vsliqqfireMlyirrnr

.0 CP) (1, 01. so

901,0

! 1 .20 0 so 90 Lb 90 60 07 17 e7 aid

(23)

T4oltedoad 01, sass .61 .,sia

on &au 001

06 09 CL 09 OS 07 'CC Ce 91 01 co ZO ZOO 0 -sr er or g ge ez oe 91

iuumu

IMMIEMOINIMEMENZEIONNTIMM7 ,r

NEWMOMENIMMIHMEMMISICONWMAREMOURIME111

EINIENNOVASSIMMICIVEMErfliattrirMANNWPAIMll

EIMALTAMMENNEEMMEMONNEMITNIMONEUNINE

EleiSHIENNORIEVINVIONVINERWAVERIMANNAMfillEINI

MEMOMMEMERNIMEIERMFAINIMMEWEVAGITINMINOMIMIE

KW41110111EVANKMEMIONIVEMEIWANYMINIMEGIMIll

EVEINNEENDINEMINTINIPMEMERMAIROMMit

PlialteRIENNIPAMPINFAMFAMMONINVANNUMBINIMMINI

ENENEWEINEIMANi.MNFAVRAMMUNIMMN

MDWANNORIEWEMOREPAIMMOVSNIERIMIEll

MENCENIIKSLIVINEFIREGYMUMMAIMMECIE

VOMMEIPMENJEFEZIEMINMATIMMANNHAMMI

MINEKIPBBRIANNELINEPAMMORMERMIMIEN

MIEMIEVAINNIEMENUWARERGEMINUMEMI11INI

I I' 1 90 90 00 eo )12, 0 No N. N. o t., o

00000

.11,Zt;170 J' Vd30.9 leA,- r; 1 S937:14/0 sruv/i... os.wr ESOOLIKY VRIV 30V78 V .930V79 dO 1:1313M7N Cgt VAS' SO 90 LO 90 60 01 1 91 0"/

(24)

0.60 5t. 0.50 0.45 0.40 0.35 -a7 0.30 -0.6 -0.25 -.0.5- 0.20 -0.4, 0.150.3- 0.10cai-, 0.05 0.1 . 0

0

-0

111111111E,12111111120111111

MERNMENIMMENVA

NNENOMERIKOPIEN

EVENEMPIENMEIMI

EMENNEEMENSTME

MEIRENWIZEIMMIL

MEM MbEWHIMOR

""P*40P-iiimaimona

.'414JA..

IMONMaiwmaiEW

"L"'

Priw

46Ntralersomm

tr-"oliikiliwasiamon

1-4110"rialberaeF.N4

01 0 2 0 3 12 04 05 06 07 08 09 S 5 PA 460

Fig. 14. SSPA 4.60 propellers.

1.0

1!

(25)

saeliedoad 09' Vd t'2!,3

j.

071 001 0.6 09 0L 09 OS (Pi OC 00 S-1 01 SO 00 TO ZOO 0 I I

'ill

1

III

I II 1 I 1 1 97 1 1 07 01 90 90 VO ZO

TAWARMINSIMANONOWYMNE Ar-SVERENNOMMIMIE

rew VepppritprirWerripPEWnntalliEll

ALANALAA AilAk4.APARIA,

A

/4%=0:.:M11111111

VAIDENNEREKKENIIKINGRENTMEEKEZMINENI

10.11 porpvg lowroArearelportamum

4A1m1 OdarAMA, AAAMOMyktuamd

..vekomprammerzemammitronativirramm

Nvq4NARINWPRWMPFPROWORPE4r

ealfrxa.

v

A.4.4111AMALCIAAjk.

0404000r iv 0

lir

lr4WPFP4M409000,0i0 00001

44441400$0041044ortirirtotio

Ua W30.9

-FA--,r

Addalaikkiitit AL ALALAISA.MAIA

i

9037-1A110

vannumfargyararmArmipprwm.

minformomommo

00SITIOsq000

0-1'0

A\ eL.L-90 &IVY te38t" 301,78 5301/713 20 61391.1117N 09V KISS \ A .0 .0 N. N. 03 10 0 1\3 0 0 90 LO 90 60 1 I 9.r.

er

or

9? 9 0? 97

(26)

ilmoom000iN4m0,00444,

-. SSPA 460 Ak/MBER. (k BLADES 4.

41404A04010*040041

L(Q.BLA_Difh3ARBA RA770 06

js

f1-1-45 IIID/M1ESS

gli ill

iq

"44

100

400000040

0

44f

11))000014041441V000000 4J

:

Kt, COEFF

10/

fslls1,111,0000#01,40A04q4400004'440

+4

\

rha 000146

u#.040,0400

644

mmAwgagimumm.44144;*,0014444"

ilivellmvaltallawommmowt6Lukolo

Illitlgoawlm000litaelsedl:mdamNalp

....ttlkamgrammumagmemmigummammix.

...mws

.4

ANIPMESMAISSIONWILOPKRILIKI

NIMINIOVIEFMRESVE MOMMISIMEMENSINIIMINER

(27)

-02 at

MESIESEMMIIMMIR

ol-EMSMIMENZLIWA

:MENNEN/MEEKS..

ErMISPROMEOMMill EINCIMEtrOMEASEN

PINISIMMENDMIIKUN

BINAREACIWNIIMNINE

MERanassimmounum

-,::::Awnwaramem

NP-Iz'ommittlabiabimp

IVIIIIMEININIMPIRE.

Di

14111111111212EMMEMEN

99 1.0 1.1 12 D-w-0 01 02 03 04 0.5 06 0.7 08 SSPA 560

Fig. 17. SSPA 5.60 propellers.

13

(28)

Cq

Oa 01

1\ 06 OP -ft/1 .or

.saelledoad O99 WISS '8I

,

Wemnil

.4471 Ade,

APAP,(A

vity

41;10

#13',

41Vrf 4 ir

ee

A.--04;10:k4-gr. -irIFIRI/r4JOrnoRtzeL7z.Nimm

4rt

row

-00000/PL4 flAddtri

.

AM.

A,

A A A

AAAA IACIPAIVON

itoratk' ?Ira

MCC

latizonifinoripAratiwiriPkrAmm

41mm .zrAqw.miwArArmattiondiik;:'itivo

49:s qPri' INvitoppyqmpreew

.140#

lAvow000troop*Noo

&Ai..

MOO

1k801101000,4

ifOAYI

-PS'377N10 v/1 . iff4

"Ritirilrifeffir#1179140011

001

ill

**ii

790 01104 .V3.111? 301/78

V4i3Or,,oNobA4000001

i41114040

iimit A

!6"40

..P30V7G JO r11313W17N.

INNIENONIKORMANNVERMIIIVIAPOM

093- WS'S

ItN

1.7

1! /1

rttiqM

Mt'

.4Z) :00 N N., c 0 \I Cb 0 0

0 0

9

60 07 1 aid C 7 OZ OP 03 0.7. Or 0? 37 07 30 zo 10 zoo o I I-I I I I 9? tY? ?? 0? - 91 e71 . 07 GO.. 90 t O ZO - 0

(29)

ezmodoad 099 VdS 61 '2!,./ sr A 00l ,a1.1 09 OZ 09 03 0,i or az 5.1 al 50 0 119 ZUO 0 9e lie Fe >I I I 9 1,1 el al Pro.

IMITIVINWprOWIr

,MowFarRi4,tolummism

MN

A A

ME

EWSKOMISIMINWRIVirriolirri

ira.24--1111.111

INZSgammeaNNtaf#1.40.,,,

flesa.:VNIMMEM

vc

iA44100,001W/Ari

AMINE

A

kali. A, A

'ALA

AIIIAA AA A 41 A las ,1 Altatt

11311011NOMMICIMENIONIWWWilitMECIAIMME

SIMIESUPIMMINNWAPAMMENIVREMEMIIIM

EMINIORMISNINNEWATIONOYAMIVEMARYAINIE

ANIIERIMERMEEINVAWAMIVIUMMENENERN1110

MTMIIIMPAREWANNEFAVIEMMEIVEMBINIIKTEMIE

FAMSNUFINCIAMINOMMIVIVERTMEM

EVANEVONEWMAIMSNSMENVERVIIME

NFAEIIWAZAEENHEVNIIWEPAMOAIIMNAEWIMM

IINESSUMENEAVISHREWSWENIEll

FANIVIRMFAINNAIWAYMORMANVE611111

WAINDANNEMINOMPRIAIBRIPRAMINE\1111111

0

r

4, UG VA= r sbild s ruD 75-1 090 OLLKI V3W 30V76' 530V717 10 el3UAII7N . 095 KISS' 553744/0 Iid30.9 r) N. cb 0 0

0 0 0 0 0 0

II

I

III

02 97 I I 90 90 90 Lo 90 60 al 4 1 Z Old C.7

(30)

1.2 0.8 Po 07 71p4u1r51.71.1.1;`'.r.:.. 05 1.0 117.-44. 20 I - V7 05 1.0 15

Fig. 20. Curves representing propellers with optimum diameter, AD/410=0.60.

31 \ \ \ \ 4.50 J -- 3.60 5.60 ?. IJI ' 0

1\

\

\

\\.

. D n K 271a IL. _

'MN

'\.

1111.1

611421. .-- r --0.8 0.6 05 0.4 0.4 0.3 P/D 1.2 /0 Oh 06 04 25 30 20 25

Cytaty

Powiązane dokumenty

range of cavitation numbers, only a .few spots were obtained for each propeller group and the mean curves had to be faired using the curves for the Ma 3.090 group as a guide..

263 Paweł Ruszkowski, Andrzej Wo´jtowicz, Grupy intereso´w a prywatyzacja

The method gives a good approximation of nor- mal hull forms; this is illustrated in Figure 1 which shows the body plan of a standard frigate hull form and the form described by

The method uses an initial hull form that is characterized by a set of polynomials that define the beam on the waterline, the draft and the sectional area as a function of the

В процессе перевода следующей реалии мы обратились к ра- боте Сипко Этнокультурный базис русско-словацких перево- дов, в которой

w sprawie RAD 42/66 — ma zastosowanie w postępowaniu dyscyplinarnym prze­ ciwko adwokatom i aplikantom adwo­ kackim, wynika, że decydujące zna­ czenie przy

W nawiązaniu do tego ostatniego stwierdzenia wyrażono w piśmiennictwie pogląd, że przepis art. nie dotyczy indywidualnych gospodarstw rolnych 1 prywatnych zakładów

With regard to a concentration as defined in Article 3 which does not have a Community dimension within the meaning of Article 1 and which is capable of being reviewed under