• Nie Znaleziono Wyników

Experiments with partially coherent reconstruction of Fourier holograms

N/A
N/A
Protected

Academic year: 2021

Share "Experiments with partially coherent reconstruction of Fourier holograms"

Copied!
4
0
0

Pełen tekst

(1)

Letters to the Editor

Experiments with partially coherent reconstruction

of Fourier holograms

Za/%c*

1. Introduction

For reconstruction o f holograms the iaser light is usually used. Therefore the process o f holographic image formation is usually described as a completely coherent diffraction.

It may be interesting to investigate the effects o f partially coherent light used for reconstruction o f holograms.

As a simplest example let us consider a Fourier-type holo­ gram. Reconstruction o f such hologram is essentially a far field diffraction. This type o f diffraction in partially coherent light has been investigated by several authors e g. Fun, AsAKURA

[1], [2], FuuwARA [3], StROHt and RAM MoHAN [4] and

others. The correlation between partially coherent and com­ pletely coherent diffractions as a function o f the degree o f partial coherence has been discussed by the author in [3].

It can be applied directly in studying the partially coherent reconstruction o f Fourier holograms.

The generalized Schell's theorem, as formulated in [3], expresses the intensity distribution in a partially coherent diffraction pattern as a convolution o f the intensity distribution in a respective diffraction pattern, produced by a point source and the Fourier transform o f the mutual coherence function of illuminating light.

'p . c h ( * ,

jLj j

^ / . ( x , y ) ( i )

z — is a diffraction distance, F — means Fourier transform, — means convolution.

Here, the paraxial approximation and quasimonochromacy are assumed.

2. Theoretical remarks

Let us consider a Fourier-type hologram o f a transillumi- nated object o f amplitude transmittance f(xo,yo), taken in a typical setup (fig. 1) [6].

The intensity distribution in , y i) plane (on a photq- plate) is then:

( ^ , y j

Fig. !. Recording of Fourier-type hologram

4 o ) ( * 2 , . f 2 ) = 1 + I F { / ( X 2 , y D } } ^ + . F ( r ( x 2 , y 2 ) } e x p ( 2 r : ; '( X g 'X Q + y 2 - ^ ) ] + J F ( r * ( ^ , ^ ) } e x p [ - 2 n ; ' ( x ^ (2 )

In the reconstruction step the far field diffraction o f com­ pletely coherent light on such a hologram, o f amplitude tran­ smittance:

'hot ( * 2, y 2 = Ihot ( * 2, y i) (3) gives a „coherent" image, the intensity distribution in this image being:

foix-t-yJ = ^(^4- y ^ + - ^ { yJ) ^} +

+ t [ - ( x 4 + x ^ ) , - ( y 4 + y i ) ] + t * [ - ( ^ - ^ ) , - ( ^ - y ^ ) ] . (4) If the reference point source <5(x„—x^, yg—y^) is far enough from the optical axis, then both the conjugate images ? [-(* 4 + * é )' -( y 4 + y é ) l a"d ' * [ - ( * 4 - * o ) . - O^-yéM are spatially separated and can be treated as independent dif­ fraction patterns.

Application o f the cited generalized Schell's theorem enables to find the intensity distribution in the image reconstructed from the hologram with partially coherent light.

Let the hologram be illuminated by a light beam originating from an extended source, as it is shown in fig. 2. If such fiat,

* institute o f Physics, The Technical University o f Wroclaw, 50-370 Wroclaw, Wybrzeże Wyspiańskiego 27, Poland.

quasimonochromatic and incoherent source is placed in a back focal plane of a collimating lens of focal length / , , then — according to the VAN CtTTERT-ZERNtCKE theorem [7] — the mutual coherence function in a front focal plane o f this lens is given in the form:

T*(xg-x2 ' ^2 - ^ ' ) =

^ ) }

7, denotes the intensity distribution on the source.

Thus:

(3)

Insertion o f this expression into (1) gives:

(6)

7p.coh (X4 ' y 4) O l.(X 4,y4). (7)

The last formula may be interpreted as follows: The intensity distribution in an image, obtain from a Fourier holo­ gram reconstructed with the light from an extended source, is equal to the convolution o f the intensity distribution in an image, obtained from the same hologram reconstructed with a point source („coherent reconstruction") and the intensity distribution on the light source used.

(2)

Z.<?7fer.s M /A c E ^ 't o r

to /Ae Ei/Aor

This means that each point o f the incoherent source gene­ rates an image shifted with respect to those generated by the neighbouring points o f the source. AH these images superpose incoherentiy. This causes „blurring" o f the reconstructed image.

3. Experimanta! resuits

To itiustrate experimantaiiy the described process a setup shown in fig. 3 has been used for reconstruction o f Fourier hoiograms.

A smaii pinhoie P, iliuminated by a XBO-fOl high pressure mercury lamp 5 through a system o f tenses, represents an inco­

herent extended source o f tight. The optical system o f illu- minator, composed o f two tenses (one o f them being a 20^ microobjective) and an interference fitter (for A = 546 nm), images the arc in the mercury tamp onto the pinhoie. In this way the pinhoie can be treated as a compieteiy incoherent secondary light source. The diameter o f this pinhoie can be changed to have 5 different vaiues: = 125^ 1 p.m, ^ = = 211±p.m , <?3 = 3 i 4 ± I n m , i ^ = 4 1 6 ± 2 n m , i(, = 589± ± 2 nm. Coiiimating iens have foca! length / , — 185 mm, and transforming iens = 500 mm. The reconstructed image was photographed. For comparison a photograph o f an image recon­ structed from the same hoiogram in iaser iight (H e-N e iaser, A = 628 nm) in the same configuration was aiso taken. Figures 4 and 5 show one o f the conjugate images reconstructed from two exemplary holograms. Photograph a) is an image recon­ structed with iaser light. Photographs b), c), d), e) and f) show images reconstructed incoherentiy with increasing diameter o f the pinhoie.

Effect o f „biurring" is easily seen. Images o f radiai test (fig. 5) show aiso a contrast inversion in several piaces. Genera! shape o f incoherentiy reconstructed image of radial test sug­ gests that the effect o f „blurring" depends on spatial frequency contained in the image. The same suggestion arises from the equation (7).

This problem in now being investigated.

P ¿7 // Af

Fig. 3. Diagram of an experimental setup for partially coherent reconstruction o f Fourier holograns

g — XBO-101 mercury lamp, — lens, 7F — interference filter for X = 546 nm, OAf — 20X microobjective, F — exchangeable pinhole, — collimating lens, / i = 185 mm, hologram, L2 — transforming lens, — 500 mm, .¿F — observing screen

(3)

L f M e r j /o ?/i<? yo ^ RA'Mr

Fig. 3. Photographs o f the reconstructed images

a) reconstruction with laser light, b) reconstruction with incoherent, circular source of diameter ^ = 125 pm, c) as b), ¿3 = 211 ^m, incoherent, circular source of diameter ¿3 = 125 pm, d) as b), i/3 = 314 pm, incoherent, circular source of diameter ¿3 = 125 pm e) as b), ¿4 = 416 pm, incoherent, circular

source o f diameter (/4 = 125 pm f ) as b), ifg = 589 pm, incoherent, circular source o f diameter %fg = 125 pm

Fig. 5. Photographs o f the reconstructed images

a) reconstruction with laser light, b) reconstruction with incoherent, circle source of diameter ^ = 125 pm, c) as b), but ¿3 = 2 1 1 pm, d) as b), but ¿3 = 314 pm, e) as b), but </4 = 416 pm, f ) as b), but ¿3 = 589 pm.

(4)

Zeffew /o fAe Eddcr TLerrew Jo rAe E dM r

References

[ł] HiTOsm Fuji, TosHiMiTSU AsAKURA, ParM//y CoAerea?

A7a/rip/e-Beaał CaAereace, App!. Phys. 3, 1974.

[2] TosHiMiTSU AsAKURA, HiTOsm Fuj!, 7a/er-/ereace M-M 7*arha%y CoAerea! ijgAl, Optic 40, 2, 1974. [3] HntpfUMi FunwARA, E^eclj o/ Apatia/ CaAereace aa Fba-

r/er 7ałaylay o/Per/adlc OA/ec/j, Optica Acta 21, 11, 1974.

[4] SiROHi R . S., RAM MOHAN V., Faarler 7Faaj/ârnMf!aa la

Parual/y CaAereat LtyAr, Optica Acta 22, 3, 1973.

[5] ZAJĄC M., Oa tAe Parrla//y CaAereal Prejae/ aad TraaaAafèr

D/yracflaa aader Parajr/a/ ^pprajrAaadaa, Opt. Appl. 6, 4, 1976.

[6] COLLIER R. J., BURCKHARDT Ch. B., LiN L. H., Opuca/

Ha/ayrapAy, Academie Press, New York 1971.

[7] BERAN M. J., PARRENT G. B., Jr., 7Aeary a / ParA'a/ CaAe­

reace, Englewood Cliffs, N ew York 1964.

Cytaty

Powiązane dokumenty

Accept after serious revisions (another review required) (not rec­ ommended, text shows promise but does not fulfill the criteria in its current form). REJECT WITH POSSIBILITY

The underlying working principle of solar cells is the so-called photovoltaic effect, which describes the conversion of light (photons) into a voltage across a junction between

Badane mieszańce różniły się istotnie od form rodzicielskich pod względem większości analizowanych cech ilościowych (tab.. Rośliny były wyższe

Tutaj 9 kobiet odpowiedziało, że oczekuje wyższych płac, dwie badane nie mają żadnych oczekiwań, jedna z pań liczy na to, że nic nie zmieni się na gorsze oraz jedna badana

Kształt badanego obiektu oraz epeoyfiozne rozmieażozenie materiału zabytkowego na zewnątrz umocnionej płaszczyzny poz­ walają przypuszczać, że na tym etanowlaku

Elsner, Doskonalenie kierowania placówką oświatową, Wokół nowych pojęć i znaczeń, Wyd. Nowacki, Jak mądrze

Z tej okazji, pod patronatem Organizacji Narodów Ujarzmionych odbyła się w Sydney wielka manifestacja, w której udział wzięli przedstawiciele wszystkich

[r]