• Nie Znaleziono Wyników

L – decidability of some invariant systems.

N/A
N/A
Protected

Academic year: 2021

Share "L – decidability of some invariant systems."

Copied!
18
0
0

Pełen tekst

(1)

L – decidability of some invariant systems.

Robert Sochacki

University of Opole

(2)

Outline

Definition of the invariant system

System W

Sobocinski’s system

Remarks

(3)

Invariant systems

System (X, R) is an invariant system if:

, and

,

where the class of structural rules is:

] ))

( ),

( (

) , [(

: r h

h r

S At

e S

S Struct

r

e e

Struct R

X X

Sb( ) 

(4)

L-decidable systems

The system based on a set of rejection rules and a set of rejected axioms is called L-decidable if and only if the following conditions hold:

where T is the set of all theses,

T* is the set of all rejected formulas, and

S is the set of all formulas

S T

T II

T T

I

) (

) (

(5)

System W

The system W is defined by the following matrix:

where:

,1 , 1 , , , , 2

, 1

0 c k a

w

else

y or y

and x

y if x c

, 1

2) 0 1

( 1

, ) 0

, (

else

y and x

if y x y

x k

2, 1

2 1 2

), 1 , min(

) , (

else

y and x

if y x y

x a

2, 1

2 1 2

), 1 , max(

) , (

x x

1

(6)

System W – cont.

Consider the following functors:

q CCpqCApqKp q

p

F0 ( , )

,

qCpq ACCNpApqAp

q p

F ( , )

2

, 1

).

, ( )

,

( 0

1 p q F q p

F

(7)

System W – cont.

The following functions correspond to functors in the matrix Mw:

1 0

, 1

1 0

, ) 0

,

0(

y or x

if

y and x

y if x f

2 1 1

, 1

2 1 1

, 0 )

, (

2 1

y or x

if

y and x

if y

x f

0 1

, 1

0 1

, ) 0

,

1(

y or x

if

y and x

y if x f

(8)

Rejected axioms

The formulas:

or generalized disjunctions that can be build from the above formulas.

) , ( ),

, ( ),

,

( 1

2 1

0 p q F s r F t u

F

(9)

System W – cont.

The main theorem:

Let  be an arbitrary formula of the system W. If , then . T

T

(10)

Sobocinski’s system

The implicational-negational system of Sobocinski is given by the following

matrix:

where k>=3, and for

     

k k c n

n c

S,  0,1,2,..., 1 , 1,2,..., 1 , ,

y x

if k

y x

if y y

x

c 1,

) , , (

1 ,

0

1 ,

) 1

( if x k

k x

if x x

n

} 1 ,...,

1 , 0 {

, y k

x

(11)

Sobocinski’s system –cont.

Consider the following functors:

where for l>=1:

Cqq CpN

q p G

Cqq CpN

q p G

CpNCqq q

p G

k k

1 2

2 1

0

) , (

, ...

, )

, (

, )

, (

l

l NN

N

N N

1 1

(12)

Sobocinski’s system – cont.

The following functions correspond to functors in the matrix MSc,n:

………

0 ,

1

0 ,

) 0 ,

0(

x if k

x y if

x g

1 ,

1

1 ,

) 1 ,

1(

x if k

x y if

x g

1, 2

2 ,

) 2 ,

2(

k x if k

k x if y k

x gk

(13)

Sobocinski’s system – cont.

The negations of the functions defined on the previous slides:

………

0 ,

0

0 ,

)) 1 , ( ( 0

x if

x y if

x g n

1 ,

0

1 ,

)) 2 , ( ( 1

x if

x y if

x g n

0, 2

2 ,

)) 1 , ( ( 2

k x if

k x if y k

x g

n k

(14)

Sobocinski’s system – cont.

Now we can define the following functors:

) , ( )

, ( )

, ( ...

)...

, ( )

, ( )

, (

2 2

3

1 0

1

q p NG

p q CNG

p q CNG

p q CNG p

q CNG q

p F

k k

k k

. )...

, ( )

, ( ...

)...

, ( )

, ( )

, ( )

, (

2 3

1 0

1 2

q p NG

p q CNG

p q CNG p

q CNG q

p CF

q p F

k k

k k

) , ( )

, ( )...

, ( )

, ( )

,

( 1 2 1 2

0 p q CF p q CF p q CF p q NG p q

F k k k

), , ( )

, ( ) , ( ....

)...

, ( ) , ( )

, (

2 0

2

2 1

1

q p NG p q CNG q p CF

q p CF q p CF q p F

k k k

(15)

Sobocinski’s system – cont.

The following functions correspond to functors in the matrix MSc,n:

l y

or k

x if

k

l y

and k

x y if

x fl

2 ,

1

2 ,

) 0 ,

(

(16)

Sobocinski’s system – cont.

Now consider the following functor:

The following function corresponds to the functor in the matrix MSc,n:

).

, ( )

,

( p q CN 2CppCCqpNG0 p q AS

} 1 ,

0 { y

for x,

} , max{

) ,

(x y x y k

as

(17)

Rejected axioms

The formulas:

or

) , ( p q Fi

)) ,

( )),...),

, ( ),

, ( (

(A F r p F q s F u v

AS S i j t

(18)

Sobocinski’s System – cont.

The main theorem:

Let  be an arbitrary formula of the Sobocinski system.

If , then . T T

Cytaty

Powiązane dokumenty

z or generalized disjunctions that can be build from the above formulas.. Sobociński’s System

Math 3CI Even More about solving DiffyQ Symbolicallly Part IV In these problems you are pushed to develop some more symbolic tech- niques for solving ODE’s that extends the

The larger segment W is also a twisted square based prism, but the sections W t are obtained by rotating the base with angle velocity φ/2 over the t-interval [0, 2π/φ]... By

In this paper some algebraic results are given which allow distinguishing Reidemeister classes and hence computing the Reidemeister number of some maps.. Examples of computations

Fundamental rights, as guaranteed by the European Convention for the Protection of Human Rights and Fundamental Freedoms and as they result from the constitutional traditions

2 Sunny Hot High Strong No 3 Overcast Hot High Weak Yes 4 Rain Mild High Weak Yes 5 Rain Cold Normal Weak Yes 6 Rain Cold Normal Strong No 7 Overcast Cold Normal Strong Yes 8 Sunny

We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains.. This gives us the first example of

In the present note we concentrate our attention on the space of all bounded functions defined on a semigroup S and taking values in a normed space Y which has the binary