• Nie Znaleziono Wyników

Carbon Footprint indicator and the quality of energetic life

N/A
N/A
Protected

Academic year: 2021

Share "Carbon Footprint indicator and the quality of energetic life"

Copied!
20
0
0

Pełen tekst

(1)

Publishing House of Wrocław University of Economics Wrocław 2016

Quality of Life.

Human and Ecosystem Well-being

PRACE NAUKOWE

Uniwersytetu Ekonomicznego we Wrocławiu

RESEARCH PAPERS

of Wrocław University of Economics

(2)

Proof-reading:BarbaraŁopusiewicz  Typesetting:AdamDębski  Coverdesign:BeataDębska  Informationonsubmittingandreviewingpapersisavailableonwebsites: www.pracenaukowe.ue.wroc.pl www.wydawnictwo.ue.wroc.pl  ThepublicationisdistributedundertheCreativeCommonsAttribution3.0 Attribution-NonCommercial-NoderivsCCBY-NC-ND  © CopyrightbyWrocławUniversityofEconomics Wrocław2016 ISSN 1899-3192 e-ISSN 2392-0041 ISBN 978-83-7695-590-2 Theoriginalversion:printed PublicationmaybeorderedinPublishingHouse WydawnictwoUniwersytetuEkonomicznegoweWrocławiu ul.Komandorska118/120,53-345Wrocław tel./fax713680602;e-mail:econbook@ue.wroc.pl www.ksiegarnia.ue.wroc.pl  Drukioprawa:TOTEM

(3)

Contents

Introduction...  7

Ewa Frątczak, Teresa Słaby: Lifecourse–paradigmshift–qualityoflife.

Atthemeetingpointofsocialsciencesandmanagement/Cyklżycia– zmianaparadygmatu–jakośćżycia.Nastykunaukspołecznychizarzą-dzania... 9

Jerzy Śleszyński: HumanDevelopmentIndexrevisited/Nowespojrzeniena

WskaźnikRozwojuSpołecznego...  40

Hanna Dudek, Wiesław Szczesny: Subjectiveperceptionofqualityoflife–

multidimensionalanalysisbasedonthefuzzysetsapproach/Subiektyw-nepostrzeganiejakościżycia–wielowymiarowaanalizanapodstawie podejściawykorzystującegozbioryrozmyte...  55

Anna Sączewska-Piotrowska:

ClustersofpovertyinPoland/Klastryubó-stwaPolsce...  69

Teresa Słaby: Thequalityoflifeoftheaboriginalruralpeople60+inPoland.

Selectedresearchresults,2014/Jakośćżyciardzennychmieszkańcówwsi wwieku60+wPolsce.Wybranerezultatybadań,2014...  84

Katarzyna Ostasiewicz, Adam Zawadzki:  Students’ expectations about

futurejobsasafactorinfluencingtheirqualityoflife/Oczekiwaniastu-dentów odnośnie przyszłej pracy jako czynnik wpływający na jakość życia...  98

Krzysztof Szwarc: Wheredothehappiestchildrenlive?TheSWBofschool

childreninEurope/Gdzieżyjąnajszczęśliwszedzieci?Jakośćżyciadzie-ciwwiekuszkolnymwEuropie...  112

Alena Kascakova, Luboslava Kubisova:  Social and economic potential

of silver population in Slovakia / Społeczny i ekonomiczny potencjał seniorównaSłowacji...  125

Karina Frączek, Jerzy Śleszyński:  Carbon Footprint indicator and the

qualityofenergeticlife/Śladwęglowyaenergetycznajakośćżycia...  136

Michał Pająk: Naturaldynamicsofcommon-poolresourcesinexperimental

research−currentstateandprospects/Naturalnadynamikawspólnych zasobówwbadaniacheksperymentalnych–obecnebadaniaiperspekty-wy...  152

Maria Zuba-Ciszewska: Thecontributionofthecooperativemovementto

theCSRidea–theaspectofethicalresponsibility/Wkładideispółdziel-czościwkoncepcjęCSR‒wymiarodpowiedzialnościetycznej...  163

(4)

OnSeptember21-22,2015,6thInternationalScientificConference“QualityofLife 2015.HumanandEcosystemsWell-being”washeldinWrocław. Theconferencewasapartofthecycleoftheconferencesonthetopicofquality oflifethathavebeenorganizedbytheDepartmentofStatistics(WrocławUniversity ofEconomics)since1999.Theaimofthecycleistoparticipateinthestillrising alloverthewordwaveofscientificstudiesonqualityoflife:ethicalbackground anddefinitionsofqualityoflife,investigating(howtomeasureit),presentingthe resultsofdifferencesofqualityoflifeovertimeandspace,itsinterdependences with natural environment, mathematical methods useful for the methodology ofmeasuringqualityoflifeandfinally–possiblemethodsofimprovingit.The conferencesaremeanttointegratethePolishscientificcommunitydoingresearch onthesetopicsaswellastomakecontactswithforeignscientists.

ThisyearourhonoraryguestwasProfessorFilomenaMaggino,pastPresident of International Society for Quality-of-Life Studies (ISQOLS), who presented aplenarylecture. Wehostedabout30participants,amongthemscientistsfromSpain,Romania, ItalyandJapan.Wehad24lecturesonsuchavarietyoftopicsascarbonfootprint andmathematicalpropertiesofsomeestimators.Thecommonbackgroundofall ofthemwastobettercomprehend,measureandpossiblytoimprovethequalityof humans’life. Thepresentvolumecontainstheextendedversionsofsomeselectedlectures presented during the conference. We wish to thank all of the participants of the conference for co-creating very inspiring character of this meeting, stimulating productivediscussionsandresultinginsomepotentiallyfruitfulcooperationover new research problems. We wish also to thank the authors for their prolonged cooperationinpreparingthisvolume,thereviewersfortheirhardworkandformany valuable,althoughanonymous,suggestionsthathelpedsomeofustoimprovetheir works.

Finally, we wish to thank the members of the Editorial Office of Wrocław University of Economics for their hard work while preparing the edition of this volume,continuouskindnessandhelpfulnessexceedingtheirdutiesofthejob.

(5)

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU

RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 435 ● 2016

Quality of Life. Human and Ecosystem Well-being ISSN 1899-3192 e-ISSN 2392-0041

Karina Frączek, Jerzy Śleszyński

UniversityofWarsaw,FacultyofEconomicSciences e-mail:sleszynski@wne.uw.edu.pl

CARBON FOOTPRINT INDICATOR

AND THE QUALITY OF ENERGETIC LIFE

ŚLAD WĘGLOWY A ENERGETYCZNA JAKOŚĆ ŻYCIA

DOI:10.15611/pn.2016.435.09 Summary: ThepaperpresentsmethodologyofCarbonFootprintindicatorinthecontextof sustainabledevelopment.IntroductiontoCarbonFootprintcalculationissupplementedby anempiricalanalysisofthisindicator.CasestudyconcernstheFacultyofChemistryatthe UniversityofWarsaw.Theanalysisofthispublicbuildingfollowsthegeneralguidelinesof ISOstandardandtakesintoaccountdirectandindirectCO2emissions.Thefinaloutcomeof thisstudyisashort-listofundertakingswhicharenecessarytoimprovetheefficientuseof energyinthefaculty.ConclusionstendtoevaluateCarbonFootprintandthestrengthsand weaknessesofthisindicatorarebrieflydiscussed. Keywords:CarbonFootprint,sustainabledevelopment,energyefficiency.

Streszczenie: Artykuł przedstawia metodykę wskaźnika śladu węglowego (Carbon

Footprint)wkontekścierozwojutrwałegoizrównoważonego.Wprowadzeniedorachunku śladu węglowego zostało poprzedzone przypomnieniem wskaźników proponowanych do ocenyrozwojutrwałegoizrównoważonego,zeszczególnymuwzględnieniemwskaźników syntetycznychześlademekologicznym(EcologicalFootprint)naczele.Omówieniemetodyki śladuwęglowegozostałouzupełnioneempirycznąanalizątegowskaźnika.Studiumprzypadku dotyczyWydziałuChemiiUniwersytetuWarszawskiego.Analizategobudynkubierzepod uwagęwytycznestandarduISOiuwzględniabezpośrednieorazpośrednieemisjedwutlenku węgla.Wynikiembadaniajestskróconalistazalecanychprzedsięwzięć,którychrealizacja poprawiłaby efektywność użytkowania energii w tym budynku. Podsumowanie skupia się na ocenie silnych i słabych stron omawianego miernika. Sformułowane rekomendacje podkreślają ograniczenia wskaźnika, ale wskazują uzasadnione i korzystne sposoby jego wykorzystywaniawpraktyce.

(6)

1. Introduction

Theconceptofsustainabledevelopmenthasresultedfrompolitical,ideologicaland culturalchangeswhichtookplaceattheturnofthe1960’sand70’s.Theoriginand developmentofthesustainabledevelopmentconceptmaybeviewedasanattemptto findacompromisebetweenthedesiretocontinuesocio-economicdevelopmentand thenecessitytoconsiderlimitstogrowthseriously.Inthecourseofevolution,the sustainabledevelopmentconcepttransformedfromapoliticalslogantothestrategy forrealaction.Atpresent,sustainabledevelopmentisbecominganindispensable elementofvariousstrategicdevelopmentalprogramsontheglobal,national,regional andalsoonthelocalscale.Conceptualaspectsofsustainabledevelopmentcanbe foundinthepolicyframeworkoftransnationalorganizationssuchastheUNandthe EuropeanUnionandinthenationalpolicypackagesofthemostdevelopedcountries. SustainabledevelopmentisbasedontheideaspropagatedbytheReportofthe UNCommitteeontheEnvironmentandDevelopmentfrom1987,morecommonly knownas“TheBrundtlandReport”.Inaddition,theconcepthasbeendevelopedin someotherbasicprogramdocumentssuchas“Agenda21”publishedbytheUnited Nationsin1992.Thefollowingdefinitionofsustainabledevelopmentisacceptable inbroadterms:“Anationisachievingsustainabledevelopmentifitisundergoinga patternofdevelopmentthatimprovesthetotalqualityoflifeofeverycitizen,both nowandintothefuture,whileensuringitsrateofresourcesusedoesnotexceedthe regenerativeandwasteassimilativecapacitiesofthenaturalenvironment”[Lawn 2006]. Basically,theconceptsaysthateconomy,society,andenvironmentarethree indispensablepillarsofsustainabledevelopment.Moreover,threemajorspheresof our life should be integrated in one policy-making context and, in particular, in decision-makingprocesssupportingthreefollowingstrategies:

• economicdevelopmentincreasingthe“real”welfareandqualityoflife, • improvingenvironmentalqualityandrationaluseofnaturalresources,

• ensuring social equity (also with regard to future generations) and building democraticinstitutions.

It implies that the global community but also each nation should safeguard thesurvivalofthebiosphereandallitsevolvingprocesseswhilerecognizingand analyzingcomplicatedinterrelationshipsbetweeneconomicdevelopmentandsocial problems, and their natural environment. Thus, sustainable development needs quantitativeassessmentandpermanentmonitoring.However,thisisnoteasybecause sustainabledevelopmentitselfisamultidimensionalandmultifactorphenomenon. The following typology of sustainability indicators takes into account the way indicators can be calculated and the fact who is their potential user [Śleszyński 2000]:

1. Structuralindicators‒asetofselectedindividualindicatorsaddressingsi-

(7)

multaneouslyeconomy,environment,andsociety;theycanrefertoindustrialsec-138 KarinaFrączek,JerzyŚleszyński tors,orregions,oradministrativelevels,orenvironmentalmedia,ornaturalresour-cesselectedforamorecarefulinvestigation. 2. Syntheticindicators‒sometimescalledsingle-numberbecauselikeabaro-metertheypretendtosynthesizeinonenumbereconomic,environmental,andsocial aspects;someofthemcommentmorepreciselyenvironmentalimpact,andsome otherarefocusedoneconomicwelfareorsocialwell-being. 3. Indicatorsforlocalcommunities‒asetofindicatorsselectedoriginallyfora definedlocallevel;theyarespecificforthelocallevelofmonitoringand,therefore, allowforlocalpartiesparticipation,andtakeintoaccountlocalaspirationsandpar-ticularlocalpriorities. Someofthesyntheticindicatorsaremeasuredinmonetaryvaluesandsome others are measured in physical units [Śleszyński 2013]. Synthetic indicators in monetarytermsarequitewellfoundedintheeconomicneoclassicaltheory:Indexof SustainableEconomicWelfare,GenuineProgressIndicator,GenuineSavings.Non-monetarysyntheticindicatorsaretheanswertothecrucialquestionofenvironmental resilienceandcapacitywhichareimportantaspectsofsustainabilityadoptedfrom thedefinitionofsustainabledevelopment.Themostpopularindicatorsrepresented in physical units are: Total Material Requirement, Human Appropriation of Net PrimaryProduction,andmanifoldfootprintindicators. EcologicalFootprint(wewillcontinueusingtheabbreviatedformofEF)being somethinglike“footprint”traceleftintheenvironmentbyahumanbeing’sfootis suchasyntheticindicator.Physicalamount‒inthecaseofEFitistheamountofland surface‒isusedfortheassessmentofnaturalresourcesmanagement.EFhasbeen definedbythecreatorsofthisconcept,WackernagelandRees,as“thetotalarea ofbiologicallyproductivesoilsurface(includingthesea)necessarytocompromise consumptionneedsofagivenpopulationandtoassimilatewastegeneratedbythis population” [Rees, Wackernagel 1994; Wackernagel 1994; Borgström Hansson, Wackernagel1999].Everyeconomicactivityhasanimpactontheglobalecosystem becauseitusestheresourcesandservicestakenawayfromthenaturalenvironment. EFcanbeestimatedthroughtherecalculationofbasiceconomicactivitiesmotivated bycompromisinghumanneedsintoecologicalfunctionsexpressedintermsofthe biologicallyactiveareaandconfrontedwithactuallyavailablenaturalarea. PublicationofEFconceptinitiatedworldwideresearchonsimilarsustainability indicators. All footprint indicators can be regarded as a specific environmental pressureindicator.Asamatteroffact,footprintingisnowastandardmethodto measureanthropogenicpressuredamagingsustainabilityoftheenvironment.

In particular, a family of footprint-indicators includes also Carbon Footprint which measures our contribution to the greenhouse effect. Carbon Footprint is definedasthetotalamountofgreenhousegasesproducedtodirectlyandindirectly support certain human activities, usually expressed in equivalent tons of CO2 (carbondioxide).Inotherwords,CarbonFootprintisthesumofallemissionsof CO2whichwereinducedbysomebody’sactivitiesinagiventimeframe.Usually, CarbonFootprintiscalculatedforthetimeperiodofayear.

(8)

Energy efficiency is important for the economy and saves the environment. Nodoubtsthatitisoneofournationalpolicypriorities.Energyefficiencyisalso mentionedinmanyUNandEUdocumentsonstrategicadaptationtotheclimate change. Publications identify industries that emit the most and suggest adaptive activitiescontributingtothereductionofGHGemissionsthankstomoreeconomic useofenergy.ControllingGHGemissionsinbigcities,andfirstofallcontrolling emissions from public buildings, belongs right now to the most advisable and requiredEUstrategies.Inaddition,improvingenergyefficiencyisstillthecheapest optionamongtoolsavailableinPolandthatcanbeappliedtoworkforreducing GHGemissions. Inthispaper,CarbonFootprintwasappliedtotheassessmentofenergyefficiency ofonepublicbuilding:FacultyofChemistryattheUniversityofWarsaw.Thispre-warbuilding,whichisthepresentseatofChemistry,wascarefullyanalyzedand collecteddataallowedforthecalculationofCarbonFootprint.Inaddition,Carbon Footprint results for Faculty of Chemistry were compared to Carbon Footprint indicatorsforsomeotherpublicbuildingsinWarsawandabroad.Theresultsofthis studyhelpedtorevealthecurrentenergylossesintheFacultyandalsotolistactions thatcouldimprovetheefficientuseofenergy.

2. Carbon Footprint

TheconceptofCarbonFootprint(wewillcontinueusingtheabbreviatedformof CF)wasestablishedin2005duringthedebateonthemonitoringofGHGemissions. ItisusedfortheanalysisofGHGemissionsfromtheperspectiveoftheconsumer and the producer. CF was promoted mostly by private initiatives, NGOs and corporations,andmuchlessbythescientificcommunity.Thishasledtoalarge varietyofdefinitionsandmethodsofcalculation.Forthefirsttimeitwasusedinthe pressin2000.Fiveyearslater,theBritishcompanyBritishPetroleumlauncheda majorcampaigntopromotethisindicator.Thefirstmentioninthescientificliterature onthesubjectappearedinalettertothejournal“Nature”in2007[Hammond2007]. Carbondioxideisagreenhousegascausingglobalwarming.Othergreenhouse gaseswhichmightbeemittedasaresultofone’sactivitiesaree.g.methaneandozone. ThesegreenhousegasesarenormallyalsotakenintoaccountforCF[Aryen,Ertug 2012].TheyareconvertedintotheamountofCO2thatwouldcausethesameeffects onglobalwarming(thisconversionispossiblebecauseofthecoefficientcalledCO2 equivalent).CFcanmeasurethevolumeofallgreenhousegasesemissionsorjust thevolumeofCO2emissionsonly.Inthenextstepallassessedemissionsareadded toformfinalCF. CFcanbecalculatedandpresentedinmanyvariants.CFcancalculateemissions perunitofproductionorconsumption,peroneproduct,persingleserviceorprocess, orpercapita.Fewpeopleexpresstheircarbonfootprintinkgcarbonratherthankg

(9)

140 KarinaFrączek,JerzyŚleszyński

carbondioxide.However,onekgofcarbondioxidecanalwaysbeconvertedinkg carbonbymultiplyingwithafactor0.27(e.g.1000kgCO2equals270kgcarbon).

The best way is to calculate the carbon dioxide emissions based on the fuel consumption. In most cases, calculation of CF employs emission coefficients. MostanalysesofCFarebasedontheglobaldataonaverageemissionperunitof product.InPoland,inordertostandardizethemethodofestimatingthereductionor avoidanceofgreenhousegasemissions,thereferencecarbondioxideemissionrate forelectricityproductionhasbeendeveloped.Theemissionrateaccordingtothe NationalCentreforEmissionsBalancingandManagementis:0.812MgCO2/MWh [KOBiZE2011].WhatsimplifiestheCFmethodisthatthespecificityofcalculation makestheplaceandthecourseofemissionsirrelevant.Thekeyvariableconsidered byCFistheamountofgasesemittedintotheatmosphere.

The scope of the analysis can be defined in three different ways. The first optionistotakeintoaccountonlydirectemissionsthatarecreatedatthesource belongingtoaparticularentity(furnaces,boilers,cars,etc.).Thesecondapproach allowscalculationstobecarriedoutonthebasisofdataonemissionsaccompanying energyusedbytheentity(thisisthecaseofelectricityuse).The third option includes alsootherindirectemissionsthataretheresultoftheactivitiesoftheentitybut theemittersresponsibleforthemdonotbelongdirectlytotheentity(e.g.external incinerationofwaste). ThemostcompleteassessmentofCFassessmentshouldincorporateLifeCycle Analysis.“ThePublicityAvailableSpecification2050”[Sinden2009]‒publication createdbytheBritishinstitutionofstandardizationwasoneofthefirstsuchworks andwaspublishedin2008andupdatedinthreeyears.Itregulatedthemethodfor calculating CF of the product by taking into account the entire life cycle of the product.

Otherwidelyusedmethodsaredescribedinthe“Protocolgasesgreenhouse” setupbytheWorldResourcesInstituteandwiththeWorldBusinessCouncilfor Sustainable Development [2016]. International Organization for Standardization alsoestablisheditsownISOstandard,namely:ISO/TS14067:2013[ISO,2013]. ThemethodsusedforCFcalculationcanbedividedintothreegroupsaccording tothesourcesofinformationandtheirelaboration: 1. Bottom-upisthefirstwaybasedfullyonthelifecycle,Thisapproachisde-signedtocalculatetheemissionsassociatedwiththeproduct“fromthecradletothe grave”.Thus,itismainlyusedfortheanalysisofindividualitems,suchascompu-ters,newspapersorcars.Theresultsobtainedbythismethodofcalculationarethe mostpreciseandaccurate. 2. Thetop-downapproachisgenerallyusedtodetermineCFforsectors,re-gions,citiesandcountries.ThepredominantmethodisEnvironmentallyExtended Input-Output Analysis, which brings together all of the environmental elements introduced into the system and final products. It shows the interdependence and

(10)

connectionsbetweensectors.Italsoincludesdataonimports,exportsandfinalcon-sumptioninformationinthesite.Duetothelargescopeoftheanalysisitisfraught withconsiderableriskoferrorandismuchlessaccuratethanbottom-up. 3. Inthehybridapproach,dataonthemostbasicemissionsarecollectedusing themethodoflifecycle,whileintermediatevaluesareobtainedusinganinput-out-putmatrix. Thus,thepotentialroleofCFassessmentiscrucial.Firstofall,eachnewestimate assessing CF contributes to the monitoring of climate change. CF methodology providesdataforaguidanceapplicationforlocal,regionalornationalclimatepolicy. CFbaseduponLifeCycleAnalysisbutalsoadirectevaluationofCFcansuggest whereandhowtheimprovementofenergyefficiencywouldbepossibleorrequired. To sum up, footprinting carbon emissions is a very powerful tool to understand theimpactofpersonalbehavioraswellastheimpactofsocio-economicsystemon globalwarming.

The main influence on CF magnitude includes population, economic output, andenergyandcarbonintensityoftheeconomy.Thesefactorsarethemaintargets ofindividuals,businessesandpoliticiansdeterminedtodecreaseGHGemission. ScientistssuggestthemosteffectivewaytodecreaseCFbyeitherdecreasingthe amountofenergyneededforproductionordecreasingthedependenceoncarbon emittingfuels.

3. Faculty of Chemistry at the University of Warsaw

TheobjectselectedforthecasestudywasthebuildingoftheFacultyofChemistry, which is located on Pasteur Street in Warsaw and belongs to the University of Warsaw1.OnJune231939,thefinishedbuildingwasputintooperation.Thebuilding

wasmadeusingtraditionaltechnology.Externalwallsaremadeofclayandceramic bricks,floorsaremadeofreinforcedconcrete,flatroofisventilated.Basictechnical dataonthemainbuildingoftheFacultyofChemistryare:buildingarea4481.60m2,

usableareaof17700.90m2,volume63658m3,theheightof13.05m,3floorsabove

groundandoneundergroundfloor. Thescopeoftheanalysisincludeddataoninternalemissionsproducedwithin thebuilding(heat)aswellasdataonexternalemissionsaccompanyingproduction energyusedbythebuildingandexternalemissionsemergingoutsideasaresultof theFaculty’swastedisposal.Thisallowedtodeterminewhatairemissionswere linkedtotheoperationoftheFacultyofChemistryofWarsawUniversity. RWE,whoisthesupplierofelectricity,buyselectricityonthepowerexchange andthensellsanddeliversittotheconsumer.Thatmeansthattheenergyusedby thebuildingcamefrommanysourcesandpointingoutoneproducerandplaceof 1 MoreadvancedpresentationofCFmethodologycanbefoundin[Frączek2014],andmore detaileddescriptionoftheFacultyofChemistryanddevelopedcasestudyisavailableinthepaper acceptedforpublication[Frączek,Śleszyński2015].

(11)

142 KarinaFrączek,JerzyŚleszyński emissionwasimpossible.Regardingwaste,itwasproducedontheterritoryofthe FacultyofChemistryandthendisposedsomewhereelse. Dataincludedintheanalysisarethefollowing: 1. Totalconsumptionofelectricity. 2. Totalconsumptionofnaturalgas. 3. Waste,dividedintwogroups:municipalsolidwasteandlaboratorywaste. Inthisparticularassessmentofcarbonemissions,tripsoftheemployeesofthe Facultyaswellasstudents’werenottakenintoconsideration.Thesamedecision appliedtocommutingtoandfromtheworkplaceforbothgroups.Itwascausedby thedifficultyingatheringdatamandatoryforareliableanddetailedcalculation.

The Municipal Cleaning Company (MPO) received municipal solid waste producedbythebuildingwhileREMONDISandEKOHarpoonwereresponsiblefor thetreatmentofhazardouschemicalwastesinawaythatminimizedtheirnegative impactontheenvironmentwhilemaximizingretrievalofrawmaterials.Organic liquidwastewithandwithouthalogens(liquidorganic,water-organicliquidand liquidhalogen)wererecycledandwereusefulforre-solventrecovery.Otherwastes weresubjectedtothermalliquidation. Table 1. TechnicaldataconcerningenergyuseintheFacultyofChemistry Datausedinanalysis Value Totalelectricityconsumtion 2860MWh Totalgasconsumption 292915m³ Numberofstudents 650people Numberofemployees 294people Municipalwasteproduced ca.705.6m³ Mixedmunicipalwaste ca.540m³ Paper ca.66m³ Plastic ca.66m³ Glass ca.33.6m³ Wastederivedfromlaboratory 3963kg including: Liquidorganiccompounds 170kg Liquidorganicwithchlorcompounds 30kg Organicliquidcompounds 935kg Inorganicliquidcompoundswithchlor 1085.5kg Liquidhalogencompounds 497kg Liquidheavymetalsalts 30kg Solid(bothorganicandinorganic) 1215.5kg

Source:author’s own elaboration based on information from the Administration of the Faculty ofChemistry.

(12)

4. Calculation of Carbon Footprint

TherearethreebasicvariantsoftheCFcalculationasfarasemissionconnectedto electricityisconcerned.Thefirstonetakesintoaccountemissioncoefficientgiven bytheNationalCenterforBalancingandManagementofEmissions(KOBiZE)that equals812kgCO2/MWh.Itcanbeonlyappliedtocarbondioxideemission.This

variant is used in most of the CF estimations. The second way of calculations involvesusingdatapresentedbythedistributor,inthiscaseitwouldbeRWE.The thirdandthelastmethod,whichcanbeusedincalculations,isbasedonthedocument “EnergyPolicyofPolanduntil2030”(2009:26).Thisdocumentwaspassedbythe CouncilofMinistersin2009.Thecoefficientofemissiongivenbythedocumentis thehighestandequals950CO2/MWh. ElectricityasasourceofCO2emissionpresentedinallthreevariants:

• Ivariant:2860MWh×812kgCO2/MWh=2322320kgCO2=2322.32MgCO2. • IIvariant:2860MWh×731.533kgCO2/MWh=2092184.38kgCO2=2092.18 MgCO2. • IIIvariant:2860MWh×950kgCO2/MWh=2717000kgCO2=2717.00Mg CO2. Thethirdsolutionseemedtobethemostappropriatebecauseitwasbasedonthe principlesdescribedinISO14001,whichisthenormthatstandardizesenvironmental managementininstitutionsandiscommonlyusedinenvironmentaldeclarations. ThethirdestimatewasalsoappliedtofurtheranalysisofCFinthispaper. Asfarasthermalenergyisconcerned,thedatashouldbebasedontheamountof naturalgasboughtin2013bytheAdministrationofthebuilding.Thenextstepwas tocalculatetheemissionwiththeuseofcalorificvaluespecifictothisfuel. ThermalenergyasasourceofCO2emission: • 292915m3×0.0344GJ/m3=10076,28GJ;andnext

10076.28GJ×55.82kgCO2/GJ=562457.95kgCO2=562.46MgCO2.

Emissionsthatweretheoutcomeofthewastetreatment,whichwasconnected withChemistryFacultyactivity,wascalculatedinasimilarway.Thequantityof differenttypeofwastewasconvertedintoenergyoutcomewiththeuseofspecific coefficients. The next and final step was to calculate emission which would be inevitable in the incineration process. This method was not perfect because not everycompoundemittedintheprocesswastakenintoaccount.Thisomissionswere duetothefactthattherewerenoreliabledatadescribingtheamountofcompounds otherthanCO2(e.g.ammonium).

There was also one facilitating assumption in the analysis presented below. TheFacultyofChemistryseparatedplasticwaste(66m3)accordingtoitstype,so

mechanicalandchemicalrecyclingofplasticwouldbepossible.Onfurtherstages containerswerecleaned,granulatedandusedinsuchindustriesas:energy,cement andlimeindustry,andpackagingindustry.Thereforetheemissionscreatedduring thisstepwerepartofanotherinstitution’scarbonfootprintandwerenotconsidered

(13)

144 KarinaFrączek,JerzyŚleszyński

inthiswork[Terebuła-Fertak2014].Asforglasswaste(33,6m3),smeltingglass

cullet needed very high temperature (not less than 1500°C). Such a temperature wasthereasonwhyemissionsassociatedwiththisprocessdidnotbelongtosix compoundslistedintheKyotoprotocol.Whatwasmore,emissionscombinedwith furnaceoperationwerepartofanotherinstitution’scarbonfootprint.Thatiswhy plasticandglasswastewasnottakenintoaccountinthisanalysis. WasteasasourceofCO2emission: • Mixed:540m3×42.2kg/m3=22788kg=22.788Mg;next22.788Mg×3GJ/ Mg=68.364GJ;andfinally68.364GJ×98kgCO2/GJ=6699.672kgCO 2 = 6.699672MgCO2~6.70MgCO2. • Paper:66m3×15.2kg/m3=1003.2kg=1.0032Mg;next1.0032Mg×11GJ/ Mg=11.0352GJ;andfinally11.0352GJ×140.14kgCO2/GJ=1546.472928kg CO2=1.546472928MgCO2~1.54MgCO2. • Hazardouswaste[Matlak2014]:3963kg=3.963Mg×18GJ/Mg=71.334GJ; finally71.334GJ×140.14kgCO2/GJ=9996.74676kgCO2=9.99674676Mg CO2~10MgCO2. Finally,itwaspossibletoaddtogetherCO2emissionsstemmingfromallthree origins:electricityconsumption,naturalgasusedintheheatingsystemandwaste incineration.ThetotalemissionofCO2fortheyear2013was:3297.70MgCO2. Therefore, CF per one student was 5.07 Mg CO2, and CF per one person in the building(studentsplusemployees)3.49MgCO2.Analogouscalculationswerealso madefortwoyearspriorto2013:2011and2012.Thankstotheexpandedfieldof analysistheresultsofincidentalCFcalculationcanbebetteranalyzedinthenext section.

5. Analysis of results

Theanalysisoftheinputdatashowthatthemostsignificantemissionsconnected with the Faculty of Chemistry resulted from electricity intake (82.39%) and the consumptionofnaturalgas(1706%).Theystandfor99.45%ofthewholeemission. Gasconsumptioncanbedividedintothreedifferentpurposes:waterheating(circa 11%),laboratorywork(circa4%),andheatinginsidethebuilding(circa85%). ThesourcesofCO2emissionscreatedaclearstructuredominatedbytheenergy consumedbytheFacultyofChemistryintheformofelectricity.Thisisshownin Figure1. Theanalysisofthecollecteddatashowedthatthemostsignificantemissions connectedwiththeFacultyofChemistryresultedfromelectricityintake(82.39%) andtheconsumptionofnaturalgas(17.06%).Theystandfor99.45%ofthewhole emissions. Gas consumption can be divided into three different purposes: water heating (circa 11%), laboratory work (circa 4%), and heating inside the building (circa85%).

(14)

2717 562.46 1.54 10 Energy Natural gas Mixed wastes Paper Chemical waste 6.7

Figure 1. ThestructureofCO2emissions[MgCO2]fortheFacultyofChemistryfortheyear2013

Source:authors’ own elaboration based on information from theAdministration of the Faculty of Chemistry. Itisclearthattheelectricityhadthebiggestshareincarbonfootprint.Thisis duethefactthatenergeticmixinPolandconsistsmainlyfromhardcoal.Knowing that,itiseasytodrawinadvanceasimplestconclusionthatminimizingenergy consumptionisthemosteffectivewaytodecreaseCFoftheFaculty. 3.49 2.22 2.05 0 0,5 1 1,5 2 2,5 3 3,5 4 2011 2012 2013 Figure 2. CarbonFootprint(MgCO2)percapitaoftheFacultyofChemistry Source:authors’ownelaborationbasedon[Frączek,Śleszyński2015]. Duringthreeyears:2011,2012and2013,theenergyusepresentedanupwards trend.In2012CFbasedonlyonpowerwas8%higherthantheyearbefore,whilein 2013itwas57%higher.Thisstrongtrendcanbeanoutcomeofconstantdemandfor purchasingnewequipmentforlaboratoriesandtheircoolingappliances.

(15)

146 KarinaFrączek,JerzyŚleszyński Carbon footprint per capita [Mg CO2]

Carbon footprint [Mg CO2]

Faculty of Chemistry Ministry of Environment Institute of Meteorology and Water Management

Faculty of Chemistry Ministry of Environment Institute of Meteorology and Water Management

Figure 3. CFandCFpercapitaforthreepublicbuildingsinWarsaw

Source:author’sownelaborationbasedon“EnvironmentalDeclarations”[InstituteofMeteorology andWaterManagement2013;MinistryofEnvironment2014].

The isolated results of CF calculation presented above were not sufficient to estimatethemagnitudeofactualenvironmentalimpactoftheexaminedbuilding.

(16)

Therefore,CFestimatesfortheFacultybuildinghadtobecomparedwithsome otherexistingthematicstudiesfocusedonpublicbuildingsandestimatingtheirCF. Inparticular,theFacultyofChemistry,theMinistryoftheEnvironment,and the Institute of Meteorology and Water Management National Research Institute werecomparedtosomeextend.Thefirsttwoinstitutionsarelocatedinbuildings whichwerebuiltduringtheinterwar-period(the1930s)whilethelastoneoccupies abuildingbuiltbetween1955-64.Therearesignificantdifferencesincapacitiesof thebuildings(ChemicalFaculty‒63658m3;MinistryofEnvironment‒102000m3; IMGW-PIB‒61175m3).Itisalsoimportantthat55residentialapartmentssituated intheMinistryoftheEnvironmentwillnotbetakenintoaccountintheanalysis. Thebuildingscomparedinthispaperareusedfordifferentprofessional,scientific andtechnicalpurposes.Forinstance,theFacultyofChemistrycarriesoutresearch with the use of specialized equipment, while the Ministry undertakes activities whicharestrictlyadministrative.InstituteofMeteorologyandWaterManagement NationalResearchInstituteconductbothscientificandadministrativework.

Whilecomparingbuildingsitwascrucialtodistinguishtheirdemandforusable, primary,andfinalenergy.Thedefinitionstatesthatusableenergyisdirectlyused, whilefinalenergyisdeliveredtothebuilding.Anylossescausedbyinstallations’ efficiency were taken into consideration in the second type of energy. Primary energyalsoincludedlossescausedbyenergyproductionandtypeofenergycarrier. DataavailablefortheChemistryFacultyandtheMinistryofEnvironmentshowed adifferencebetweenfinalenergydemandforbothinstitutions.Thiswascausedby thetypeofactivitiesheldinbothinstitutions.

The figures (Figure 3) show interdependencies between the form of activity undertakenbytheinstitutionandtheamountofemissionsofCO2.However,the assessment of CF per capita for all three buildings was quite similar. It may be surprising, but CF per person estimated for the Faculty was similar to values calculatedfortheMinistry.Itcanbecausedbythedifferencesinamountofpeople stayingonthepremisesofthoseinstitutions(Ministry‒482employees,Chemistry Faculty‒994employeesandstudents,IMGW‒536employees).

NextsectioncomparestheFacultyofChemistryandtheFacultyofEnvironmental Sciences at the University of Science and Technology (NTNU) in Trondheim, Norway.Nevertheless,somemajordifferencesinassessmentmethodsusedshould bepointedout.TheNTNUissituatedinTrondheim,wheremostofthetownspeople arestudents.Thereareslightlymorethan20000studentsand5500employeeson 7differentfaculties.In2005anenvironmentalprogrambasedonISO14001was implemented. Themaingoaloftheprogramwastointroduceimprovementsinfoursectors: energy, transport, waste management and supplies. The follow-up of this action was conducting very detailed research and gathering precise data. It has been alsoproposedtoimplementpermanentmonitoringwiththeuseofenvironmental indicators.OneofthemwasCFestimatedwiththeuseof“input-output”model.

(17)

148 KarinaFrączek,JerzyŚleszyński Thescopeofthisassessmentwasverywide,duetothefactthatover200different categoriesofservices,goodsandinvestmentsweretakenintoaccount.However, electricpowerandbuildingheatingstillmadeupalmost93%ofemissionswhich wereassessedasmostsignificant. ThecomparisonoftwosimilartypeinstitutionsfromPolandandNorwayhad itsclearlimits.Firstofall,therearefactorssuchasgeographicallocationthatcan contributetodifferencesinthesetwoorganizations.Warsawissituatedintheregion oftemperatewarmclimate,whileTrondheimissituatedintheareaofsub-Atlantic moderatezone.ThisdifferenceisthereasonwhythedayinWarsaw(52°14’N)is longer(itiscausedbytheincreaseoflatitude).Forinstance,on19November2014 thedaylasted8h.34min.inWarsaw,whileinTrondheim(63°417’N)itwas6h. 20min.long.Thisledtodifferentenergyuptakeforlightning,whichincreasedthe amountofemissionsinTrondheim.

Comparison between carbon footprint produced by departments within UW and NTNU carrying out the same activities [Mg CO2]

Figure 4. CFpercapitafortheFacultyofChemistryinWarsawandtheFacultyofEnvironmental

SciencesinTrondheim

Source:author’sownelaborationbasedon[Larsen,Pettersen2013,p.46].

Taking into account all known data and existing differences, it should be stressed that footprint indicator for the Faculty of Chemistry was characterized bysomewhathighCFandquitelowCFpercapitawhencomparedtotwoother publicbuildingslocatedinWarsaw.FootprintindicatorfortheFacultyofChemistry wascharacterizedbyarelativelyhighCFpercapitawhencomparedtoitsbigger, betterequippedand“colder”Norwegianpartnerforcomparison.However,theCF assessmentwasnotenoughtoformulatesolutionstotheenergyefficiencyproblem. Action improvingthe presentsituation required the identification ofinefficiency sourcesinsidethebuilding.

In order to clarify the results of Carbon Footprint assessment an additional toolwasused.Thethermographicexaminationwiththeapplicationofadvanced

(18)

measuring equipment and specialized software took place in the Faculty of Chemistry. The thermography-based method is the contact-free measurement of surfacetemperatures.Onlythoseinspectionsenabledadetailedanalysisofthermal insulationinthebuilding.Thermalimageshowedenergylosses,especiallydueto transmission through windows and coupling between external walls and ceiling. These are typical leak points in most poorly insulated buildings. The combined resultsofCFandofthermovisualexaminationshowedthattheFacultywasvery ineffectiveinthermalenergymanagement. IncreaseinenergyefficiencyintheFacultybuildingwouldrequiremodernization ofthewholebuilding.Thesearesomepracticalsolutionspresentedbelow: 1. Replacingcurrentlyfunctioningfragmentedsystemofventilationwithcen-tralizedsystemandoptimizationtranslatedinadjustingthefrequencyofrotationto existingdemand. 2. Lightingautomation,especiallyinthecorridors,toilets,socialpremisesand thebasement. 3. Decreaseinthenumberofluminariesanduseofenergy-savingbulbs. Increase in heat utilization efficiency in the Faculty of Chemistry could be achievedthroughsolutionspresentedandexplainedbelow: 1. Thebiggestenergyloss(45-60%)wascausedbyexternalwallsandroofheat leaks.Itisreasonablethereforetoconductthermalmodernizationofthewholebuil-ding. 2. Modernsolutionwouldbecreatinga“greenroof”onthebuilding.Thatme-anstheplacementofcontainment,introducingsoilandsuitablespeciesofplants.

6. Conclusions

Theresultspresentedinthisstudyconfirmtheusefulnessofthefootprintmethod for monitoring energy and environmental efficiency of public buildings. This methodcanbeusedbothtodesignandcontrolbuildingrenovationprojects,aswell astooptimizeandimprovepowerconsumption.AsstatedintheDeclarationofthe MinistryoftheEnvironment[MinistryofEnvironment2014,p.12]thegoalisto reachveryhighenergyefficiency(ofupto78%),aspartofthemodernizationofthe building.Itisadvisedtoimplementsimilarprojectsinalluniversitybuildings. CFanalysisshowedthattheDepartmentofChemistryin2013(withascoreof3 297.7MgCO2eq,whichstandsforthe3.49MgCO2eqperperson)ischaracterizedby arelativelyhighandincreasingCFcomparedwithotherpublicbuildingsinWarsaw andabroad.Nevertheless,thedatabaseisveryshortandnotperfectwhichrequires afuturevisionaswellascriticalanalysisofthepresentstate.

ThecharacteristicsoftheDepartmentofChemistry,wherethebasicteaching andresearchfacilitiesarechemicallaboratories,arethedominantenergy-consuming installations are powered by electricity. Almost 50% of energy is consumed by distributed systems of ventilation. Therefore, it would be advisable to optimize

(19)

150 KarinaFrączek,JerzyŚleszyński individualfansystems,andthenintroduceacentralventilationsystem.Themost importantchangeswouldbeintheareaofenergyconsumptionandelectricpower workinghoursaswellasimplementingamethodofoperatingabuildingforteaching andresearchpurposes. Inacountrywherethedominantenergycarriersarecoalandlignite,anextremely importantfactorinreducinggreenhousegasemissionsisthereductionoftheenergy consumptionamongenergyconsumersbyincreasingenergyefficiencyandreducing wasteheatandelectricity.Thisunderlinestheneedtointegrateprogramstoincrease energyefficiency,especiallyinpublicbuildings. CarbonFootprint(CF)isanidealtooltohelpraiseawareness,measureemissions, reduce costs and engage staff in carbon management program. An individual’s, nation’s,ororganization’sCFcanbemeasuredbyundertakingaGHGemissions assessmentorothercalculativeactivitiesdenotedascarbonaccounting.Oncethe sizeofCFisknown,astrategycanbedevisedtoreduceit,e.g.bytechnological development, better process and product management, changed Green Public or PrivateProcurement,carboncapture,consumptionstrategies,carbonoffsettingand others.

SeveralfreeonlineCFcalculatorsexist,includingafewsupportedbypublicly availablepeer-revieweddataandcalculationsincludingtheUniversityofCalifornia, Berkeley’s CoolClimate Network research consortium and CarbonStory [2015]. Thesewebsitesasktheirvisitorstoanswermoreorlessdetailedquestionsabout theirdiet,transportationchoices,homesize,shoppingandrecreationalactivities, usageofelectricity,heating,andheavyappliancessuchasdryersandrefrigerators, andsoon.Thewebsitethenestimatesvisitors’CFbasedontheiranswerstothese questions.Asystematicliteraturereviewwasconductedtoobjectivelydetermine thebestwaytocalculateindividual/householdCFs. Concluding,itshouldbestressedthattheuseofCFasanindicatorofsustainable developmentshouldbeassociatedwithanextensivelistingofitsobviouslimitations. Theindicator’scharacteristicsimpliesthatitcomprisesonlyoneselectedproblem and aspect of human impact on the natural environment. Moreover, it does not providesufficientinformationoneconomicorsocialaspectsofdevelopmentofa givenpopulation.Therefore,CFbeingaspecificandsyntheticindicator,shouldbe regardedasacomplementarymeasureandforpolicypurposesitshouldalwaysbe usedtogetherwithothertoolsandindicators.

References

AryenY.H., Ertug,A.E., 2012, Carbon and Water Footprints. Concept, Methodologies and policy

responses, UnitedNationsEducationalScientificandCulturalOrganization,Paris.

Borgström-HanssonC.,WackernagelM.,1999,Rediscovering place and accounting space: how to

(20)

CarbonStory,2015, https://www.carbonstory.org(10.06.2015).

DopkeJ.,2014,Zużycie energii na ogrzanie budynków w ostatnich sezonach grzewczych,http://www. cire.pl/pliki/2/zuzycie_energii_na_ogrzewanie_budynkow_w_ostatnich_sezonach_grzewczych. pdf(14.11.2014).

FrączekK.,2014,Wykorzystanie wskaźnika śladu węglowego do oceny eksploatacji budynków

publicznych,WydziałNaukEkonomicznychUW,Warszawa.

Frączek K., Śleszyński J., 2015, Carbon Footprint for energy efficiency in public buildings,

Economic and Environmental Studies(inprint).

HammondG.,2007,Time to give due weight to the “carbon footprint” issue,Nature,vol.18,p.256. Instytut Meteorologii i Gospodarki Wodnej, 2013, Deklaracja środowiskowa Ośrodka Głównego

Instytutu Meteorologii i Gospodarki Wodnej – Państwowego Instytutu Badawczego za rok 2012,

Warszawa.

ISO, 2013, ISO/TS 14067:2013, Greenhouse gases Carbon footprint of products ‒ Requirements

and guidelines for quantification and communication, http://www.iso.org/iso/catalogue_

detail?csnumber=59521(18.10.2015).

KOBiZE, 2011, Wskaźnik referencyjny, www.kobize.pl/news/137/116/Referencyjny-wskaznik- jednostkowej-emisyjnosci-dwutlenku-wegla-przy-produkcji-energii-elektrycznej-do-wyznaczania-poziomu-bazowego-dla-projektow-JI-realizowanych-w-Polsce.html(26.08.2014). LarsenH.,PettersenJ.,2013,Investigating the Carbon Footprint of a university ‒ the case of NTNU,

JournalofCleanerProduction,vol.48,pp.39-47.

Lawn P. (ed.), 2006, Sustainable Development Indicators in Ecological Economics, Edward Elgar, Cheltenham.

MatlakD.,2014,Oficjalna strona Polskiej Izby Gospodarki Odpadami,www.pigo.org.pl.(04.09.2014). MinistryofEconomy,2009,Energy Policy of Poland until 2030, Warsaw.

Ministerstwo Środowiska, 2014, Ministerstwo Środowiska. Deklaracja środowiskowa za rok 2013, Warszawa.

Rees W.E., Wackernagel M., 1994, Ecological Footprint and Appropriated Carrying Capacity:

Measuring the Natural Capital Requirements of the Human Economy,[in:]Investing in Natural Capital: the Ecological Economics Approach to Sustainability, Jansson A.M., Hammer M.,

FolkeC.,CostanzaR.(eds.),IslandPress,WashingtonDC.

Sinden G., 2009, The contribution of PAS 20150 to the evolution of international greenhouse gas

emission standards,TheInternationalJournalofLifeCycleAssessment,vol.14,pp.195-203.

Śleszyński J., 2000, Ekonomiczne problemy ochrony środowiska, Agencja Wydawnicza Aries, Warszawa.

ŚleszyńskiJ.,2013,Synthetic sustainable development indicators: Past experience and guidelines,[in:]

Quality of life and sustainable development,RusnakZ.,OstasiewiczK.(eds.),PraceNaukowe

UniwersytetuEkonomicznegoweWrocławiu,nr308,pp.144-164.

Terebuła-Fertak M., 2014, Od odpadu do produktu. Recykling tworzyw sztucznych, http://www. choczewo.com.pl/wp-content/uploads/2015/03/Od-odpadu-do-produktu-recykling-tworzyw-sztucznych.pdf(20.09.2014).

WackernagelM.,1994, How Big is Our Ecological Footprint? Using the Concept of Appropriated

Carrying Capacity for Measuring Sustainability, TheWriteStuff,Vancouver.

WorldCommissiononEnvironmentandDevelopment,1987, Brundtland Report: Our Common Future, OxfordUniversityPress,Oxford.

WorldResourcesInstituteandWorldBusinessCouncilforSustainableDevelopment,2016,Greenhouse GasProtocol,http://ghgprotocol.org.

Cytaty

Powiązane dokumenty

Concerning the present problem - the problem clearly is the giving of a satisfactory account of the relation between Fact and Norm, if facts are facts and norms are norms how are

Basically,  the  energy  efficiency  improvement  programs  and  measures  existing  in 

The study pointed to internal conditions resultingamong others the dynamics of economic growth and energy demand, the structure of the economy, held and used energy resources,

Zwi¹zane jest to z trosk¹ sektora ener- getycznego o zapewnienie dostatecznych iloœci energii w najbli¿szych latach, a tak¿e z od- powiedzialnoœci¹ za zmiany klimatyczne na

Oszczêdnoœæ energii oraz wzrost efek- tywnoœci energetycznej kraju umo¿liwia poprawê wskaŸników zarówno ekonomicznych jak i ekologicznych. W artykule ukazano szereg

K EY WORDS : energy audits, energy efficiency, Energy Efficiency Obligations, energy efficiency programmes, energy intensity, energy labeling, ESCO’s, green taxes, World

In 2018, Ukraine and its tech companies appeared among top positions in many influential international rankings, more than 100 representatives of the Fortune 500

The other meaning in which aesthetic energy is understood is related to revealing the aesthetic aspect of human activities?. Are we not willing to perform some work in order to