• Nie Znaleziono Wyników

Influence of ionic association on viscosity of electrolyte solutions. I . A new approach to the Jones-Dole equation

N/A
N/A
Protected

Academic year: 2021

Share "Influence of ionic association on viscosity of electrolyte solutions. I . A new approach to the Jones-Dole equation"

Copied!
12
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O O Z I E N S I S FOLIA CHIMICA 9, 1991

Adam Bald*

INFLUENCE OF IONIC ASSOCIATION ON VISCOSITY OF ELECTROLYTE SOLUTIONS

I . A NEW APPROACH TO THE JONES-DOLE EQUATION

The extended forms of Jones-Dole equations have been proposed taking in to account the occurence of io n ic e q u i l i ­ b r ia in e le c t r o ly t e s o lu tio n s of the type KA-, R,A and K,A where K means c a tio n and A anion r e s p e c tiv e ly .

The v is c o s it y measurements in e le c t r o ly t e s o lu tio n s are one of the methods which allowed us to the more comprehensive d e s c rip tio n of ion-ion and io n-d ip o les of so lv e n t in te r a c tio n s . This is one of the methods of study phenomen of io n ic s o lv a ta tio n . Up t i l l now s e v e ra l equations d e sc rib in g r e la tio n s h ip between v is c o s it y and co ncen tratio n of e le c t r o ly t e in s o lu tio n have been suggested. One of mostly ap p lied is the J o n e s-0 o l e equation [ l ] !

where :

T\r - is r e l a t i v e v is c o s it y of s o lu tio n ,

and - the dynamic v i s c i s i t i e s of s o lu tio n and s o lv e n t r e ­ s p e c tiv e ly ,

c - is molar co n ce n tratio n of e le c t r o ly t e .

The c o e f f ic ie n t A is connected w ith e le c t r o s t a t ic ion-ion inter­ a c tio n s and can be c a lc u la te d from F a l k e n h a g e n equation [2].

In s t it u t e of Chem istry, U n iv e r s ity of L d d i, Poland. i /2

(2)

The e x c e lle n t agreement of the em p iric a l A c o e f f ic ie n t s and th e o r e tic a l ones was confirmed in aqueous s o lu tio n s . In organic and mixed solven t the agreement is poorer e s p e c ia lly in the case where io n ic as s o c ia tio n occurs [3]. The obtained e m p iric a lly c o e f f ic ie n t 8 is a measure of the ion-solvent in te r a c tio n and is a sum of io n ic c o n trib u tio n s fo r ca tio n and anion.

In te rp re ta tio n of the values of 8 c o e f f ic ie n t may be based on the d if fe r e n t models [4-7]. E s p e c ia lly the values of 3B/9T c o e ffi- cent a ffo rd valu ab le conclusion [8-12] with regard to the e f f e c t of the e le c t r o ly t e on the the so lv en t s tru c tu re .

The Jones-Dole in form (1 ) is obeyed in the lim ite d concentra­ tio n range of e le c t r o ly t e e .g . in water to ca. 0.1 mol -dm’ 3. In organic and mixed s o lve n ts the range of co ncen tratio n should be determined experim entally fo r each e le c t r o ly t e and o c c a s io n a lly terms in v o lv in g higher powers of the molar co ncen tratio n must be added and equation (1 ) can be w ritte n in the fo llo w in g form:

The m ajo rity of the lit e r a t u r e data of v is c o s it y fo r e le c t r o ­ ly t e s o lu tio n s concern the 1-1 e le c t r o ly t e s and the in flu e n ce of io n ic a s s o c ia tio n on v is c o s ty is not u su a lly taken into account. Io n ic a s s o c ia tio n causes th at the co n cen tratio n of ions is lower ihan the e le c t r o ly t e one and 8 c o e f f ic ie n t , being a measure of e le c t r o ly t e so lven t in te r a c tio n , is not a simple sum of BK+ and Ba-.

Hence in te r a c tio n u nd isso ciated p a rt of e le c t r o ly t e for example an ion p a ir with solven t should be also taken in to co n sid e ra tio n . Therefore i f io n ic a s s o c ia tio n , connected with the process:

= 1 ♦ AVcT + Be Dc^

(

2

)

K+ ♦ A' Ä KA

occurs equation (1 ) takes the fo llo w in g form:

rjr = 1 + AVoTc' + B j a c + Bq(1 - oî )c

where :

a - the degree of d is s o c ia tio n , K o - the a s s o c ia tio n constan t,

(3)

8j - B c o e f f ic ie n t fo r io n s: fl^ * a« * * 0A~!

B0 - 6 c o e f f ic ie n t fo r u n d isso ciated form of e le c t r o ly t e .

The degree of d is s o c ia tio n , can be obtained from a s s o c ia tio n

d e s c rip tio n of v i s c i s i t y in e le c t r o ly t e s o lu tio n s .

In the case of e le c t r o ly t e s KA2 type two p o s sib le e q u ilib r ia may be e x is t :

where:

Ka - a s s o c ia tio n co nstan t, Krf - d is s o c ia tio n co nstan t.

For each of them i . e . (4 ) and ( 5 ) , r e s p e c t iv e ly , the a s s o c ia ­ tio n co nstan ts, K_, may be w ritte n :a

constant using the r e la t io n s :

(3 a ) -Aqh-VSc (3b) 1 Rfi0HVo.c where: y4 - mean molar a c t i v i t y c o e f f ic ie n t ;

ADH’ ®DH " c o e if ic ie n t3 of the Debye-Hückel equation; R - d ista n ce parameter of io ns.

D a v i e s and M a 1 p a s s [13] used equation (3 ) fo r

(4 )

K (5 )

c KA2yKA2 a l CKA+ CA ' yKA+ yA~

(4)

K 3 °KA+ KA _____ (7 )

*2 c - c . y - y . U )

\ K 2 A K 2 A

•»

Taking y^- » y ^ * 3 Y~ sod y«^ “ 1 ar*d also d escrib in g concentrations in fo llow in g way: 2

c ka2 * C ( l

'« 0

CKA+ aC<Xl ( l - ° ‘ 2)

CA* I£ C I1 ^ + °* 2^

c k +2 = c c i i ^ j . ( 8 )

equation (6 ) and (7 ) can be w ritte n in forms: 1 - Olj Ka 1 J l / 1 w 2 \ 2 coi^d - « 2)y^

1 - a 2

(9 ) ( 10) Ks2 * c a ^ d ♦ oi 2 ) y'K+'2

Very freq u en tly the e q u ilib r ia (4 ) and (5 ) s a t is f y the condi-tio n

0 » Kfll « Ka2 (11)

which means, th at in the s o lu tio n undissociated form, KA2, does not p r a c t ic a lly e x is t , th at is oi ^ = 1. Thus only the eq u ilib riu m (5 ) describes e le c t r o ly t e s o lu tio n and the a s s o c ia tio n constant, Ka2* may be w ritte n in forms:

Ka2 = ca2( l + « 2 ^ + 2 i1 2 ^

In th i3 s p e c ia l case the Jones-Dole equation should be w ritte n in form [1 4 ]:

(5)

nr - 1 + AVcSÇ ♦ Bk*2 ck+2 ♦ Bka* c KA+ * Ba - c

a-or

Tj r * I + A + B ^ + 2 c o2 + 0 « A 4 " a 2^ * B A " * “ 2^

which may bo transform in to form:

rjr * 1 + AVcotj' * (B + 2Ba ~) cc<2 (B ^ + BA~) c ( l - oi^) O 3)

K K A

Denoting: B^+2 + 2BA- » B2, B + ♦ B _ > B j, a = o ij the f o l l o ­ wing r e la tio n s h ip is obtained; KA

*lr * 1 ♦ f^JccT + B2ca ♦ B ^ c (l - cx ) (14)

Such form of Jones-Oole equation was used by Q u i n t a n a e t a l. [14] in order to obtain the B^ and B2 c o e f f ic ie n t fo r Na2S04 in w ater-etanol m ixtures. They used the s a lt of K2A type and in th at case: B2 * BA-2 * 2BK* and ®1 * ®KA~ + BK+ where: K+ = Na+ and A '2 = SO-2.

Assuming otj » 1 the whole co n cen tratio n of e le c t r o ly t e can be d iv id e fo rm ally in to two p a rts which d is s o c ia te according to equa­ tio n s:

p a rt 1 KA2^ --->• KA+ + A” as sym m etrical e le c t r o ly t e

p a rt 2 KA^2 ) --->• K*2 * 2A" as asym m etrical e le c t r o ly t e (15) The co n cen tratio n c ( l - c<2) corresponds the p art 1 and co<2 the p a rt 2 r e s p e c t iv e ly . Pro p o rtion between both c o n trib u tio n s dependent on co n cen tratio n of e le c t r o ly t e i . e . at the lower concen­ t r a t io n the q u a n tita tiv e c o n trib u tio n of the p a rt 2 in c re a s e s . At c = 0 th is c o n trib u tio n becomes to t a l i . e . e le c t r o ly t e is com plete­ ly d is s o c ia te d a c c o rd in g .to the scheme:

(6)

where Is the number of types of the ions formed from molecule and

T - *?*2 ^

* 1

________________ X® ♦

The other symbols have th e ir usual meaning.

As i t seen the value of A depend on the type of e le c t r o ly t e and the lim m iting io n ic m o b ility .

In the case i f a l l e q u ilib r ia described equations (4 ) and (5 ) take place 01 ^ < 1 then in s o lu tio n a l l chemical forms e x is t and

th e ir co ncentrations are described equations ( B ) .

Hence e le c t r o ly t e may pe trea ted as the composed of three forms: K A ^ - u ndissociated one,

K A ^ - d is s o c ia te d one according to the scheme KAj —^KA* ♦ A ',

K A ^ - d is s o c ia te d one according to the scheme K A j—vK*2 + 2A". The co n cen tratio n s! c ( l - o i j ) , co^Cl - and c a ^ c o rre s ­ pond these forms KA^0 ) , KA^X) and Ka£2 ) , r e s p e c tiv e ly .

In th is most general case the Jones-Dole equation fo r e le c t r o ­ ly t e of KAj type may be taken on form equation (17)

Tlr = 1 + 'Wca

1 « 2

♦ oijLBjCU - a 2) + B ^ o ^ ] + c ( l - c^JB g

(17)

where!

80 1 BKA2* B1 = 8KA+ + 8A'* 02 s BK+2 * 2Ba- In the case of e le c t r o ly t e of K2A type i t w i l l be: B0 = BKA7’ B l = b kA” + BK+> B2 = BA” 2 4 2Bk + r e s p e c tiv e ly .

0x2 ( l z 2 | - j z j

* i Z | i . i z 2r 1/2 ■i U i Z 2l

(7)

Assuming Ka ^ « K&2 and cij » 1 the form KA2 is p r a c t ic a lly absent in the s o lu tio n equation (17) takes on form (18 ) id e n t ic a l w ith equation (14)

rjr = I ♦ AVcolj ♦ B i c ( l " a 2^ * B^ca2 (18)

As besides Kfl2 has in co n sid e ra b le value i . e . oi2 “ 1 then equation (18) can be w ritte n in form:

i^r = I ♦ AjVc" + Be

id e n t ic a l with one fo r com pletely d is s o c ia te d e le c t r o ly t e s of KA2 type.

For unsym etrical e le c t r o ly t e s of KAj or K} A type the fo llo w in g p o ssib le e q u ilib r ia should be taken in to account:

For unsymmetrical e le c t r o ly t e s of KAj or K-jA type the f o l l o ­ wing

Kal

KA* + A' KA, (19a)

*^a2 KA + 2 + A- «==> KAl (19b) Kd2

,

Ka3

+2

K ♦ A" 5 = * KA (1 9 c) Kd3

and the a s s o c ia tio n constants can be w ritte n fo r then, re s p e c tive ly :

cKA3 yKAj

al c KAt CA- yKAÎ yA- (20a)

va2

cKA; yKA2

(8)

CKA+ yKA*

« . J • c . « » ">

K A K ° A

I f ^o<2 and oij. denote the degree o f'd is s o c ia t io n c o rre s ­

ponding to e q u ilib r ia (1 9 a ), (19b) and (1 9 c ), r e s p e c t iv e ly , the concen tratio n of a l l p o ssib le form of ions and u nd issociated e le c t r o ly t e can be obtained from equations (21)

cKAj = (1 - o l p c (21a)

cKA3 = o i j ( l - q i2)c (21b)

CKA*2 * “ l ' V 1 ‘ ' ■ (21c)

» oijC ♦ ajOijC ♦ oijoijajc (2 ld )

ck+3 = o t ^ a j c ( 21e)

When the determined as above co ncen tratio n s are s u b s titu te d in to equations (2 0 a ), (2 0 b ), (20c) then fo r

yKA3 * 1 and *I<a; 3 in ­ equations (20) take forms:

1 - a . K = --- (22a) o ijd - a 2) ( l + a 2 + a 2a 3)c y 2 0 1 ,(1 - a 2) Ka2 = -*---—— --- — (22b) d jC tjd - a 3) ( l ♦ a 2 + a 2°'3^cyKA+2 o ijC jd - ct3)y KA + 2 a3 7 1 I--- ~ (22c) ° ' l a 2a 3^1 * a 2 * c*20l3^c y - yK*3

(9)

I f a l l e q u ilib r ia (19 ) occur and a l l p o ssib le chemical forms of e le c t r o ly t e e x is t th e ir co n cen tratio n s are expressed by equation (2 1) , e le c t r o ly t e may be considered as composed of four p arts

- u nd isociated one,

- d is s o c ia te d one according to the scheme: KAj—*KA2 ♦ A ,

KAj2^ - d is s o c ia te d one according to the scheme: KAj—*KA+2 + 2A ,

K A j^ - d is s o c ia te d one according to the scheme: KAj—►K*3 + 3A .

The co ncen tratio n s c ( l - ot^), c a ^ (l - c*2) , ca^otjd - <*3) and

c a lc»2a 3 correspond the forms K A j ° \ K A j1^, KA^2^ and K A ^ , r e s ­ p e c t iv e ly .

In the above case fo r e le c t r o ly t e of KAj type the Jones-Dole equation should be presented in form (23a)

Tjr * 1 + A-yfco^o^o^ + 011 1 - * 02ot2^1 " a ^ c + B3°!2oi3c^ *

* (1 - j)c B q (23a) where: B o 1 b k a3 -bi 1 BKA2+ + V > B2 * BKA+2 + 2 0A-. B3 s BK + 3 + 3BA

-in the case of e le c t r o ly t e KjA type i t w i l l be:

8 0 =

BKjA* B1

V * BK2A->

B 2 = 2V +

BKA-2'

B3 •

3BK+ + BA-3

r e s p e c t iv e ly .

The Jones-Qole equation fo r KA} e le c t r o ly t e shown in form (23a) is mostly general equation taking in to c o n sid e ra tio n the p o s s i b i l i ­ ty of occurance of e le c t r o ly t e in d if f e r e n t chem ical forms, which

(10)

concen tratio n depend on the values of a s s o c ia tio n constants K a21 Ka3 and the molar concen tratio n of e le c t r o ly t e .

U su a lly the e q u ilib riu m constants obey the in e q u a lity Kgl-< Ka2<Ka3’ Then oij * 1 and equation (23a) should be modified (K^j « 0 ):

* 1 + A - ^ / c* B j ( l - orfjic * " o1} ) ♦ (23b)

When moreover K32 < Ka3 and c<2 “ 1 equation (23b) is given by

t|r = 1 ♦ AVcoi-j + B 2c ( l - o tj) + B^coij (2 3 c ) I f also Kaj reaches not larg e values and oi^ » 1 then equation (23a) can be w ritte n in a form:

Tjr = 1 + AV? + BjC (23d)

which is c h a r a c t e r is t ic fo r com pletely d isso c iate d e le c t r o ly t e s of KAj or KjA type.

Summarizing the suggested approaches to the Jones-Dole equation include in flu e n ce of ion-ion and ion-d ipole of so lven t in te r a c tio n fo r a l l ions and ion p a irs e x is tin g in s o lu tio n . The complete forms of these equations fo r e le c t r o ly t e of KA2 type i . e . equation (17) and e s p e c ia lly fo r KA^ one equation (23a) are e v id e n tly com plicated. However the lim itin g e q u iva le n t c o n d u c tiv itie s of ions and the a s s o c ia tio n co nstan ts, determined from the co n d u ctivity measurements, enable to c a lc u la te the values of A c o e f fic ie n ts from the Falken- hagen equation and the degrees of d is s o c ia tio n of e le c t r o ly t e in an i t e r a t i v e procedure. The values of B c o e f fic ie n ts corresponding to s p e c ifie d ions and ion p a irs can be obtained from s e rie s of rj and c data by use of s u ita b le methods.

%

The review of the proper methods to enable to s o lu tio n suggest­ ed abo forms of the Jones-Dole equation was made in paper [15] .

(11)

REFERENCES

[1] 6. J o n e s , M. D o l e , J . Amer. Chem. S o c ., 51,, 2950 (1929).

[2] T. E r d e y-G r u z, Transport Phenomena in Aqueous S o lu ­ tio n s , Budapest 1974, p . 128.

[3] J . C r u d d e n, G. M. D e l a n e y , D. F e a k 1 n s, P. J . O’ R e 1 1 1 y, W. E. W a g h o r n e , K. G. L a w ­ r e n c e , J . Chem. Soc. Faraday Trans. I , ¿ 2 , 2195, 2207 (1985).

[

4

]

W. M. C o x , J . H. W o 1 f e n d e n, Proc. Roy. S o c . , A 145. 475 (1934).

[5] R. S. S t o k e s , R. M i l l s , V is c o s ity of E le c t r o ly t e s and R elated P ro p e rtie s . Pergamon Press I n c . , New York 1961. [6] B. S. K r u m g a 1 t z, J . Phys. Chem., 82. 763 (1979). [7] D. F e a k 1 n s, D. J . F r e e m a n t 1 e, G. K. L a w ­

r e n c e , J . Chem. Soc. Faraday Trans. I , _70, 795 (1974). [8] M. K a m i n s k y , D isc. Faraday S o c ., 24,, 171 (1951). [9] D. J . P. 0 u t , J . M. L 0 s , J . S o lu tio n Chem., 9, 1 (1980). [10] M. K a m i n s k y , Z. N a t u r f., 12a, 424 (1957). [11] E. R. N i g t i n g a 1 e, J . Phys. Chem., £3, 138, 742 (1959). [12] I . M. T s a n g a r i s , M. R. B r u c e , Arch. Biochem. and B io p h y s., 112, 269 (1965). [13] C. N. D a v i e s , V. E. M a 1 p a s s , Trans. Faraday S o c ., 72, 2075 (1964). [14] C. Q u i n t a n a , M. L. L 1 o r e n t e, M. S a n ­ c h e s , A. V i v o , J . Chem. Soc. Faraday Trans. I , 82, 3307 (1986).

(12)

Adam Bald

WPŁYW ASOCJACJI JONOWEJ NA LEPKOŚĆ ROZTWORÓW ELEKTROLITÓW I . NOWE POSTACIE RÓWNANIA JONESA-DOLE* A

Zaproponowano rozszerzono w ersje równania Jone3a-Dol8’ a, które uwzględniają równowagi jonowe występujące w roztworach e le k tr o litó w n ie c a łk o w ic ie zdysocjowanych typu KA2, K? A, KA, i K,A, gdzie: K - k a tio n , A - anion. Współczynniki A i B proponowanych równań związa­ ne z oddziaływaniami typu jon-jon i jon-rozpuszczalnik przypisano ś c iś le określonym jonom i parom jonowym.

Cytaty

Powiązane dokumenty

The formation of the complexes between the calcium ions and the carboxylic groups of the anionic polyamino acid results in the marked reduction of the surface charge

The aim of this paper is to give a new existence theorem for a stochastic integral equation of the Volterra-Fredholm type of [9] and [10] (cf. also [13]) and to investigate

It is known that some sorts of polymeric chains, called polyelectrolytes, when put into a container with a suitable electrolyte, dissociate into a poly- meric core and mobile ions..

Further, we prove that the asymptotic stability of the semigroup (0.3) in L 1 (X) is equivalent to the strong asymptotic stability of the Foia¸s solutions in the sense of

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY PO LSKIE J AKADEMII

Let Z, N be the sets of integers and positive integers respectively. .) denote effectively computable absolute constants... In this note we prove the following

To prove (1) on the major arcs we argue as follows. This solution is unique. Here [d, q] denotes the least common multiple of the natural numbers d and q.. Sufficiency of conditions

Periodic solutions — ordinary iterations... Periodic solutions — approximate