• Nie Znaleziono Wyników

Stream function wave theory: Validity and application

N/A
N/A
Protected

Academic year: 2021

Share "Stream function wave theory: Validity and application"

Copied!
32
0
0

Pełen tekst

(1)

CHAPTER 12

STREAM FUNCTION WAVE THEORY; VALIDITY AND APPLICATION

By Robert G. Dean,l A. M. ASCE

SYNOPS1S

The engineer required to calculate theoretical wave characteristics

such as wave profiles and wave forces and moments on piling, is confronted

with a problem which includes (1) selecting one of a number of available

theories and (2) calculating the required information which, for some of

the theories, is a relatively complicated procedure. This paper presents

criteria for assessing the validity of various wave theories; these

criteria are then applied to test the validity of several theories for

two wave conditions and, it is found that for these conditions, the Stream

function numerical wave theory is the most valid of those tested. The

Stream function theory is developed into graphs of dimensionless crest

displacement, and total maximum wave forces and moments on a vertical

piling.

~ormerlY:

Senior Research Engineer, Chevron Research Company,

La

Habra, California. Presently: Acting Associate Professor of Oceanography,

University of Washington, Seattle, Washington.

(2)

2 7 0 C O A S T A L E N G I N E E R I N G

INTRODUCTION

The problems o f a n a l y s i s ( t o d e t e r m i n e d r a g and i n e r t i a c o e i

^y,e s u b j e c t s

and c a l c u l a t i o n o f t h e o r e t i c a l waves and wave f o r c e s have been ^' o f c o n s i d e r a b l e i n v e s t i g a t i o n d \ i r i n g t h e p a s t 15 y e a r s . These 3-'

a n a l y s i s t i o n s have r e s u l t e d i n t h e p r e s e n t a t i o n o f a f a i r l y wide range "-^

some r e s u l t s and i n t h e development o f s e v e r a l n o n l i n e a r wave theori® '

. j i e d e s i g n o f ^rtiich a r e n o t i n reasonable a c c o r d . The problem c o n f r o n t i n g

p a r t i c u l a r e n g i n e e r i s t h e r e f o r e a d i f f i c u l t one; t h a t i s t o s e l e c t f o r tïi®

d e s i g n c o n d i t i o n s t h e most v a l i d a n a l y s i s r e s u l t s f o r use w i t h ^ g j , o n o f p r o p e r wave t h e o r y . The p r e s e n t paper w i l l n o t i n c l u d e a d i s c U ^

^ t n e p a p e r the problem o f s e l e c t i o n o f a n a l y s i s r e s u l t s . I h e purposes o i

-vjave a r e t o (1) p r e s e n t a b a s i s f o r a s s e s s i n g t h e v a l i d i t y o f v a r i o H ^ t h e o r i e s and t o a p p l y t h i s t o two cases, and ( 2 ) t o p r e s e n t g r ^ P ' ^

^ « o n p i l i n g ; d i m e n s i o n l e s s c r e s t d i s p l a c e m e n t , t o t a l wave f o r c e s and m o m e n t »

_ v i i c h , on t h e s e graphs a r e developed f r o m a Stream f u n c t i o n wave t h e o r y •*

t l i e b a s i s o f two cases t e s t e d , appears more v a l i d t h a n o t h e r 0-^ wave t h e o r i e s .

CRITERIA FOR ASSESSING THE VALIDITIES OF WAVE THEORIES

^ a f o r The purpose o f t h i s s e c t i o n i s t o d e v e l o p a r a t i o n a l c r i ' t s ^ a s s e s s i n g t h e v a l i d i t i e s o f v a r i o u s a v a i l a b l e wave t h e o r i e s . _ ; n t i a t i o n The t h e o r e t i c a l wave l i t e r a t u r e p r e s e n t s v e r y l i t t l e i n f < ^ - ^ -^3.6 wave p e r t a i n i n g t o t h e r e l a t i v e a p p l i c a b i l i t y o f t h e v a r i o u s a v a i l ^ * - ^

(3)

S T R E A M F U N C T I O N 2 7 1 t h e o r i e s . W i l s o n ^ , i n a s h o r t d i s c u s s i o n , has I n d i c a t e d r e g i o n s o f v a l i ' ^ ^ ' ' ^ f o r s e v e r a l o f t h e wave t h e o r i e s , however a l l o f t h e a v a i l a b l e t h e o r i e s were n o t i n c l u d e d i n V/ilson's p r e s e n t a t i o n . F u r t h e r m o r e , W i l s o n d i d n o * a t t e m p t t o d i s c u s s , i n h i s s h o r t p r e s e n t a t i o n , h i s b a s i s f o r assessii>S the v a l i d i t i e s o f t h e v a r i o u s t h e o r i e s .

The e n g i n e e r r e q u i r e d t o c a l c u l a t e t h e o r e t i c a l wave i n f o r m a t i o n trais^ s e l e c t one from a number o f a v a i l a b l e wave t h e o r i e s , i n c l u d i n g : A i i ^ wave t h e o r y ^ . Stokes t h i r d o r d e r t h e o r y ^ . Stokes f i f t h o r d e r t h e o r y ^ > C n o i d a l wave t h e o r y ^ , S o l i t a r y wave theory'^. V e l o c i t y p o t e n t i a l

S j i l s o n , B. W., D i s c u s s i o n o f paper "Long Wave M o d i f i c a t i o n b y Jji-'^®^ T r a n s i t i o n s " , J . Waterways and Harbors D i v i s i o n , P r o c . ASCE, v . 90,

Nov. 1961;.

•^Wiegel, R. L., " G r a v i t y Waves, T a b l e s o f F u n c t i o n s " , P u b l l s h e < i

C o u n c i l on Wave Research, The E n g i n e e r i n g F o u n d a t i o n , Richmond, C a X i ^ ' ^ ' ^ * ' Feb. 19$h.

^ S k j e l b r e i a , L., " G r a v i t y Waves, Stokes T h i r d Order A p p r o x i m a t e ' - ' ^ ' T a b l e s o f F u n c t i o n s " , P u b l i s h e d b y t h e C o u n c i l on Wave Research, T l x ^ E n g i n e e r i n g F o u n d a t i o n , Richmond, C a l i f o r n i a , 1959.

^ S k j e l b r e i a , L., and Hendrickson, J . A., " F i f t h Order G r a v i t y W^'^^ Theory w i t h T a b l e s o f F u n c t i o n s " , N a t i o n a l E n g i n e e r i n g Science C o m s u f ^ ' Pasadena, C a l i f o r n i a , 1962

^Masch, F. D., and W i e g e l , R. L., " C n o i d a l Waves, Tables o f F t * * * * ' * ^ ' " ^ ^ " ' ïchmond P u b l i s h e d b y C o u n c i l on Wave Research, The E n g i n e e r i n g F o u n d a t i o n ,

C a l i f o r n i a , 1 9 6 1 . "^Munk, W. H.

Ann. N. Y. Acad. S o l . , v . 5 l , p . 376-k2k, 19U9.

(4)

2 T 2 C O A S T A L E N G I N E E R I N G

n u m e r i c a l wave t h e o r y ^ , Stream f u n c t i o n n u m e r i c a l wave t h e o r y ^ , and perhaps o t h e r s . S e v e r a l o f these t h e o r i e s ^ ' ^ ' ^ ' ^ have been t a b u l a t e d f o r r e l a t i v e l y easy c a l c u l a t i o n o f wave p r o f i l e s and wave f o r c e s and moments on v e r t i c a l p i l i n g . There i s no w e l l - f o t m d e d b a s i s , however, f o r s e l e c t i o n o f t h e most a p p l i c a b l e o f t h e seven, o r more, a v a i l a b l e wave t h e o r i e s . I t i s g e n e r a l l y assumed t h a t t h e h i g h e r o r d e r S t o k l a n t h e o r i e s a r e improvements over t h e l o w e r o r d e r t h e o r i e s ; c e r t a i n l y t h e amount o f e f f o r t t o develop t h e h i g h e r o r d e r t h e o r i e s i s g r e a t e r . Recent q u e s t i o n s have been r a i s e d w h e t h e r o r n o t t h e h i g h e r o r d e r t h e o r i e s a r e u n i f o r m l y more v a l i d t h a n t h e l o w e r o r d e r t h e o r i e s . The C n o i d a l and S o l i t a r y wave t h e o r i e s a r e developed f o r t h e l o n g e r waves, however no p u b l i s h e d i n f o r m a t i o n i s a v a i l -a b l e f o r j u d g i n g t h e r e l -a t i v e m e r i t s o f , s-ay, t h e h i g h e r o r d e r S t o k l -a n t h e o r i e s and t h e C n o i d a l o r S o l i t a r y wave t h e o r i e s .

I n o r d e r t o develop t h e c r i t e r i a f o r a s s e s s i n g t h e v a l i d i t i e s o f t h e v a r i o u s wave t h e o r i e s , i t w i l l be n e c e s s a r y t o d e s c r i b e b r i e f l y t h e non-l i n e a r wave f o r m u non-l a t i o n .

N o n l i n e a r Wave Theory F o r m u l a t i o n ; Two Dimensional Case.—The n o n l i n e a r wave t h e o i y i s f o r m u l a t e d as a boundary v a l u e problem; t h e f o m u l a t i o n v j i l l be p r e s e n t e d h e r e f o r t h e tvro-dimensional case. Boundary v a l u e problems a r e s p e c i f i e d b y ( l ) a d i f f e r e n t i a l e q u a t i o n p r e s c r i b e d on t h e i n t e r i o r

Chappelear, J . H., " D i r e c t N u m e r i c a l C a l c u l a t i o n o f Wave P r o p e r t i e s " , J . Geophys. Res.. 66(2), p. 501-^08, Feb. 1961.

^Dean, R. G., "Stream F u n c t i o n R e p r e s e n t a t i o n o f N o n l i n e a r Ocean Waves", J . Geophys. Res.. 7 0 ( l 8 ) , p . U56l-li572, Sept. 1965.

(5)

S T R E A M F U N C T I O N 273 o f t h e r e g i o n o f i n t e r e s t , and ( 2 ) c o n d i t i o n s vdiich must be s a t i s f i e d

on t h e b o u n d a r i e s o f t h e r e g i o n . The number o f r e q u i r e d c o n d i t i o n s on each boundary depends on t h e n a t u r e o f t h e boundary, e.g., whether t h e boundary i s f i x e d o r f r e e t o move under t h e a c t i o n o f f o r c e s .

The t h e o r e t i c a l wave f o r m u l a t i o n has been p r e s e n t e d eiseerdere^ and w i l l t h e r e f o r e be d e s c r i b e d h e r e o n l y i n b r i e f d e t a i l . R e f e r r i n g t o F i g u r e 1 , t h e d i f f e r e n t i a l e q u a t i o n t o be s a t i s f i e d on the wave i n t e r i o r f o r an i n c o m p r e s s i b l e , i r r o t a t l o n a l f l u i d i s L a p l a c e ' s e q u a t i o n w r i t t e n f o r e i t h e r t h e v e l o c i t y p o t e n t i a l $ o r t h e stream f u n c t i o n Y, i . e . , V^^ = V ^ Y = 0 ertiere = — 2 - + -2 9x2 2j,2

The v e l o c i t y p o t e n t i a l and s t r e a m f u n c t i o n a r e d e f i n e d i n terms o f t h e v e l o c i t y components, i . e . ,

^ = - Y z = -4>,

( 2 )

The sea bottcan i s c o n s i d e r e d impermeable and h o r i z o n t a l ; t h e s p e c i f i e d c o n d i t i o n a t t h i s boundary i s t h a t t h e v e r t i c a l component o f v e l o c i t y i s z e r o , i . e . ,

(6)

D i r e c t i o n o f M E A N W A T E R L E V E L CO V E L O C I T Y C O M P O N E N T S O CO

>

t-' H s M M I — (

:^

o F I G 1 D E F I N I T I O N S K E T C H , W A V E A N D P I L I N G S Y S T E I V l .

(7)

S T R E A M F U N C T I O N 2 7 5

Because t h e f r e e s u r f a c e i s n o t c o n s t r a i n e d , b u t i s f r e e t o move under the a c t i o n o f f o r c e s , two boundary c o n d i t i o n s must be s p e c i f i e d on t h i s boundary: (1) a k i n e m a t i c boundary c o n d i t i o n w h i c h eocpresses t h a t t h e m o t i o n o f t h e w a t e r p a r t i c l e s a t t h e f r e e s u r f a c e a r e i n a c c o r d w i t h t h e m o t i o n o f t h e f r e e s u r f a c e , and (2) a dynamic boundary c o n d i t i o n s p e c i -f y i n g t h e u n i -f o r m i t y o -f p r e s s u r e on t h e -free s u r -f a c e , i . e . ,

S ' ^ 1 ^ = " , . = 1 ( W

and ^

7 + 2 i b-^^'^ J " i ^ t = ' = ='!

I f t h e wave i s assumed t o p r o p a g a t e w i t h t h e wave c e l e r i t y , C, and w i t h o u t change o f f o r m and i f a r e f e r e n c e c o o r d i n a t e system i s chosen

•atioh moves w i t h t h e wave, t h e n t h e p r o b l e m i s reduced t o one o f s t e a d y

m o t i o n and Eqs. ( l ) and (3) a r e u n a f f e c t e d b u t Eqs. ( i i ) and ( 5 ) a r e s i m p l i f i e d t o t h e f o l l o w i n g f o r m s ,

3 x - ïï^ ( 6 )

7 + [(^ - of + w2] = oonstg = Q (7)

Eq. ( 7 ) i s t h e f a m i l i a r B e r n o u l l i e q u a t i o n f o r s t e a d y s t a t e c o n d i t i o n s . Eqs. (1), ( 3 ) , (6), and (7) now r e p r e s e n t t h e s p e c i f i c a t i o n o f t h e t h e o r e t i c a l wave; i t t h e r e f o r e appears t h a t t h e o n l y way o f a s s e s s i n g t h e r e l a t i v e v a l i d i t y o f v a r i o u s wave t h e o r i e s i s t o compare t h e degree t o w h i c h t h e y s a t i s f y t h e s p e c i f y i n g e q u a t i o n s .

(8)

2 7 6 C O A S T A L E N G I N E E R I N G

No a t t e m p t w i l l be made i n t h e p r e s e n t paper t o c a r r y o u t a comprehensive i n v e s t i g a t i o n o f a l l a v a i l a b l e wave t h e o r i e s f o r a l l wave c o n d i t i o n s o f

i n t e r e s t . As examples, two cases w i l l be examined f o r w h i c h t h e wave h e i g h t i s a b o u t ^0% o f t h e b r e a k i n g h e i g h t .

The two cases s e l e c t e d f o r s t u d y and t h e t h e o r i e s f o r w h i c h t h e b o i m d a r y c o n d i t i o n f i t s were c a l c u l a t e d a r e shown i n Table 1.

TABLE 1.—CHARACTERISTICS OF WAVES CHOSEN FOR BOUNDARY CONDITION COMPART SUN

Case

Approximate Wave C h a r a c t e r i s t i c s

Boimdary C o n d i t i o n s Checked f o r Theory Case H ( f t ) T ( s e c ) h ( f t ) A i r y Stokes T h i r d Stokes F i f t h C n o i d a l Stream F u n c t i o n ( O r d e r ) 1 l 5. 0 13.0 30 X X X X X (7) 2 l l l . O 5.80 100 X X X (2)

Because most o f t h e wave t h e o r i e s o f i n t e r e s t ( A i r y , Stokes' T h i r d , S t o k e s ' F i f t h , and Stream F u n c t i o n ) s a t i s f y t h e d i f f e r e n t i a l e q u a t i o n and b o t t o m boundary c o n d i t i o n e x a c t l y , o n l y t h e f i t s t o t h e two f r e e s u r f a c e b o u n d a r y c o n d i t i o n s w i l l b e employed as measures o f t h e r e l a t i v e v a l i d i t i e s

o f t h e v a r i o u s wave t h e o r i e s .

The two " l o c a l " e r r o r components d e f i n e d f o r t h i s s t u d y a r e ( l ) as a measure o f t h e e r r o r i n t h e f r e e s u r f a c e k i n e m a t i c boundary c o n d i t i o n , i . e . .

(9)

S T R E A M F U N C T I O N

A x . - u.-C ^ 1 ^ , z = >?. ( 8 )

and ( 2 ) C^, t h e e r r o r i n t h e f r e e s u r f a c e dynamic boundary c o n d i t i o n as d e f i n e d b y

* - + " i ^ ] = % ' 2 = •••• (9)

where t h e s u b s c r i p t , i , i n d i c a t e s v a r i o u s wave phase p o s i t i o n s and Q i s t h e average B e r n o u l l i " c o n s t a n t " . The f i n i t e d i f f e r e n c e a p p r o x i m a t i o n t o ^ as r e p r e s e n t e d i n Eq. (Ö) i s n o t e x a c t and w i l l t h e r e f o r e i n t r o d u c e a c o n t r i b u t i o n t o €-^, T h i s a p p r o x i m a t i o n , however, w i l l p r o b a b l y c o n t r i b u t e a b o u t t h e same t o a l l t h e o r i e s . Because, as w i l l be d e s c r i b e d l a t e r , t h e Stream f u n c t i o n wave t h e o r y f i t s t h e k i n e m a t i c boundary c o n d i t i o n e x a c t l y , t h e € ^ c o n t r i b u t i o n s f o r t h i s t h e o r y w i l l s e r v e as an i n d i c a t i o n o f e r r o r s due t o t h i s a p p r o x i m a t i o n .

To summarize t h e Case 1 and Case 2 l o c a l e r r o r i n f o r m a t i o n , an o v e r - a l l range e r r o r { E ) j j i s d e f i n e d , i . e . ,

( % ) R -= | ( ^ l ) m a x . - ( ^ i W I ( 1 0 )

A s i m i l a r d e f i n i t i o n f o r (E^)!^ a p p l i e s .

F i g u r e 2 p r e s e n t s t h e Case 1 comparisons o f t h e boundary c o n d i t i o n f i t s b y t h e v a r i o u s wave t h e o r i e s . The c o r r e s p o n d i n g i n f o r m a t i o n f o r Case 2 was n o t c a l c u l a t e d i n as complete f o r m . The Case 1 and p a r t i a l Case 2 o v e r - a l l e r r o r i n f o r m a t i o n i s p r e s e n t e d i n T a b l e 2.

(10)

278 C O A S T A L E N G I N E E R I N G

L E G E N D

(11)

S T R E A M F U N C T I O N 279

TABLE 2.~SUI4MARY OF OVER-ALL BUUNDARI CONDxTION ERRORS

Case Wave C h a r a c t e r i s t i c s O v e r - a l l E r r o r Case H ( f t ) T ( s e c ) h ( f t ) Theory-( % ) R 1 15.0 13.30 30.0 A i r y 0.066 0.1i95 I l i . 53 13.29 30.0 Stokes I I I 0.211i 2.026 13.2 12.25 30.0 Stokes V 0.071 5.105 15.0 13.30 30.0 C n o i d a l 0.176 li.835 111.95 13.30 30.0 Stream Fn. ( 7 ) * 0.059** O.OOli 2 l l i . 0 5.8 100.0 A i r y 0.102 1.762 l l l . O 5.8 100.0 Stokes V Not c a l c u l a t e d 0.027 l l i . 1 5.8 100.0 Stream Fn. ( 2 ) * 0.009** 0.012 Order o f Stream f u n c t i o n t h e o r y . A c t u a l l y z e r o .

DISCUSSION OF VAUDITEES OF VARIOUS WAVE THEORIES

Case I . — F r o m T a b l e 2 i t i s seen t h a t o f t h e Stokes' t h e o r i e s t e s t e d

( t h e A i i y t h e o r y w i l l be r e g a r d e d as "Stokes' 1 " t h e o r y ) , t h e o v e r - a l l

k i n e m a t i c boundary c o n d i t i o n e r r o r s , ( E j ^ ) ^ , a r e l a r g e s t f o r t h e S t o k e s ' ij.1

t h e o r y and a r e a b o u t t h e same f o r t h e A i r y and Stokes' V t h e o r i e s . The

o v e r - a l l dynamic boundary c o n d i t i o n e r r o r s , ( E2 )R, a r e u n i f o r m l y b e t t e r

f o r t h e l o w e r o r d e r S t o k e s ' t h e o r i e s . The reasons t h a t t h e h i g h e r o r d e r

(12)

280 C O A S T A L E N G I N E E R I N G

Stokes' t h e o r i e s do n o t p r o v i d e b e t t e r f i t s t h a n t h e l o w e r o r d e r t h e o r i e s ~) i s n o t o b v i o u s . Perhaps t h e h i g h e r o r d e r t h e o r i e s should n o t be employed f o r t h e r e l a t i v e l y s h a l l o w - w a t e r c o n d i t i o n s o f t h i s example ( w a t e r d e p t h / •wave l e n g t h = 0.068). A second, and t h e a u t h o r b e l i e v e s a more p l a u s i b l e i

/ e x p l a n a t i o n , i s t h a t d i f f e r e n t a n a l y t i c a l approaches should be employed ''iin t h e development o f S t o k i a n t h e o r i e s i n s h a l l o w and deepwater c o n d i -('

t i o n s . 'i

The k i n e m a t i c boundary c o n d i t i o n e r r o r s a s s o c i a t e d w i t h t h e C n o i d a l wave t h e o i y a r e s l i g h t l y l e s s t h a n c o r r e s p o n d i n g Stokes' I I I e r r o r s . Th© dynamic boundary c o n d i t i o n e r r o r s , however, a r e over t w i c e as l a r g e f o r t h e C n o i d a l t h e o r y as f o r t h e Stokes' 111 t h e o r y . The C n o i d a l t h e o r y i s g e n e r a l l y r e g a r d e d as b e i n g a p p l i c a b l e f o r s h a l l o w - w a t e r c o n d i t i o n s .

The Stream f u n c t i o n wave t h e o r y p r o v i d e s b y f a r t h e b e s t f i t o f t h e t h e o r i e s t e s t e d , e s p e c i a l l y c o n s i d e r i n g t h a t t h e k i n e m a t i c boundary c o n d - i " t i o n i s a c t u a l l y s a t i s f i e d e x a c t l y .

Case 1 1 . — F o r t h e r e l a t i v e l y deep-water c o n d i t i o n s o f Case I I ( w a t e * * depth/wave l e n g t h = 0.55), t h e i n f o r m a t i o n i n Table 2, a l t h o u g h n o t

complete, i n d i c a t e s t h a t t h e Stokes' V t h e o r y i s S i g n i f i c a n t l y more v a l i d t h a n t h e A i r y ( S t o k e s ' I ) wave t h e o r y .

The Stream f u n c t i o n wave t h e o r y a g a i n p r o v i d e s a b e t t e r f i t t o t h e boundary c o n d i t i o n s t h a n t h e o t h e r t h e o r i e s t e s t e d .

BRIEF DISCUSSION OF STREAM FUNCTION WAVE THEORT

I t i s a p p a r e n t f r o m Table 2 t h a t f o r t h e two cases examined, t h e Stream f u n c t i o n t h e o r y p r o v i d e s a c o n s i s t e n t l y b e t t e r f i t t o t h e b o u n d a . * " ^ c o n d i t i o n s t h a n t h e o t h e r t h e o r i e s . The advantages o f t h e Stream f u n c t - ^ ^

(13)

S T R E A M F U N C T I O N 2 8 1

t h e o r y i n c l u d e : ( l ) an e x a c t f i t i s p r o v i d e d t o t h e k i n e m a t i c f r e e s u r f a c e boundary c o n d i t i o n , and ( 2 ) >ri.thin r e a s o n a b l e l i m i t a t i o n s , t h e t h e o r y can be extended t o as h i g h an o r d e r as n e c e s s a r y t o o b t a i n t h e a c c u r a c y r e -q u i r e d f o r t h e p a r t i c u l a r wave c o n d i t i o n s .

I n t h e n e x t s e c t i o n , graphs r e p r e s e n t i n g d i m e n s i o n l e s s c r e s t e l e v a t i o n s and wave f o r c e s , and moments on a v e r t i c a l p i l i n g , vri.11 be p r e s e n t e d based on t h e Stream f u n c t i o n t h e o r y .

CREST ELEVATIONS, WAVE EORCES, AND MOMENTS BÏ STREAM FUNCTTÜD WAVE THEORY

D i m e n s i o n l e s s C r e s t E l e v a t i o n s . — T h e d i m e n s i o n l e s s c r e s t e l e v a t i o n s were c a l c u l a t e d f r o m t h e Stream f u n c t i o n t h e o r y and a r e p r e s e n t e d i n F i g u r e 3 as f u n c t i o n s o f h/T^ and H/T^, where h, H, and T a r e t h e w a t e r d e p t h , wave h e i g h t , and wave p e r i o d , r e s p e c t i v e l y .

D i m e n s i o n l e s s T o t a l Maximum F o r c e s . — T h e t o t a l f o r c e on a s i n g l e v e r t i c a l p i l i n g e x t e n d i n g f r o m t h e ocean b o t t o m t h r o u g h t h e f r e e s u r f a c e can b e w r i t t e n as A

+

7(9)

. . +

1(9) Cj^ u ( e ) dS . . . . ( 1 1 ) / Q ^0

where C^ and Oy^ a r e t h e c o e f f i c i e n t s o f d r a g and i n e r t i a , u and ü a r e t h e h o r i z o n t a l components o f v e l o c i l y and t o t a l a c c e l e r a t i o n , / ' i s tJie mass d e n s i t y o f w a t e r and t h e o t h e r v a r i a b l e s a r e as shown i n F i g u r e 1 . I f CQ and Cj^ a r e c o n s i d e r e d t o b e c o n s t a n t s , t h e n Eq. ( l l ) can be w r i t t e n i n d i m e n s i o n l e s s f o r m as

(14)
(15)

S T R E A M F U N C T I O N 283 .1 + 7 ( e ) A u ( 9 ) | u ( 9 ) l / h y /S\ ^1 + >?(e)A "l/gH" 1/gH TT ' ^ I D gH U j ' * h

i n w h i c h i i s t h e s p e c i f i c w e i g h t o f w a t e r . The phase a n g l e , 6, can h e v a r i e d t o d e t e r m i n e t h e maximum d i m e n s i o n l e s s f o r c e 4)^^. I t i s a p p a r e n t •fchat depends o n l y on t h r e e p a r a m e t e r s , i . e . ,

^'m = K ( h / T ^ H/T2, ¥ )

where Cj.j p (13)

The Stream f u n c t i o n wave t h e o r y was used t o c a l c u l a t e t h e d i m e n s i ""l®^^ t o t a l maximum f o r c e s , (|)^, f o r a number o f s e t s o f h/T^ and H/T^ and f

f o u r v a l u e s o f W; t h e r e s u l t s o f these c a l c u l a t i o n s have been develop®'* i s o l i n e s o f ( j ) ^ , and a r e p r e s e n t e d i n F i g u r e s U, 5, 6, and 7. I n t h e c a l c u -l a t i o n s , a s u f f i c i e n t -l y h i g h o r d e r Stream f u n c t i o n t h e o r y was used s o '^^'^ i n c r e a s i n g t h e wave t h e o r y o r d e r b y one d i d n o t change t h e maximum •^e'^^^'^'^'S and a c c e l e r a t i o n v r i t h i n t h e vrave b y more t h a n one p e r c e n t . The requi^^®*^ o r d e r , m, t o meet t h i s c r i t e r i o n i s shown as a f u n c t i o n o f h/T^ a n d H / T i n F i g u r e 8. F i g u r e 8 I l l u s t r a t e s one o f t h e advantages o f t h e S t r e s u t n .

f u n c t i o n wave t h e o r y . Because t h e t h e o r y can be developed t o any Tea-^°'^^^^ o r d e r , i t i s p o s s i b l e t o employ a t h e o r y o f an o r d e r c o n s i s t e n t w i t h

(16)
(17)
(18)
(19)
(20)

288 C O A S T A L E N G I N E E R I N G

O

00

(21)

S T R E A M F U N C T I O N 289

i t i s necessary t o use a t e n t h o r d e r t h e o r y t o o b t a i n t h e v e l o c i t y and a c c e l e r a t i o n accuracy r e q u i r e m e n t s s t a t e d above.

Dimensionless T o t a l Maximum Moments.—A development s i m i l a r t o t h a t l e a d i n g t o Eq. (12) f o r t h e d i m e n s i o n l e s s t o t a l moment <^ w o u l d y i e l d M ^ 1 rc^H^Dh 2 ^1 + '?(e)/h 1 + 1 ( e ) A ih\ls\ls\ ,,,,

The c a l c u l a t e d d i m e n s i o n l e s s maximum moments, f o r g i v e n s e t s o f the p a r a m e t e r s , h/T^, H/T^, 3l 2., were developed i n t o i s o l i n e p l o t s and

CQ H

a r e p r e s e n t e d i n F i g u r e s 9, 10, 11, and 12. Spot checks o f F i g u r e s U-7 and 9-12 i n d i c a t e t h a t t h e i s o l i n e s a r e a c c u r a t e t o w i t h i n 5-10^.

The d i m e n s i o n l e s s t o t a l maximum f o r c e and moment asymptotes as d e t e r m i n e d f r o m s m a l l a m p l i t u d e ( A i r y ) deep-water wave t h e o r y a r e i n d i c a t e d i n t h e l o w e r r i g h t c o m e r o f F i g u r e s l i- 7 , 9-12. I n a l l f i g u r e s t h e s e asymptotes a r e c o n s i s t e n t w i t h t h e p l o t t e d i s o l i n e s .

Example.—To i l l u s t r a t e t h e use o f F i g u r e s 3-7, 9-12 suppose t h a t

i t i s r e q u i r e d t o c a l c u l a t e t h e c r e s t e l e v a t i o n , >y^, t h e maximum t o t a l f o r c e , Fj^j and moment,M„i, f o r t h e f o l l o w i n g wave and p i l i n g c o n d i t i o n s :

Wave H e i g h t , H = 65 f t . Water Depth, h = 120 f t . Wave P e r i o d , T = 13 sec. P i l i n g Diameter, D = 6 f t .

(22)
(23)
(24)
(25)
(26)

294 C O A S T A L E N G I N E E R I N G

v j i l l

F o r purposes o f t h i s example, d r a g and i n t e r t i a c o e f f i c i e n t s t a k e n as t h e average v a l u e s f r o m a summary cranpiled b y W i l s o n The summary i n c l u d e d t h e r e s u l t s f r o m a anuniber o f l a b o r a t o r y ^ wave f o r c e a n a l y s e s ; t h e averages o f t h e d r a g and i n e r t i a o o e f f i " ' ' ' ^ " i n c l u d e d i n t h e summary a r e

= 1.05 c^, = i.Uo

i n t e r p r e t e d Use o f these average c o e f f i c i e n t s i n t h i s example s h o u l d n o t b e

as endorsement o f t h e i r a p p l i c a b i l i t y f o r d e s i g n purposes. A n ^ o f t h e c o m p l e x i t y o f t h e problem o f s e l e c t i n g d e s i g n d r a g a n d c o e f f i c i e n t s i s p r o v i d e d b y t h e f o l l o w i n g ranges o f d r a g and i r ^ e c o e f f i c i e n t s i n c l u d e d i n t h e summary b y W i l s o n and R e i d , O.UO < CD < 1.60 0.93 < C M < 2.30 ^j-ying R e t u r n i n g t o t h e example, t h e d i m e n s i o n l e s s parameters spe*'-^ t h e p r o b l e m a r e : h/T^ = 0.71 H/T^ = 0.385 W = 0.123 e necessary Note t h a t graphs a r e n o t a v a i l a b l e f o r W = 0.123; i t i s t h e r e f ^ f i g u r e s 10 t o i n t e r p o l a t e between F i g u r e s 5 and 6 ( f o r f o r c e s ) and b e t w e ^ " ^

"'•'^Wilson, B. W., and R e i d , R. 0 . , D i s c u s s i o n o f "Wave F c ^ * ^ * ^

- r ^ l v i s i o n ? C o e f f i c i e n t s f o r O f f s h o r e P i p e l i n e s " , J . Waterways and H a r b o r f ~

(27)

S T R E A M F U N C T I O N

and 11 ( f o r moments). From t h e d i m e n s i o n l e s s graphs, t h e f o l l o w i n g i s o b t a i n e d r]^/R = 0.69 ( f r o m F i g u r e 3 ) m 0.22, W = 0.1 ( f r o m F i g u r e 5) 0.26, W = 0.5 ( f r o m F i g u r e 6) '0.21, W = 0.1 ( f r o m F i g u r e 1 0 ) p.25, W = 0.5 ( f r o m F i g i i r e 11) U s i n g v a l u e s o f = 0.22 and = 0.21, t h e r e q u i r e d q u a n t i t i e s a r e = 0.69(65.0) = hh.9 f t .

= (0.22)(6U.O)(l.O5)(65.O)2(6.0) = 37ii,000 l b s .

ÏV = (0.21)(6U.0)(1.05)(65.0)2(6.0)(120) = U2,800,000 ft,'"'^^^'

I n a p p l y i n g t h i s I n f o r m a t i o n t o t h e c a l c u l a t i o n o f s t r e s s e s , i t ^ r e a s o n a b l e e n g i n e e r i n g a p p r o x i m a t i o n t o assume t h a t t h e maximur.i wave f ï"'^® and moment o c c u r a t t h e same phase a n g l e .

I t s h o u l d be reemphasized here t h a t ocean waves and wave f o r c e s a J ^ * ^ moments a r e n o t c o m p l e t e l y d e t e r m i n i s t i c . T h a t i s , d i f f e r e n t waves vri-i d e n t vri-i c a l h e vri-i g h t s and p e r vri-i o d s vri-i n t h e same w a t e r d e p t h w vri-i l l e x h vri-i b vri-i t a sï'"'^^* o f wave p r o f i l e s , c r e s t e l e v a t i o n s , and maximum wave f o r c e s and momen.'t'^ ' T h i s a s p e c t o f t h e problem has n o t been t r e a t e d h e r e , b u t must be r e c ' ^ ^ ' ^ ^ ^ ^ ^ and a c c o u n t e d f o r i n d e s i g n .

(28)

2 9 6 C O A S T A L E N G I N E E R I N G

CONCISIONS AND RECuMMKNDATiUNS FOR FURTHER TORK

For t h e two s e t s o f wave c o n d i t i o n s examined i n t h i s p a p e r , t h e Stream f u n c t i o n wave t h e o r y p r o v i d e s a s i g n i f i c a n t l y b e t t e r f i t t o t h e s p e c i f i e d boundary c o n d i t i o n s t h a n t h e o t h e r t h e o r i e s t e s t e d . I t v/ould be i n t e r e s t i n g t o i n c r e a s e t h e number and range o f wave c o n d i t i o n s t e s t e d t o e s t a b l i s h more t h o r o u g h l y t h e ranges o f v a l i d i t y o f t h e v a r i o u s wave t h e o r i e s . I n a d d i t i o n , more wave t h e o r i e s s h o u l d be t e s t e d . I t i s n o t c o r r e c t t o assume t h a t t h e h i g h e r o r d e r S t o k i a n wave t h e o r i e s a r e u n i f o r m l y more v a l i d t h a n t h e l o w e r o r d e r t h e o r i e s . A t p r e s e n t (1965), t h e r e does n o t e x i s t an e s t a b l i s h e d r e l a t i v e d e p t h l i m i t , below w h i c h t h e s o - c a l l e d s h a l l o w w a t e r wave t h e o r i e s a r e u n i f o r m l y more a p p l i c a b l e t h a n the S t o k i a n o r o t h e r t h e o r i e s . A vrave t h e o r y w o u l d be e x a c t i f i t i d e n t i c a l l y s a t i s f i e d t h e L a p l a c e e q u a t i o n and t h e s p e c i f i e d boundary c o n d i t i o n s . I t i s n o t n e c e s s a r i l y t r u e , however, t h a t t h e same e r r o r i n e i t h e r boundary c o n d i t i o n f i t o r i n t h e L a p l a c e e q u a t i o n f o r two competing wave t h e o r i e s i m p l i e s t h e same e r r o r s i n a l l wave c h a r a c t e r i s t i c s . F o r example, f o r t h e s h a l l o w i-ra.ter c o n d i t i o n s t e s t e d , t h e A i r y i/ave t h e o r y p r o v i d e d a b e t t e r f i t t o t h e b o u n d a r y c o n d i t i o n s t h a n t h e h i g h e r o r d e r S t o k i a n t h e o r i e s . The S t o k i a n t h e o r i e s , however, w o u l d p r o v i d e a b e t t e r p r e d i c t i o n o f the c r e s t d i s p l a c e m e n t t h a n would t h e A i r y t h e o r y w h i c h does n o t a c c o u n t f o r t h e n o n l i n e a r l t i e s . The r e l a t i o n s h i p between b o u n d a r y c o n d i t i o n and L a p l a c e e q u a t i o n e r r o r s and a s s o c i a t e d e r r o r s i n wave c h a r a c t e r i s t i c s r e q u i r e s f u r t h e r work.

I t would be v e r y w o r t h w h i l e t o determine t h e most v a l i d irave t h e o r i e s f o r a l l wave c o n d i t i o n s o f importance t o c o a s t a l e n g i n e e r i n g ( i . e . , r a n g i n g

(29)

S T R E A M F U N C T I O N 2 9 7

f r o m s h o r t i r i n d - g e n e r a t e d vraves t o l o n g waves such as Tsunamis). I n t h e same manner as t h e d i m e n s i o n l e s s c r e s t d i s p l a c e m e n t s and f o r c e s were p r e s e n t e d i n t h i s paper i n g r a p h i c a l f o r m , t h e wave p a r a m e t e r s o f g r e a t e s t use c o u l d t h e n be t a b u l a t e d o r p r e s e n t e d i n g r a p h i c a l f o r m u s i n g t h e most v a l i d t h e o r y f o r each s e t o f wave c o n d i t i o n s .

ACKIWWLEDGMEKTS

The m a j o r i t y o f t h e work p r e s e n t e d here was e a r n e d o u t b y t h e a u t h o r w h i l e employed b y Chevron Research Company; t h e i r a p p r o v a l t o p u b l i s h this paper i s hereby g r a t e f u l l y acknowledged.

(30)

2 9 8 C O A S T A L E N G I N E E R I N G

Ai-PENDix. —NUTATION

The f o l l o w i n g symbols have been adopted f o r use i n t h i s paper»

C wave c e l e r i t y ;

Cp d r a g c o e f f i c i e n t ;

CJ,} i n e r t i a c o e f f i c i e n t ;

D p i l i n g d i a m e t e r ;

(E-[^)fj range o f e r r o r a s s o c i a t e d w i t h k i n e m a t i c boundary c o n d i t i o n j

( E ^ ) ^ range o f e r r o r a s s o c i a t e d w i t h dynamic boundary c o n d i t i o n ;

F t o t a l wave f o r c e on s i n g l e v e r t i c a l p i l i n g ; g g r a v i t a t i o n a l a c c e l e r a t i o n ; h s t i l l w a t e r d e p t h ; H wave h e i g h t ; — ^ s u b s c r i p t " i " d e n o t i n g d i s c r e t e wave phase p o s i t i o n s ; s u b s c r i p t "m" d e n o t i n g maximum o f f c r c e o r moment; M t o t a l wave moment, a b o u t b o t t o m o f s i n g l e v e r t i c a l p i l i n g ; Q B e r n o u l l i " c o n s t a n t " ; -y upwards; S v e r t i c a l c o o r d i n a t e , o r i g i n a t sea b o t t o m , o r i e n t e d p o s l t i v ^ - ^ - ' T wave p e r i o d ; u h o r i z o n t a l component o f w a t e r p a r t i c l e v e l o c i t y ; • u h o r i z o n t a l component o f w a t e r p a r t i c l e a c c e l e r a t i o n ; w v e r t i c a l component o f w a t e r p a r t i c l e v e l o c i t y ; W p a r a m e t e r d e f i n e d as ^ - ^ ; D . — a c t i o n X h o r i z o n t a l c o o r d i n a t e , o r i g i n a t wave c r e s t , p o s i t i v e i n d a - ^ o f wave p r o p a g a t i o n ;

(31)

S T R E A M F U N C T I O N 2 9 9 v e r t i c a l c o o r d i n a t e , o r i g i n i n s t i l l w a t e r l i n e , p o s i t i v e l y upvrards; d i m e n s i o n l e s s t o t a l moment on s i n g l e v e r t i c a l p i l i n g ; l o c a l e r r o r a s s o c i a t e d v r i t h k i n e m a t i c boundary c o n d i t i o n ; l o c a l e r r o r a s s o c i a t e d w i t h dynamic boundary c o n d i t i o n ; s p e c i f i c w e i g h t o f w a t e r ; wave d i s p l a c e m e n t above s t i l l w a t e r l i n e ; wave c r e s t d i s p l a c e m e n t above s t i l l w a t e r l i n e ;

wave phase a n g l e , o r i g i n a t wave c r e s t , p o s i t i v e i n d i r e c t i o n o f wave p r o p a g a t i o n ; n u m e r i c a l c o n s t a n t , 3.lUl59...; mass d e n s i t y o f w a t e r ; d i m e n s i o n l e s s t o t a l f o r c e on s i n g l e v e r t i c a l p i l i n g ; v e l o c i t y p o t e n t i a l ; stream f u n c t i o n .

(32)

Cytaty

Powiązane dokumenty

pierwsze zakłada, że tego typu ujęcie upoważnienia do obrony oznacza, iż obrońca z wyboru nie musi się liczyć ze zdaniem mandanta co do charakteru czynności pro- cesowych, co

Najciekawsze może wyniki na polu wydawnictw nauko­ wych mają w ostatnich czasach Francuzi, a wśród nich na plan pierwszy wysuwają się prace G. Poprze­ dza samo

wrażenia Roma­ nowa, podróży do Odessy (dwa bardzo charakterystyczne w ier­ sze o morzu), śmierci Jana Czeczota; bardzo znamienne są jeszcze: przekład żałobnej

Autor opisuje także wyzwania, jakie stawiały przed sobą czasy postkomunistyczne, gdyż patrząc na Europę widzimy, że upadek „żelaznej kurtyny&#34; zmienił zasadniczo

3/ pośpiech, śpieszyć się hurry 4/ rodzic parent 5/ szef, wódz chief 6/ wybrzeże, brzeg shore 7/ kolonia colony 8/ oddział, podział division 9/ zegar clock 10/ kartka,

Christopher Knill (1995) zauważa, że dotyk jest pierwszym doznaniem w ludzkim życiu. Noworodki doświadczają otaczającego ich świata i komunikują się z opiekunem

[r]

„Zbliżający się Krajowy Zjazd Adwokatury, zwołany na 1—2 października br., stał się okazją do spotkania dziennikarzy z przedstawicielami Naczelnej Rady