• Nie Znaleziono Wyników

Three aspects of decidability

N/A
N/A
Protected

Academic year: 2021

Share "Three aspects of decidability"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S __________________ F O L IA PHILOSQPHICA 7, 1990__________________

Janusz Kaczmarek THREE ASPECTS OF DECID ABILITY

M etam athem atical problems of d e c i d a b i l i t y re c u r in lo g ic in the shape of the q u e s tio n : i s a g iv e n lo g ic a l th eory d e c id a b le or u n d e c id a b le . B a s ic r e s u l t s con cern ing d if f e r e n t m athem atical and l o g ic a l t h e o r ie s were ach ieved m ainly in the t h i r t i e s and the f o u r t ie s of our c e n tu ry . No wonder th a t the n o tio n of d e c i d a b i l i t y i s u s u a lly combined w ith the term inology o f th a t tim e . However, I would suggest th a t p e r c e iv in g a t le a s t th re e d i f f e r e n t p e rio d s in the s tu d ie s on d e c i d a b i l i t y i s f u l l y j u s t i f i e d .

The f i r s t p e rio d c o v e rs the y e a rs t i l l 1930. At th a t time the problem of d e c i d a b i l i t y a cq u ire d some im p ortan ce, m ainly on account of the s tu d ie s connected w ith H i l b e r t 's programme. The second p e rio d f a l l s on the t h i r t i e s and the f o u r t i e s . Then, on the b a s is of v a rio u s approaches, a narrow m athem atical concept of d e c i d a b i l i t y was b u i l t up, which rendered p o s s ib le an e q u a lly p r e c is e d e f i n i t i o n o f d e c i d a b i l i t y . F i n a l l y , in the t h ir d p e rio d th a t s ta r te d about the e a r ly s i x t i e s , th e re appeared p u re ly me­ c h a n ic a l p rocedures fo r s o lv in g v a rio u s problem s, thus s tim u la tin g the s tu d ie s on p r a c t i c a l d e c i d a b i l i t y . The n o tio n of d e c id a b le th e o ry in these th re e p e rio d s w i l l be the b a s ic theme of t h is

p a p e r1.

-1 There i s a g re a t v a r i e t y o f in t e r e s t i n g works concerned w ith r e c u r s iv e fu n c tio n s and tho problems of d e c i d a b i l i t y and unde­ c i d a b i l i t y . The most v a lu a b le a r e , f o r example, A. G r z e g o r ­ c z y k , Z ag ad nienia r o z s t r z y g a ln o á c i, Warszawa 1957; A. T a r- s к í , A. M o s t o w s k i , R. M. R o b i n s o n , U ndecida­ b le T h e o rie s , N o rth -H o lla n d , Amsterdam 1953; 0. V a n D a l e n, Alg o rith m u s and D e c is io n Problem s: a Crash Course in R e cu rsio n Theory, [ i n : } Handbook of P h ilo s o p h ic a l L o g ic , eds 0. M. Gabbay,

(2)

1. P e rio d I . The d e c id a b ilit y of a theory was d efin e d in terms of the in fo rm a l i n t u i t i v e n otion of an e f f e c t i v e method. What is an e f f e c t i v e method? I t s paradigm can be found in sim ple and w e ll- -known m athem atical alg o rith m s as, fo r example, E u c l i d 's alg o rith m fo r fin d in g the g re a te s t common d iv is o r of two p o s it iv e in te g e rs n o t - r e la t iv e ly prim e; e f f e c t i v e method i s a method which a llo w s to s o lv e a problem or a c la 'js of problems in a f i n i t e number of steps. A c c o rd in g ly , a g eneral problem (a c la s s of s p e c i f ic q u e s tio n s ) i s d e c id a b le i f th e re e x is ts an e f f e c t i v e method of s o lv in g every q u estio n of th a t c la s s , e .g . g eneral q u e stio n : " i s a g iven num­ ber n p rim e ?" i s d e c id a b le . C onsequently, a theory T i s d e c id a ­ b le i f i t s g e n e ral problem: " i s a form ula v a lid in i t " i s d e c id a ­ b le 2 .

M etam athem atical s tu d ie s advanced by H ilb e r t and h is school b efo re 1930 aimed at p ro vin g the c o n s is te n c y and d e c i d a b i l i t y of the main lo g ic a l and m athem atical th e o r ie s . At th a t time c l a s s i c a l mathem atics was g e n e ra lly claim ed to be not on ly c o n s is te n t but a ls o d e c id a b le . That th e s is became even more c o n v in c in g a f t e r R u s s e ll and Whitehead " P r i n c i p i a Mathema- t i c a " . Such a t t it u d e made the s tu d ie s on d e c i d a b i l i t y focus on new e f f e c t i v e methods and new d e c id a b le t h e o r ie s ; t h e ir r e s u lt s being r e fe r r e d o n ly to m athem atical th e o r ie s or t h e ir fragm ents, e . g . , L . Löwenheim3 proved the d e c i d a b i l i t y of f i r s t - o r d e r monadic p re d ic a te lo g ic (1 9 1 5 ), E . P o s t4 , the d e c i d a b i l i t y of standard t r u th - fu n c tio n a l p r o p o s itio n a l lo g ic (1 9 2 1 ), M. P resb u rg e r^ ; the

F . Guenthner, 1983, v o l. I , pp. 409-478. But a l l of them, however, d eal on ly w ith the f i r s t two p e rio d s of s tu d ie s on d e c id a b ilit y . As f a r as the author knows, some problems of p r a c t i c a l d e c id a b ilit y are d iscu ssed on ly in : M. 0. R a b i n , O e cid ab le T h e o rie s , [in :J Handbook of M athem atical lo g ic , ed. J . B a rw is e , N o rth - H o lla n d , Am­ sterdam 1977.

2

See, e .g . A. G r z e g o r c z y k , op. c i t . j A. T a r ­ s k i , A. M o s t o w s k i , R. M. R o b i - n s o n , op. c i t .

3 L . L ö w e n h e i m , Öber M ö g lic h k e ite n im R e la t iv k a lk ü l, "Mathem atische Annalen“ 1915, v o l. 76, pp. 447-470.

h

E. P o s t , In tr o d u c tio n to a G eneral Theory of Elem entary P r o p o s itio n s , "A m erica l Jo u rn a l of M athem atic" 1921, v o l. 43, pp.

163-185. ,

5 M. P r e s b u r g e r , Uber d ie V o lls t ä n d ig k e it eines gewis­ sen Systems der A rith m e tik genzer Z ahlen , in welchem d ie A d d itio n a ls e in z ig e O peration h e r v o r t r i t t ; [ i n : ] Sprawozdanie z I kongresu matematyków krajów s ło w ia ń s k ic h , Warszawa 1929, pp. 92-101,

(3)

d e c i d a b i l i t y of f i r s t - o r d e r number th e o ry w ith a d d itio n but w ith o u t m u lt ip lic a t io n (1 9 2 9 ), T. Skolem6 : the d e c i d a b i l i t y of f i r s t - o r ­ der number th eory w ith m u lt ip lic a t io n but w ith o u t a d d itio n (1 9 3 5 ). Moreover some e f f e c t i v e methods were in v e n te d a s , fo r exam ple, the re d u c tio n to c o n ju n c tiv e normal form, t r u th - t a b le method (indepen­ d e n tly - E. P o s t7 and L . W ittg e n s te in 8), and the methods of p ro ­ vin g the d e c i d a b i l i t y f o r some s p e c if ie d t h e o r ie s . Beyond the lim its of the b a s ic re s e a rc h work were, h ouever, u n d ecid ab le problems and t h e o r ie s , namely those w ith no e f f e c t i v e methods fo r s o lv in g t h e ir g e n e ral problem. At le a s t two reasons can be g ive n fo r t h a t : I ) a f t e r H ilb e r t had realized h is programme, u nd e cid ab le problems were assumed not to belong to m athem atics; 2) the f a i l u r e in the f i e l d of u nd ecid ab le th e o r ie s was to some e x ten t due to u n p re c is e d e f i ­ n it io n of d e c i d a b i l i t y of a th e o ry . As has been s ta te d above, th a t d e f i n i t i o n based on the i n t u i t i v e concept of e f f e c t i v e method. In the second p e rio d the e f f e c t i v e method was more p r e c is e ly d e fin e d , which was connected w ith the in tr o d u c tio n of i t s m athem atical coun­ t e r p a r t : the concept of re c u rs iv e n e s s .

2. P e rio d I I . The second p e rio d belongs to the most p r o l i f i c in the h is t o r y of d e c i d a b i l i t y s tu d ie s , and thus i t can be

a

tre a te d as a w hole. When G o d e l's work was p u b lish e d in 1931, i t became e v id e n t th a t the d e d u c tiv e power of fo rm a liz e d systems i s lim it e d and, c o n s e q u e n tly , not alw ays the r ig h t procedure ( i . e . the one th a t s o lv e s the problem in e v e ry s i t u a t i o n ) , f o r a g ive n problem of a th e o ry can be s e t t le d . Based, on the one hand, on the i n t u i t i v e n o tio n of what i s c a lc u la b le , and, on the o th e r hand, on the e x is t in g a lg o rith m s , s e v e r a l d i f f e r e n t m athem atical d e fin itio n s of re c u rs iv e n e s s were form u lated ( t h a t i s , d e f i n i t i o n s o f r e c u r ­ s iv e f u n c tio n , Gödel in [a] fo r the f i r s t tim e , and of r e c u r s iv e s e t ) , which in consequence made p r e c is e d e f i n i t i o n of d e c i d a b i l i t y

6 T. S k o l e m , Uber e in ig e S a tz fu n k tio n e n in der A rith m e­ t i k , S k r i f t e r U t g i t t av Det Norske Videnskaps-akademi i O slo , I . M a t.- N a tu rv . K la s s e 1930, No. 7, Oslo 1931.

7 E. P o s t , op. c i t .

8 L . W i t t g e n s t e i n , T ra c ta tu s lo g ic o - p h ilo so p h ic u s , Routledge and Kegan P a u l, London 1922.

9 ».

K. G ö d e l , Uber form al u n e n tsch e id b are S ä tz e der P r i n ­ c i p i a M athem atica und verw an d ter Systeme I , "M o n a tsch ri f t f ü r Mat­ hem atik und P h y s ik " 1931, Bd. 38, pp. 173-198.

(4)

p o s s ib le . The most n o tab le r e s u l t s o r ig in a te d w ith A. Church, K. G ödel, S . C. K le e n e , J . B. R o sse r, E. P o s t, A. T u rin g , and l a t e r A,H arkov, The must persp icu ou s d e f in it io n of r e c u r s iv e fu n c tio n s (w h ich a t the same time c h a r a c te r iz e s t h e ir c o n s tr u c tio n ) i s foun­ ded on the n o tio n s of e f f e c t i v e minimum, p r im it iv e re c u rs io n * ^ and com position o p e r a tio n s * 1, Namely, i f we c o n s id e r e a s i l y c a lc u la b le fu n c tio n s :

<*) Z (x ) = 0, S (x ) « x ♦ I , Un i ( x j ... xn ) = xx fo r i < n, n = 1, 2...

then a c la s s of re c u rs iv e fu n c tio n s can be d efin ed as the minimal c la s s of fu n c tio n s c o n ta in in g (# ) and clo se d under the o p e ra tio n s of com position, p r im it iv e re c u rs io n and e f f e c t iv e minimum. Making use of t h is o b s e rv a tio n , r e c u rs iv e s e t was d efin ed as a set fo r which th e re e x is ts a re c u rs iv e fu n ctio n c h a r a c t e r is t ic fo r t b is s e t; and d e cid a b le theory - as a theory w ith r e c u rs iv e set of theorems.

12

In 1936 Turing proposed to d e fin e computable fu n c tio n in terms of computing machines he had in ve n te d . Fu n ctio n f is compu­ ta b le i f there can be designed Turing machine fo r i t , such th a t i t may be capable of p r in t in g succeeding valu es of th a t fu n c tio n on the tap e. In d e p e n d e n tly, E. Post made a s im ila r a n a ly s is . Next p ro p o s itio n concerning A - d e fin a b le fu n c tio n s was in trod u ced by Church and K leene; i t was based on C h u rch 's A - c a l c u l i 1 } , where

The o p e ra tio n of e f f e c t iv e minimum. The o p e ra tio n of m in i­ mum lead s from a fu n c tio n g (y , x., . . . . x „ ) of n ♦ I arguments to a ru n c tio n f ( x 1t xn) of n arguments, whose valu e f o r given x. •••• *n 1S the le a s t va lu e pf y , i f one such e x is t s , fo r which

* i > •••i ~ 0 and which is undefined i f no such у e x is t s . I f fo r given x. , xn th e re alw ays e x is ts the le a s t valu e of y, then the o p e ra tio n of minimum is c a lle d e f f e c t i v e . The op era­ tio n of p r im it iv e re c u rs io n . This o p e ra tio n a s s o c ia te s w ith the rtľ n n h ? t a l ,u n c tlo n i\ f ( *1> xn) and g ( x , ... xn<2) the fun-F ÍČ on t*(x l ... where: h (0, x ,, . , , , x „ ) = f ( x . . . . Xn),

( +n l - *1» *n) = 9 (k , h (k , x ,, . ! . , xn ) ... xn ) l ^e e * e -9- A. G r z e g o r c z y k , op. c i t ,

A. T u r i n g , On Computable Numbers, w ith an a p p lic a tio n to the Entscheidungsproblero, "Pro c ee d in g s London M athem atical So­ ciety 1936/1937, s e r . 2, v o l. 42, pp. 230-265.

к A ' .,C h u r c h, An tln so lva b le Problem of Elem entary Number Theory, "Am erican Jo u rn a l of M athem atic" 1936, v o l. 50, pp!

(5)

due to л - o p erato r producing f u n c tio n a l sym bols, the consequent no­ t a t io n is u n i f i e d 14. Also o th er d i f f e r e n t aproaches were t r i e d l a ­ t e r , b rin g in g a lto g e th e r v a rio u s , more p r e c is e d e f in it io n s of the i n t u i t i v e n o tio n of c a l c u l a b i l i t y . The im p ortan t f a c t , however, is th a t in a l l those aproaches the same c la s s of r e c u r s iv e fu n c tio n s was d e fin e d s in c e :

1) The c la s s of r e c u r s iv e fu n c tio n s i s e q u iv a le n t to the c la s s of A - d e fin a b le f u n c t io n s 15.

2) The c la s s of computable fu n c tio n s i s e q u iv a le n t to the class of А - d e fin a b le fu n c tio n s 16.

T h is f a c t made Church and Turing put forw ard a h y p o th e sis that the i n t u i t i v e n o tio n of what i s c a lc u la b le has i t s p r e c is e mathe­ m a tic a l c o u n te rp a rt. That h yp o th e sis c a lle d C h u rch 's T h e s is , Tu­ r i n g 's H y p o th e s is, or the most r i g h t l y , Church-Turing Hypothesis, can have m an ifo ld form es. L e t us p re se n t two of them:

H I) E ve ry r e c u r s iv e fu n c tio n i s e f f e c t i v e l y c a lc u la b le .

H2) A lg o rith m ic p ro cesses in the i n t u i t i v e sense can be r e a liz e d by means of Turing m achines.

Church-Turing H yp o th e sis i s not proved. V a rio u s approaches to what i s c a lc u la b le , however, make us b o liv e i t i s p la u s ib le ; when i t s v a l i d i t y i s assumed, the u n d e c id a b ilit y o f , fo r in s ta n c e , p r e d ic a te c a l c u l i or of the h a lt in g problem can be showed.

Not o n ly d e fin in g d e c i d a b i l i t y in terms of m athem atics but a ls o the f a c t o f surmounting the d i f f i c u l t i e s connected w ith the pos­ s i b l e r e a liz a t io n of H ilb e r t programme r e s u lte d in v a rio u s c o n c lu ­ s io n s con cern ing the u n d e c id a b ilit y of the main m athem atical and lo g ic a l t h e o r ie s . The b est known r e s u l t s (p roved in 1936) are as fo llo w s :

14 "

л - d e fin a b le fu n c tio n can be d e te rm in e d 'a s fo llo w s : fu n c tio n F i s c a lle d A - d e fm a b le i f th e re e x is t s a form ula £ such t h a t , i f F(m ) * r and jd end _£ the form ulas corresp on d in g in t h is c a l c u l i to the p o s it iv e in te g e rs m and r , then F(m ) conv r , where "c o n v ” i s a r e l a t i o n between form ulas F(m ) and r i f f the form ula r can be d e riv e d from £(m ) by m eans.of a p p ro p ria te op era­ t io n s in tro d u ced in x - c a l c u l i and c a lle d c o n v e rs io n (most e x a c t ly : any f i n i t e sequence of these o p e ra tio n s i s c a lle d a con­ v e r s io n ) .

15 A. C h u r c h , o p . c i t . *6 A. T u r i n g , o p . c i t .

(6)

3) F ir s t - o r d e r p r e d ic a te lo g ic i s u n d e c id a b le 17. 18

4) Peano's a r ith m e tic i s u ndecidable

and so are f ir s t - o r d e r th e o r ie s of groups, r in g s , f i e l d s and la t - 19

t i c e s . Each of those cases employs th a t th e re i s no e f f e c t i v e method to decide whether any given form ula of a th eory i s v a lid or n o t. In terms of d e c id a b ilit y the s e t of theorems of a given th e o ry i s s a id t.o be r e c u r s iv e . I t becomes e v id e n t th a t i f we a d d it io n a lly in tro d u c e the n o tio n of r e c u r s iv e ly enumerable s e t as a s e t of v a lu es of a r e c u r s iv e fu n c tio n , then G ö d e l's F i r s t Theorem can be form u lated as fo llo w s :

5) The s e t of Gödel numbers of a r it h m e t ic a l theorems i s r e c u r ­ s i v e l y enumerable but is not r e c u r s iv e .

The thorough s tu d ie s on the d e c i d a b i l i t y problems based on the n o tio n of r e c u rs iv e n e s s ( t h i s b r i e f p re s e n ta tio n does not even mention a l l the s i g n i f i c a n t r e s u l t s ) d is c lo s e t h e ir s i m i l a r i t y to computer p r a c t ic e . On the one hand, the models of m athem atical machines c re a te d by Turing and Post (T u rin g machine and Post ma­ c h in e are e q u iv a le n t) are not in f a c t mechanisms but m athem atical con cep ts. Speaking p r e c is e ly , they are d e d u ctive system s: by means of form al tra n sfo rm a tio n made in accordance w ith the r u le s given in advance, they form new sequences of symbols out of the symbol sequences g iven in the in p u t. On the o th e r hand, however, i t is e v id e n t th a t today every r e a l l y e x is t in g computer can be reduced to Turing machine. From the t h e o r e t ic a l p o in t of vie w , Turing ma­ c h in e , and hence a ls o e v e ry computer can s o lv e any computable problem. C onsequently, the problems of d e c id a b le th e o r ie s can be reduced to some a p p ro p ria te computer p ro ced u res. Are the procedures th a t s o lv e the problems of d e c id a b le th e o r ie s f e a s ib le fo r compu­ t e r ? Th is q u estio n was of s p e c ia l a tt e n t io n in the t h ir d p e rio d .

3. P e rio d I I I . From what has been s ta te d above too h asty a co n c lu sio n can be in fe r r e d t h a t , as regard s the d e c id a b le th e o ry ,

A. C h u r c h , A Note on the Entscheidungsproblem , "The Jo u rn a l of Sym bolic L o g ic " 1936, v o l. I , pp. 40-41; C o r r e c tio n , ib i­ dem, pp. 101-102.

I Q

Ibidem . Church ob tain ed t h is r e s u l t having assumed C hurchi -Turing h yp o th e sis and c o n s is te n c y of a r it h m e t ic a l system .

19

See, e .g . A. T a r s k i , A . M o s t o w s k i , R. M. R o b i n s o n , op. c i t . : D. V a n 0 a 1 e n, op. c i t .

(7)

the q u estio n whether a form ula is v a l i d c r e a te s a t r i v i a l problem. However, t h is i s not the case s io c e d e c id a b le proced ures m a n ifest e v id e n t com putational com p lex ity as, fo r example, d e c id a b le theory of a r ith m e tic s w ith a d d itio n but w ith o u t m u lt ip lic a t io n . In 1974 F is c h e r and R a b in20 showed th a t in the case of elem entary th eory of a d d itio n , fo r every d e ciU a b le p roced ure, ' th e re can be s in g le dл П out a sentence of a le n g th n fo r which g iven procedure needs 2 step s in order to p ro v id e the answer. L e t us n o tic e th a t computa­ tio n in more than 22 step s is im p o ssib le ( i . e . , we sa y: i t is not p r a c t i c a l d e c i d a b i l i t y ) . S im ila r r e s u lt s were ach ieved in the theory o f lin e a r - o r d e r and the second-order weak theory w ith one s u c c e s o r21. Thus, what should be in e v it a b ly d e fin e d a t t h is mo­ ment, i s such a n o tio n of p r a c t i c a l d e c i d a b i l i t y , th a t would em­ brace the com putational com p lex ity of the p ro ce d u re s. T h e re fo re , i t is accepted th a t i f a fu n c tio n i s p r a c t i c a l l y c a lc u la b le then i t s com p u tation al com p lex ity is determ ined by the f a c t th a t the number of step s n ece ssa ry fo r producing the answer grows p o lin o m ia lly depending on to the le n g th of a in p u t word. C le a r y , i f t h is r e l a ­ tio n is ex p o n e n tia l the due fu n c tio n i s not com putable.

The s tu d ie s of the t h ir d p e rio d are not com pleted, t h e r e f o r e , i t is d i f f i c u l t to f o r e t e l l what r e s u l t s w i l l be o b ta in e d . However, i t is p o s s ib le to s p e c ify i t s o b je c t iv e : to c o n s tru c t new, i n t e r ­ e s t in g , p r a c t i c a l l y d e c id a b le t h e o r ie s .

4. C o n c lu s io n s . Each of the th re e p e rio d s has e s s e n tia lly the same n o tio n of d e c id a b le th e o ry : a theory is d e c id a b le i f a method which i s claimed tu be e f f e c t i v e s e t t l e s whether a form ula is v a l i d . Whereas what makes them vary i s caused by the f a c t , th a t they c o n c e n tra te on d i f f e r e n t problems con cern ing d e c i d a b i l i t y ; in the f i r s t , " i n t u i t i v e " p e rio d the s t r e s s was put on the d e c id a ­ b i l i t y of v a rio u s t h e o r ie s : the second m athem atical one managed to prove many elem entary th e o rie s to be u nd e cid ab le and b u i l t up a h ie r a rc h y of degrees of u n d e c id a b ilit y ; the t h ir d p e rio d , on the oth er hand, was marked by computable p r a c t ic e s and re s to re d d e c id a ­ b le th e o r ie s but from the p o in t of view of p r a c t i c a l l y r e a liz e d p ro c e d u re s .

20

J . M. F i s c h e r , M. 0. R a b i n , Super E x p o n e n tia l Com plexity of P r e s b u r g e r's A r it h m e tic , "SIAM AMS P ro c e e d in g s " 1974, No. 7, pp. 27-41.

(8)

In s p it e of the f a c t th a t the s tu d ie s on d e c id a b le th e o rie s are s t i l l making p ro g re s s , I th in k two t a c ts are worth m entioning:

1 °. The range of the problems connected w ith d e c i d a b i l i t y was s u c c e s s iv e ly reduced by every next p e rio d . I f the d e n o ta tio n of the concept of d e c id a b le theory (problem ) i s r e fe r e d to us D j, О ц , °j i i > fo llo w in g in c lu s io n is tru e :

° I 3 D1I 3 D1 I I

Les us, however, s tr e s s the p e c u la r it y of th a t in c lu s io n : Church-Turing Thesis s ta t e s the e q u iva le n ce between i n t u i t i v e c a l c u l a b i l i t y and m athem atical r e c u rs iv e n e s s , which cannot be en­ t i r e l y proved (alth o u g h i t i s obvious th a t every r e c u r s iv e fun c­ tio n is i n t u i t i v e l y C a lc u la b le ). In order to r e je c t the t h e s is , th e re must be p ointed out an i n t u i t i v e l y c a lc u la b le fu n c tio n which is a t the same time not r e c u r s iv e . The above reasoning d e a ls n atu ­ r a l l y w ith the concept of d e c id a b ilit y , and t h is f a c t is the source of an unexpected problem: we are not able to s in g le out such an element a, th a t a e Dj and a ť U j j , which would prove th a t Dj is in f a c t a g re a te r c la s s (a cc o rd in g to Church-Turing Th esis no such an element should be form ed). C la ss Dj j, on the o th er hand,

is e s s e n t ia lly g re a te r then c la s s O j j j i which is obviuus s in ce the s tu d ie s were lim ite d o n ly to p r a c t i c a l l y d e c id a b le th e o r ie s . H ere, however, a s e n s ib le p r a c t i c a l l y d e cid a b le theory can be h a rd ly appointed.

2 °. The problems of d e c id a b ilit y and the p r a c tic e are (e n ­ t i r e l y ) analogous; the former stem from the s tu d ie s on c a lc u la ­ tin g a lg o rith m s: they were combined w ith computer p r a c tic e in the second p e rio d , and d e a lt w ith the co n crete d e cid a b le th e o rie s and s o lv in g procedures in P e rio d I I I . The q u estio n can be put i f th ia analogy is r e a l l y c lo s e ? For the time being the answer is n e g a ti­ ve. The r e s u lt s of the s tu d ie s on p r a c t ic a l d e c id a b ilit y show th a t a lg o rith m s can be h a rd ly expected to be p r a c t i c a l l y r e a liz e d s in c e s o lv in g procedures are of too high com putational co m p lex ity. However, some alg o rith m s fo r d ata,fro m a f i n i t e s e t can be r e a l i ­ zed in p r a c t ic e . Th is i s an im portant f a c t in the s tu d ie s of au­ tom atic theorem p rovin g s in c e the p o s s i b i l i t i e s to form theorem,

(9)

p ro vin g procedures ( f o r a form ula of U n i t e d le n g th ) are not ex­ clu d ed .

U n iv e r s it y of Łódź Poland

Janusz Kaczmarek

TRZY POJĘCIA ROZSTRZYGALNOŚCI

W a r ty k u le dokonano k r ó t k i e j a n a liz y p o ję c ia r o z s trz y g a ln o ś c i w trz e c h k o le jn y c h okresach j e j rozw oju.

P ie rw sz y okres obejmuje la t a przed rokiem 1930, w k tó ry c h p ro ­ blemy ro z s trz y g a ln o ś c i u z y sk a ły w ła ściw e znaczen ie głów nie za s p ra ­ wą badaó związanych z programem H ilb e r t a . Okres d rug i obejmuje l a ­ ta t r z y d z ie s t e 1 c z t e r d z ie s t e . W yk o rzystu jąc rozm aite p o d e jś c ia , wypracowano wówczas ś c i s ł e , matematyczne p o ję c ie o b l i c z a l n o ś c i , co u m o ż liw iło p r z y ję c ie równie p r e c y z y jn e j d e f i n i c j i r o z s t r z y g a ln o ś c i. Z k o le i okres t r z e c i rozpoczyna s ię m niej w ię c e j od początku l a t s z e ś ć d z ie s ią ty c h , k ied y to w związku z procedurami możliwymi do realn eg o u rz e c z y w is tn ie n ia p o ja w iła s ię r e f l e k s j a nad p rak tycz n ą r o z s t r z y g a ln o ś c ią .

Cytaty

Powiązane dokumenty

The non-linear effects can be classified by the number of quasi-particles which participate in an elementary act. Raman scattering process is characterized

 or generalized disjunctions that can be build from the above formulas.. Sobocinski’s System

z or generalized disjunctions that can be build from the above formulas.. Sobociński’s System

1 There are many websites and web portals which offer an overview of virtual team collaboration tools or project management software solutions, such as:

The decidability of bisimi- larity for one-to-one labelled (or &#34;unlabelled&#34;) Petri nets is clear due to reducibil- ity of (prefix) language equivalence of these nets

Finally, two items on field computation are touched upon: the space-time-integrated field equations method of computation and the time-domain Cartesian coordinate stretching method

In this research questions related to the effectiveness of borax as promoter of sodium sulfate crystallization in bulk solution and to the possible effect of borax on lime

Globalization processes and increasing international economic integration seem to be changing the role of the nation-state: the nation state is gradually losing its