• Nie Znaleziono Wyników

Surface Acoustic Solitons - Quantum Theoretical Approach

N/A
N/A
Protected

Academic year: 2021

Share "Surface Acoustic Solitons - Quantum Theoretical Approach"

Copied!
4
0
0

Pełen tekst

(1)

A cta Physicae Superficierum • Vol П • 1990

SU R F A C E A C O U ST IC SO L IT O N S - Q U A N T U M TH E O R E T IC A L A P P R O A C H

TETSURO SAKU M A and NO R IH IK O N ISH IG U C H I

Department of Engineering Science, H okkaido University, Sapporo 060, Japan

Since surface acoustic waves propagate along the solid surface concentrating their energy within about one wavelength from the surface, the lattice anharmonicity is enhanced especially in high frequency region. This anharmonicity will be balanced with the dispersive effects due to the intrinsic or extrinsic origins and consequently we can expect the formation o f surface acoustic solitons o f the envelope type [1 ] .

Even in low frequency region, if there exist som e surface structures which confine the acoustic waves in the vicinity o f the surface, for exam ple thin film deposited on the substrate supporting the L ove waves, the lattice anharmonicity m ight be also enhanced. As a consequence, we can anticipate the generation o f surface acoustic solitons due to the balance between the anharmonicity and the dispersion characteristic to such surface structure. In this paper, we show that the Love waves can support the KdV type acoustic soliton approximately.

Consider a semi-infinite elastic m edium (Л), on which is deposited a thin film

(B) with thickness d. It has the stress-free plane boundary perpendicular to the

xj-axis. The displacement fields in each medium can be obtained from the equation o f elasticity theory and should satisfy the necessary boundary conditions at the surface and the interface. As we need no explicit expressions of the wave functions for phonons to develop further, we only assume the existence o f a com plete orthogonal set o f eigensolutions {uf* (?)} satisfying the elasticity equation, where J is a set o f quantum numbers, к is the wave vector parallel to the surface, i denotes the space com ponents and ? = ( * ! , x 2, x 3).

W e then define the phonons in this system by expanding the displacem ent fields us(r, t) in terms of the eigensolutions {u/*(r)} as

иДг, t)= £ (2po>/)“ 1/2[ à i ( t ) u f (f)+ H .C .],

(!)

J . k

(2)

annihilation and creation operators o f the J-m ode phonon, respectively, obeying the standard com m utation relation o f the Bose type. A m ong these eigenm odes, there must exist a Love-wave m ode which is confined in a thin film and we refer to it as Love-m ode phonon (L-m ode, J = L).

The electron field operator x (r, t) can be generally written as

X ( r , t ) £ (2)

q. tr

where a is a quantum number specifying the electronic states in the layered structure; other notations are conventional. We need no explicit forms for the electronic wave function on ф„(г).

Substituting Eq. (1) into the elastic energy up to cubic in the deformation tensor and adding the relevant electron-phonon interaction with use o f Eq. (2), we obtain

н=н

0

+нрь^ь+ н^ь,

H 0 = £ ü>iÀ a i + £ в, J i Ъ ,

J,k " , _ ______ (3)

H oh oh = 2p У (2pœi col' агГ - )1,2Ф^У" - ^ A t A i Ä J'i r, ,ph-ph r L u \ г к k k + k ,J k , k \ - k - k ' к k' - k - k' 9

H e-Ph= _ E (2P ^ ) l/4 „ .( £ ) r , S j Ц

M / ' '

where Ä l = { 2 p w Jky +

By using the H am iltonian (3), the equation for the J-m ode phonons can be obtained as follows: For the L-m ode phonon we have

Ä h = -ш Р Д ^ -б У ( 2 р ш £ ш £ .ш ~ ^)1/2<PLH - - Äh Äh „ k к Г ? к - к ■ —к. к', к — к' к' к - к ' к' - 1 2 У (2ра>£t o i . w t ^)ll24>hЫ. - - Äh Ä l ~ к - к ' - к , к ' . к - к ' к' к - к ' J ( — L ) к' - 6 У (2p a ) i ы{ . coi' - ) 1/2Ф Ч ^ - - Ä I Ä i - . *-* -к . к ' . к - к ' к ' к - к ' J,J ( — L) к' - ( 2 ^ / р У 121 0 ^ . ( П ) Ы - Ъ: (4) _ q — к о q a q o o '

For the electrons and the other modes of phonons, referred to as bulk phonons, we can easily derive similar equations which are not explicitly given here. To elim inate the electron and the bulk-phonon variables in Eq. (4), we solve the equations for these variables assuming that the effect of the anharmonic interaction upon the bulk-phonon states and also the effect ofth e electron-phonon interaction upon the electronic states can be considered as a perturbation. Then

(3)

Surface acoustic solitons 11 we take the expectation value of the equation with respect to the stationary states o f the electrons and bulk phonons.

F ollow ing the working hypothesis presented before [ 1 ] , we assum e that the L-m ode surface acoustic soliton is a m acroscopic entity o f Love waves corresponding to a state in which a large number of L-m ode phonons are excited and, consequently, the fluctuation o f the occupation number o f the phonons can be neglected. We can therefore derive the classical wave equation by taking the expectation value o f the equation (4) in a coherent state o f the L-m ode phonons,

W e can finally rewrite Eq. (4) as

Ä k + c o t ' A i + Y F - .. Ah Ah - + ( 1 8 П ‘ > +П е)) Л к = 0 , (5)

к * к ~ к. к' к‘ к - к ’ к к к v '

к'

where Ah=(^{ ah} \Äh\ { a t } ) , F - - = 6 ( 2 p w i w i c o h ~)112Ф11 к - , , is the

к к к к к. к' к - к ' - к . к ‘, к - к ' к

anharm onic attenuation rate o f the L-m ode phonons and FLe) is the attenuation rate due to the electron-phonon interaction. The second term denotes the dispersive term, the third term denotes the nonlinear term and the last term denotes the attenuation due to the electrons and bulk thermal phonons. Fla> is always positive implying that the L-m ode phonons are attenuated by *the anharm onic interaction with the bulk thermal phonons, while F£> changes its sign from positive to negative as the electron drift velocity excee*ds the sound velocity by applying an external dc electric field. Therefore we assume hereafter that the condition Г У = — 8Г У holds.

к к

The dispersion relation o f the L-m ode phonon in a thin isotropic film В with thickness d deposited on the semi-infinite cubic substrate A is given by

ш ? = с £ к 2 + 4 ( с £ - с £ ) -~ j 2 ~

Y - L

/ c

Atl1

( с ? : - с Г ) к ‘ + 4 (с Z - c f i k i k ‘k2 t o « . (6)

where c* and c£ denote the velocities of the fast and slow transverse waves in A, respectively.

For the anharm onic phonon-phonon vertex function F^ - , we obtain

*,

к-/с -dependence from the crystal symmetry after integrating with respect to the angular variables. Then the one-dim ensional version (kl = 0, k2 = 0) of Eq. (5) in the coordinate representation leads to

“n - - M u xxxx- N (iu2x)xx = 0 , ( M , N > 0 ) (7)

where и (x, t) = £ A ki(t) eikl x. M aking the variable transformation Ç = x — ct,x = t,

ti

(4)

ut + au{ uw + /?uw {= 0 , (8) where a = N / c and ß = M / ( 2 c ) . Differentiating Eq. (8) twice with respect to (, we have finally

wt + 3 a w w 4 + ß w K i + a v w t t = 0 , (9)

where vt = w . This is the KdV-Burgers equation with variable dissipation- coefficient. T he approxim ate solution o f Eq. (9) can be obtained by treating the dissipation term as a small perturbation and by using the m ethod o f conserved quantities as

w ({ , t) = 2k2(t) sech2 [к (г) (£ - 4к 2(т) т)] (10)

with

K W = « (0) [ 32ic(0)J t + 5 ] ' . (11)

where к(0) is the soliton am plitude at t = 0 and the values o f parameters were taken as a = 2 ß = 2. It should be noted that the amplitude (11) show s algebraic dam ping in time.

REFERENCE [ 1 ] T. Sakuma and T. Miyazaki, Phys. Rev. B33 (1986) 1036.

Cytaty

Powiązane dokumenty

Bardzo syntetycznie potraktowano jednak nie tylko jego wczesne lata, ale też prawie dwudziestoletni okres pobytu w USA (tylko jedna strona — 33). Zgodnie z założeniem umieszczonym

W obliczu zbliżających się wyborów do Sejmu, ZPL zadeklarował: „Zjazd wyraża całkowitą aprobatę dla Deklaracji Wyborczej Akcji Wyborczej Polaków na Litwie

ieliczne znajdujemy w dziełach nagłowickiego pana wzmian­ ki i wycieczki w dziedzinę medycyny, pojmowanej przez wieki średnie nader obszernie— bo w wielu wypadkach

[r]

Both numerical codes have a set of routines to solve flow problems which include the implementation of the SIMPLE algorithm, along with other pre- and post- processing

Since the total charge density shows a 2 ML periodicity, one might also expect bilayer oscillations in the structural parameters of the film, as the lattice relaxations should

There are three types of surface waves that may propagate on a flat interface be- tween a fully saturated porous medium and a liquid: the Stoneley wave, the pseudo- Stoneley wave

Obfity materiał dy­ plomatyczny pozwolił Wyszkowskiemu na stosowanie w pracy metod statystycznych, co czyni szeroko (może nawet zbyt szeroko) i z widocznym upodobaniem. Jest to