• Nie Znaleziono Wyników

Nickel (II) Schiff Base Complexes as Stationary Phases in Gas Chromatography

N/A
N/A
Protected

Academic year: 2021

Share "Nickel (II) Schiff Base Complexes as Stationary Phases in Gas Chromatography"

Copied!
8
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ FOLIA CHIM CA 8, 1988_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

* *

Joan na M a s ł o w s k a , G r z e g o r z Bazy lak

NICKEL (II) SCHIFF RASE C O M P L E X E S AS S T A T I O N A R Y PHAS ES IN GAS C H R O M A T O G R A P H Y “

The p o s s i b i l i t y of s e p a r a t i n g some alka nes or a l c o h o l s m i x ­ ture by gas c h r o m a t o g r a p h y in a p a c k e d c o l u mns with t e t r ade nt a- te Schiff base nickel (II) c o m p l e x e s has been studied. The e f ­ fects of m o d i f i c a t i o n in the c h e l a t e s t r u c t u r e on the colu mn s e l e c t i v i t y are p r e s e n t e d c o m p a r i n g the a p p r o p r i a t e heat s of a d s o r p t i o n .

It is now well e s t a b l i s h e d that the Schiff base c o m p l e x e s of the n u mb er tr a n s i t i o n metal ions c o ul d be s u c c e s s f u l l y e m p l o y e d as liqu id [ l , 2] or solid [3] phas es for the gas c h r o m a t o g r a p h i c (GC) s e p a r a t i o n of a wide range of solutes. Ho wever, in these re po rts the nickel (II) c o m p l e x e s with b i d e n t a t e [ l , 2] or t e t r a d e n t a t e [3] s u b s t i t u t e d s a l i c y l a l d i m i n a t e s were only used. In the p r e l i m i n a r y s t u d i e s [4] we n o te d that the ne ut ral nick el (II) c h e l a t e s of the t e t r a d e n t a t e Schi ff bases, de ri v e d from Ji-diketones and a p p r o p r i a t e di amines, co uld be a p p l ied as the c o m p o n e n t s of in t i m a t e l y m i x e d GC s t a t i o n a r y phases. It was r e p o rte d [5] that the c o o r d i n a t i o n g e o ­ metry, thermal s t a b i l i t y and v o l a lit y of such c h e l a t e s had many su p e r i o r feat ure s than th ose of the p r e v i o u s l y used in GC. T h e r e ­ fore, in p r e s e n t paper, a range of nick el (II) c h e l a t e s c o n t a i n i n g c e r t a i n m o d i f i c a t i o n s to the ligand s t r u c t u r e are be ing c o m p a r e d in terms of s e p a r a t i o n e f f i c i e n c y to wa rds a l i p h a t i c h y d r o c a r b o n s and alcohols. On the basis of some t h e r m o d y n a m i c data it was i n t e r e s t i n g to in v e s t i g a t e the d i s t i n c t i o n in such GC c o l u mns s e l e c t i v i t y what can be ap pl ied for the o p t i m i z a t i o n of the s o r b e n t s c o m p o s i t i o n in GC.

*

I n s t itu te of Fu n d a m e n t a l Food Ch em ist ry , T e c h nic al U n i v e r s i ­ ty of Ł ódź.

* *

(2)

E x p e r i m e n t a l

M a t e r i a l s

All c o m p l e x e s see (Tab le 1) w e re s y n t h e t i z e d , p u r i f i e d and c h a ­ r a c t e r i z e d a c c o r d i n g to m e t h o d s d e s c r i b e d p r e v i o u s l y [6, 7]. As the s o r b a t e s the al ka n e s and a l c o h o l s were used, all in a n a l y t i c a l re ag e n t grade.

T a b l e 1 Schi ff base nickel (II) c h e l a t e s s t u d i e d

No Sy s t e m a t i c name A b b r e v i a t i o n M o l . w t . 1 N , N ’- e t h y l e n e b i s ( a c e t y 1 a c e t o n e i -

mi n e )Ni (II) Ni ( e n ) A A 282.28

2 N N - t r i m e t y l e n e b i s ( a c e t y l a c e t o n e i -

m i n e )Ni (II) N i (tm)AA 296.30

3 N N - o r t o - p h e n y l e n e b i s ( a c e t y l a c e - t o n e i m i n e ) N i (II) N i ( p h ) A A 334.68 4 N N - e t h y l e n e b i s ( b e n z o y l o a c e t o n e i - mi n e )Ni (II) Ni ( e n ) B A 405. 10 5 N N - t r i m e t y l e n e b i s ( b e n z o y l o a c e t o - ne i m i n e ) N i (II) N i ( tm)BA 419. 12 6 N N - o r t o - p h e n v l e n e b i s ( b e n z o y l o a c e - t o n e i m i n e ) N i (II) Ni ( p h ) B A 457.50 Gas C h r o m a t o g r a p h y

A mode l 504 gas c h r o m a t o g r a p h ( M e r a -E lw ro , Wr ocław, Poland) e q u i p p e d wi th a flame i o n i z a t i o n d e t e c t o r and a m o de l K B 5 5 0 3 d i ­ gital i n t e g r a t o r (Kabidez, Warsaw, Po la nd) was used. The s t a i n l e s s steel co lumns, 1.3 m x 0.4 cm i.d., p a c k e d wi th 18% of the a p p ­ ro p r i a t e nick el (II) ch el a t e on C h r o m o s o r b W NAW, 8 0 /1 00 mesh, w e r e used in all in st anc es . The a m o u nts of c h e l a t e d e p o s i t e d on the s u p p o r t were c h e c k e d t h e r m o g r a v i m e t r i c a l l y by u s in g the de- r i v a t o g r a p h of P a u l i k - P a u l i k - E r d e y s y s t e m (MOM, Bu da pes t, Hu ngary). The a d s o r b e n t s were h e a t e d in the n i t r o g e n a t m o s p h e r e w i t h the he a t i n g rate 5 °C/min.

The GC m e a s u r e m e n t s w e re m a de i s o t h e r m a l l y at 100, 120 and 135 + 0.1 °C. H e l i u m was used as the c a r r i e r gas and the c o n s t a n t

(3)

flow rate, 40 ml/min, was ma nt ain ed . The so lu t e s we re in je cte d as di lu t e d vapours by use a 10 pi g a s - t i g h t syringe, what caus ed that s y m e t r i c and samp le size (1 : 20) in d e p e n d e n t pe aks were o b ­ tained. At such low c o v e r a g e of the a d s o r b e n t s s u r f a c e the heats of a d s o r p t i o n were d e t e r m i n e d from the slop es of lnt^ vers us 1/T (c ol umn te mp e r a t u r e ) plot s [8]. A d j u s t e d r e t e nti on times tA of

rv the so lu tes st ud ied were d e t e r m i n e d by Et tre m e t h o d [9].

Re su lts and O i s c u s s i o n

The nickel (II) c o m p l e x e s s t u d ied diff er in the h y d r o c a r b o n b r id ge c o n n e c t i n g the two n i tr oge n do nor atoms and in the phenyl s u b s t i t u e n t on the c a r b ony l grou ps in the ligand moiety (see Figure 1). Both of these s u b s t i t u t i o n pr od u c e the ch an g e s in po la rity, m a g n e t i c and Lewi s a c i d -ba se p r o p e r t i e s of these planar, c o o r d i n a t i v e l y u n s a t u r a t e d c h e l a t e s [10].

R “

-C H 2-C H 2-

R1= “ CH3

-C H 2-C H 3-C H 2-

-P h

&

H

Fig. 1. S t r u c t u r e of the c h e l a t e s st ud ied

The heats of a d s o r p t i o n d e t e r m i n e d for n o n - s p e c i f i c a l l y i n t e r ­ a c ti ng al ka nes and for s p e c i f i c a d s o r b a t e s are list ed in Table 2 and 3. Un der the c o n d i t i o n s e m p l o y e d the l i ne ar r e l a t i o n s ­ hips b e t w e e n he ats of a d s o r p t i o n and the total n u mb er af carbon at oms in the m o l e c u l e of h o m o l o g o u s series of the s o r b a t e s were observed. In Table 4 the best fit re g r e s s i o n data for these f u n c ­ tions are given. The resu lts d e m o n s t r a t e that he ats of a d s o r p t i o n in c r e a s e d with resp ect to the h y d r o c a r b o n b r id ge in the nick el (II)

(4)

T a b l e 2 He ats of a d s o r p t i o n (-AH) of n - a l k a n e s

on the c h e l a t e s st ud i e d

Solu te

S t a t i o n a r y ph ase

Ni (e n)A A N i ( t m)A A Ni ( p h ) A A N i (en)BA N i ( t m ) B A N i ( p h ) B A ( - A H ) ( k c a l / m o l ) Pe nt a n e 2.42 2.51 3.20 3.75 3.96 4.03 Hexa ne 2.73 2.89 3.55 4.50 4 .88 5.10 He pt a n e 3.10 3.35 3.90 5.24 5.79 6 .18 Octa ne 3.40 3.81 4 . 30 6.01 6.70 7.31 Nona ne 3.73 4 .26 4 .68 6.76 7.60 8.52 Deca ne 4.09 4.73 5.01 7 .53 8.50 9.56 T a b l e 3 He ats of a d s o r p t i c n (-AH) of a l c o hol s

on the c h e l a t e s st ud i e d S t a t i o n a r y phas e

Sou 1 te Ni (e n)A A Ni (t m ) AA N i (ph)AA N i ( e n ) B A Ni (t m)B A N i (p h )BA (-AH) (k ca l/nol) M e th ano l 3.61 3.72 3.75 3.74 3.70 3.69 F thanol 2.62 2.70 2 .62 2.33 2.65 3.26 Pr op ano l 3.50 3.90 3.95 4.37 4.81 5.53 Butanol 4 .40 5. 10 5.21 6.40 7.18 7.92 P e n t ano l 5.35 6.15 6.50 8.53 9.35 10.20 Hexanol 6.22 7.30 7 .80 10.60 11.65 12 . 48 iso-Pro-panol 1 .78 2.05 2.25 2.60 2.70 3.10 is o- Buta-nol 2.12 2.60 2.93 3.64 3.83 4.40 is o-Pen-tanol 2 .60 3.10 3.58 4 .60 5.10 5.7Ü se c - But a-nol 1.33 1.78 1.83 1.95 2.10 2.36 se c iso --P en tan ol 1.87 1.95 2.20 2.38 2.56 2.78 t e r t Bu -tanol 0.53 0.65 0.72 0.78 0.85 0.98

(5)

T a b l e 4 R e s u lts of re g r e s s i o n analysis for the f u n c t i o n (-a h) = f ( C N )

St a t i o n a r y phase Solu tes n- Alco hol s (C2 - C )x 6 n - A l k a n e s (C 5 ' p L1 0 ;)x a s b b R a s b b R N i ( e n ) A A 0.91 0.035 0 .78 0.9988 0.33 0.073 0.81 0.9987 N i (t m)A A 1.14 0.063 0.44 0.9995 0.45 0.065 0.25 0.9983 N i (ph)AA 1.29 0.075 0.08 0.9986 0.37 0 .087 1 . 39 0.9982 Ni (e n)B A 2 . OB 0.056 -1 .80 0.9981 0.75 0.043 0.05 0.9989 N i ( tm)BA 2.24 0.065 -1.83 0.9975 0.91 0.033 -0.55 0.9991 Ni (p h)8 A 2.32 0.087 -1 .38 0.9986 1.11 0.091 -1 .54 0.9993

N o t e : a = slope, s b = s t a n d a r d er ror of the slope, b = i n ­ tercept, R = c o r r e l a t i o n co ef fic ie nt , x = numb er of c a rb on atoms in the solutes.

ch el ates, e.g. the a d s o r p t i o n on the N i (p h)A A is s t r o n g e r than those on N i ( t m ) A A or N i ( e n)A A complexes. For the c h e l a t e s wi th the same kind of h y d r o c a r b o n b r id ge it is seen that i n t r o d u c t i o n of p h e n y l e n e grou ps in the ch el a t e m o l e c u l e lead to an in crease in the heats of a d s o r p t i o n of the solu tes studied. Thus, it can be a s s u m e d that the c h e l a t e s s t u d ied d e a c t i v a t e s the su pp o r t su rf a c e in d i f f e r e n t way and that the i n c r eas ed s t a b i l i z a t i o n of these c h e l a t e s planar s t r u c t u r e may be in vo lve d in a d s o r p t i o n p h e n o m e n a [lO],

St r u c t u r a l ch an ges in the nick el (II) c h e l a t e s p r o d u c e a v a r i a ­ tion in the GC c o l u mns s e l e c t i v i t y wh ich can be e x p r e s s e d by m e a ­ s u ri ng d i f f e r e n c e s of the t h e r m o d y n a m i c q u a n t i t i e s invo lve d in the p r o c e s s e s of a d s o r p t i o n for some s e l e c t e d pairs of is omeric so lu tes

[ 11] . M e n t i o n e d values can be c a l c u l a t e d from equation:

& (A H ) _ A H 1 ~ A H 2 m

T - T <x)

w K er e A H j and A H ^ de no t e s the he ats of a d s o r p t i o n of the s o lu te 1 and ? r e sp ect iv el y, c o n s i d e r e d as c o n s t a n t in the n a r r o w t e m p e r a t u r e

(6)

range st udied, T the c o lu mn t e m p e ra tu re . This r e l a t i o n was e v a l u a t e d for the i s o m e t r i c pa irs of a l c o h o l s in the c o lu mn t e m p e r a t u r e equal 120 °C and is p r e s e n t e d in F i gu re 2 as the f u n c t i o n of m o l e c u l a r w e i g h t of the c h e l a t e s studied.

M.wt [ g/mol ]

Fig. 2. D i f f e r e n c e s in he ats of a d s o r p t i o n H/T and r e l a t i v e r e t e n ­ tion upon s e p a r a t i o n at 120°C of the al co hol mixture: p r o p a n o l and i s o - p r o p a n o l c u rv es 1 and 3 or bu ta nol and is o - b u t a n o l c u rv es 2 and 4, as the f u nc tio n of m o l e c u l a r w e ig ht ch an g e s in the c h e l a t e s

stud ied

This figure shows that the s e p a r a t i o n of the line ar m o l e c u l e s with very slig ht d i f f e r e n c e in their e l e c t r o n d e n s i t y d i s t r i b u t i o n is p o s s i b l e by a p r o p e r l y m o d i f i e d s t r u c t u r e of s t a t i o n a r y phase. R e p l a c i n g a m e t h y l e n e g r ou ps wi th a phen yl s u b s t i t u e n t in the ch e l a t e s st ud i e d c o n s i d e r a b l y i n c r e a s e d the colu mn s e l e c t i v i t y . The ch a n ges in the r e l a t i v e r e t e n t i o n cx of alco hol pairs as the s t r u c t u r e of c h e l a t e s is vari ed (see F i gu re 2) are m e a n i n g f u l l in i l u s t r a t i n g some f e a t u r e s of the w o r k i n g ' m e c h a n i s m of such GC columns. For example

(7)

we assu me that s p e c ifi c a d s o r p t i o n of a l co hol s is s t r o ngl y influenced by ster ic effects. Thus, the e f f e c t i v e n e s s of the s e p a r a t i o n of the b r a n c h e d a l c o hol s m i x t u r e can be o p t i m i z e d by use N i ( p h ) B A ch el ate as the s t a t i o n a r y phase. An ot her i m p o rta nt factor a f f e c t i n g the a d s o r p t i o n p r o p e r t i e s of the nickel (II) c h el ate s s t u d i e d in volves the p o l y m e r i z a t i o n e q u i l l i b r i a in the solid stat e [12]. D i s t o r t i o n in the nickel (II) ch el a t e m o l e c u l e can i n f l uen ce h o m o m o l e c u l a r i n ­ t e r a c t i o n and he nce their GC s e p a r a t i o n ability of d i f f e r e n t class of po lar compounds. These c o n s i d e r a t i o n s will be e x t e n d e d in the future c o mm uni ca ti ons .

A c k n o w l e d g e m e n t s

This work was s u p p o r t e d by a gr ant from the M i n i s t r y of Higher Ed uc ation, Poland, Pr oj ect MR 1 - 1 4 . I.7b.

J j l ^ e Q g e s

[1] C a r t o n i G . P . , L o w r i e R . S . , P h i l l i p s C. S . G . , V e n a n z i L. M., [in:] Gas C h r o m a t o g r a p h y , ed R.P. W. Scott, B u t t e r w o r t h s , London, 273 (I960).

[2] P f 1 a u m R. T., C o o k L. E., J. C h r o m at og r. , 50, 120 (1970). [3] G r ü n e s P., S a w 0 d n y W., J. Ch ro m a t o g r . , 3 2 2 , 63 (1985). [4] M a s ł o w s k a J . , B a z y l a k G., 3. Ch ro m a t o g r . , 2 9 8 , 211 (1984). [5] U d e n P. C., B 1 e s s e 1 K., Inorg. Chem., 12, 352(1973). [6] H 0 1 m R. H., J. Am. Chem. Soc., 82, 5632 (1960).

[7] M a s ł o w s k a J . , B a z y l a k G., Acta Chim. Hung, (s ub mit te d for publica ti on ).

[8] L a u b R. 3., P e c s o k R. L., P h y s i c o c h e m i c a l A p p l i c a ­ tions of Gas C h r o m a t o g r a p h y , John Wi ley Sons, New York, 216 (1978).

[9] E t t r e L. S., C h r o m a t o g r a p h i a , ¿3, 73 (1980).

[10] J ä g e r E. G., Z. anorg. allg. chem., 3 6 4 , 177 (1969). [11] D i G o r c i a A . , L i b e r t i A . , S a m p e r i R., Anal.

C h e m . , 45, 1228 (1973).

(8)

Joanna Masłowska, Grzegorz Bazylak Joan na M a s ł ows ka , G r z e g o r z Ba zy l a k

W Y K O R Z Y S T A N I E K O M P L E K S Ó W Ni (II) Z ZA SA DAM I SC HI F F A JAKO FAZ S T A C J O N A R N Y C H W C H R O M A T O G R A F I I G A Z O W E J

B a d a n i a nad z a s t o s o w a n i e m r ó ż n y c h k o m p l e k s ó w meta li p r z e j ś c i o ­ wych z dwu- i c z t e r o k l e s z c z o w y m i z a sa dam i S c h i f f a wy ka z a ł y , że zwią zki te s p e ł n i a j ą w y m a g a n i a s t a w i a n e fa zom s t a c j o n a r n y m s t o s o ­ w a n y m w c h r o m a t o g r a f i i gazowej.

W p r z e d s t a w i o n e j p r ac y z b a d ano w p ły w m o d y f i k a c j i s t r u k t u r y li- gandu w s y m e t r y c z n y c h k o m p l e k s a c h Ni (II) na z d o l n o ś ć r o z d z i e l c z ą i w a r t o ś ć ciepeł ad so r p c j i a l k a n ó w i alkoholi. W tym celu nośnik d i a t o m i t o w y p o k r y w a n o w j e d n a k o w e j ilości (18%) k o l e j n o różn ymi s z e ś c i o m a c h e l ata mi Ni (II), u z y s k a n y m i na d r od ze k o n d e n s a c j i ace- ty l o a c e t o n u lub b e n z o i l o a c e t o n u i et yl eno -, p r o p y l e n o - lub fenyle- n o d i a m i n y .

St wi e r d z o n o , że w i e l k o ś ć o d d z i a ł y w a ń s p e c y f i c z n y c h m i e r z o n a z m i a nam i ciepeł a d s o rpc ji b a d a n y c h s o r b a t ó w u z a l e ż n i o n a jest od dł ug ośc i most ka a z o t - a z o t w c z ą s t e c z c e c z t e r o k l e s z c z o w e g o ch el a t u Ni (II). W p r o w a d z e n i e grupy f e n y l o w e j do c z ą s t e c z k i k o m p l e k s u p o ­ w o du je w z ro st s e l e k t y w n o ś c i u z y s k a n y c h n o ś n i k ó w c h r o m a t o g r a f i c z ­ ny ch na skutek w z r o stu en er gii o d d z i a ł y w a ń s p e c y f i c z n y c h k o m p l e k s m e t a l u - s o r b a t .

U m o ż l i w i ł o to o t r z y m a n i e s e l e k t y w n e g o r o z d z i a ł u par i z o m e r y c z ­ nych alkoholi, p o r ó w n y w a l n e g o z r o z d z i a ł a m i u z y s k a n y m i w k l a s y c z ­ nej c h r o m a t o g r a f i i gaz-ciecz.

Na s e l e k t y w n o ś ć u z y s k i w a n e g o r o z d z i a ł u a l ko hol i m o że mi eć t a k ­ że w p ł y w różny s t o p i e ń p o l i m e r y z a c j i c z ą s t e c z e k b a d a n y c h k o m p l e k ­ sów Ni (II) oraz t w o r z e n i e a d d u k t ó w m o l e k u l a r n y c h o różn ej t r w a ł o ­ ści . U z y s k a n e wyni ki p o z w a l a j ą na p r z y p u s z c z e n i e , że w y p e ł n i e n i a z o p i s a n y m i k o m p l e k s a m i c h e l a t o w y m i Ni (II) o p ró cz z a s t o s o w a ń a n a l i ­ t y c z n y c h mogą być w y k o r z y s t a n e do b a d a n i a o d d z i a ł y w a ń a d s o r b e n t - - a d s o r b a t .

Cytaty

Powiązane dokumenty

Druga część omawianej publikacji, jak wskazuje sama nazwa, ma charakter praktyczny „Od teorii do praktyki”. Dotyczy ona w głównej mierze realizacji praw

The optimum HS conditions appeared different for the groups of solvents tested, which proves that influence of experimental conditions (factors) depends on analyte properties..

For V(III) com- plex (1) two Schiff base ligands are coordinated to octahedral vanadium center, one as 2- anion (with deprotonated phenolic OH group of salicylaldehyde imine

De resultaten van de bedekkingsmetingen en holheidsbepalingen laten zien dat de verruigde hooilanden, met een beheer van maaien zonder afvoer, een holle, open zode hebben en dat

Stê¿enie kobaltu werytrocytach u kobiet grupy badanej, wporównaniu do kobiet gru- py odniesienia nie ró¿ni³o siê znamiennie, u mê¿czyzn i wca³ej grupie badanej, wporównaniu

Keywords: base metals, mineral resource commodity prices, available inventory, warehouse stock, price variation model, supply and demand..

The examples indicate that alcohols presumably coordinate with neutral thionacyate complexes of metals; the fact that some authors [13, 28, 29] have reported the presence of

For the purpose of our present work, we shall neglect the interactions between solvent molecules on the surface.At the same time, we shall assume that solute molecules may interact