• Nie Znaleziono Wyników

Analiza parametrów operacyjnych silnika i emisji spalin ciągnika rolniczego podczas pracy na hamowni Analysis of the engine’s operating parameters and farm tractor emissions during operation on dynamometer

N/A
N/A
Protected

Academic year: 2021

Share "Analiza parametrów operacyjnych silnika i emisji spalin ciągnika rolniczego podczas pracy na hamowni Analysis of the engine’s operating parameters and farm tractor emissions during operation on dynamometer"

Copied!
15
0
0

Pełen tekst

(1)PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 115. Transport. 2017. &

(2)  

(3) &  , !4F

(4) &$    =,  V4 ,  (. ANALIZA PARAMETRÓW OPERACYJNYCH SILNIKA I EMISJI SPALIN A) ROLN810,028,43)50#) , , lipiec 2016. Streszczenie: #   µµ'  

(5)    

(6)     =   

(7)       0 

(8)    

(9)  [\0 0  

(10)   ]        [{

(11)     

(12)   

(13)    

(14)     

(15)       #,44 6Non-Road Mobile Machinery8[3 

(16)  0^0      ^   

(17)         ^ 0     

(18)  _    0  

(19)  [ }V0           

(20)  0

(21)  

(22)    V    0  .    0  

(23)   

(24)       [  ^ 

(25)     0     0   [~  

(26)     

(27) ]    

(28)   . = = [{ 0] 

(29)  0  

(30)          0 ]      

(31)        ]    [        

(32) 

(33) 

(34)   . =  =      . " 

(35) = 

(36) ^     ^   

(37) . 1. #,40#281)1 \  "3   V_     

(38)   0 ]     [ &            V_    3 ‚;( ‚6([%8u: ] ‚v[3 V  

(39)  V    si0  V   [}V0    

(40)    

(41)   V    0 [    

(42)   ^ 

(43)  

(44)   ^0  

(45)    

(46)       ] 

(47)    

(48)      0[ 0     V  .  ^      

(49)       0    V [.

(50) %‚. /  4  ^/   ^ ,  /=. (  1 #* %

(51)

(52) 

(53) ˜

(54) '

(55)  !%'%

(56) ** %ƒ‚ 8˜

(57)   

(58) . Tier 1 F #!‚. Tier 4 Final F #!‚. 8

(59)  ‚. HC NOx CO 4. 1,0 6,9 8,5 $^‚. $^%‚ 0,3 2,2 0,015. 86 96 ‚ 96. 3         6

(60)   8    

(61)      V0

(62)  [\0 

(63)    V 0   V0^0 [        [\  

(64) V0    _   ^0 

(65)  6

(66) 

(67) 8 0  V]  ^

(68)   

(69)   V0['     0  

(70)  

(71)  _     

(72)  ^0  ^0    ]  ^  

(73)   

(74)   [         

(75)       ^   

(76)  

(77) 

(78) 

(79)   . =[/     ]   

(80)     ^0 

(81)   ]    0V [. 2. 1023 2Œ \   = V       €:€    {   ((){ [%         %:%#  %‚`$;       :%$ %$$; 6[%8[3 VV 3 ‚;( ‚[       +  {    (<$% uv   

(82) ]  [      V     V  [* 

(83) V0   

(84)   

(85)   ^0

(86)  V]    .    [*     $$ 6   

(87)  

(88) <$$; 8   :$$#   V %;# [{    0  ] rzystano an 3  {3 3 uv   V   [{     V     0  ^V    ]   

(89)   V __    ] 

(90)    

(91) 

(92)  [     V

(93)    ]      V     u`v[ V  

(94)   . =6    V 8    V6[:8[.

(95) &  0  

(96)   

(97)   . 220. 1200. Ne. M. 1150. 210 200. 1100. 190. 1050. 180. 1000. 170. 950. 160. 900. 150. 850. 140. 800. Moc efektywna Ne [kW]. Moment obrotowy M [Nm]. 1250. %‚. 130 900. 1100. 1300. 1500 1700 n [obr/min]. 1900. 2100. Rys[%[) ((){[%u€v. Rys. :[3   =6      

(98) 

(99)   8. ? V          ^ 0]                 [ {V     

(100)  2.       V<$^ V    V 

(101) [{   0    

(102)      ^  V

(103)   

(104) 

(105)   ]. _ [     6  

(106) %$$$; 8]  `[  ^    

(107)      V] _V      V  =^  V _      [.

(108) %‚€. /  4  ^/   ^ ,  /=. ( 2 # 

(109) % *'% !%

(110)  ! 7%x 1. 2. 3. ‚[ 5. 6. 7. 8.. 1000 x x x x – – – –. ,  €* ‚ 1400 1800 x x x x x x x x x x x x x x – x. ** ! )‚ 0 100 200 300 ‚$$ 500 600 700. 2000 x x x x x x x x. ƒx)78+83)35,4146# OPERACYJNYCH SILNIKA. 2400. 1000. 1400. 1800. 2000. obr/min. obr/min. obr/min. obr/min. 2400. 2000. 2000. 1600. 1600. 1200. 1200. 800. 800. 400. 400. 0. Moment obrotowy [Nm]. '`#qv J'"<$  [obr/min]. 4 

(111) .   =   [<[. 0  ^0         

(112) 6%$$$^%‚$$^%€$$ :$$$; 8[          V     ¦ V          0ce.. 0 0. 1000. 2000 t [s]. 3000. 4000. Rys[<[4   .   

(113)   

(114). V      V  V %$$$   6     ‚ 8^ = VV<`$$ [   =  

(115) ] 

(116)  V    0[      6%$$$; 8

(117)   ‚         

(118) [ Siln V   ^            0 .

(119) &  0  

(120)   

(121)   . %‚x. –     

(122) – V$ – €`q[

(123)   V      0[ {   

(124)   

(125) %$$$ ;  –  

(126) 

(127)      6$#   8 _%<$#     [  ]     V 

(128)  V [

(129)  ]   

(130)  

(131) %‚$$; |  6$ # 8   _ %`$ # ^          6$$ #     8         _ x$ #  60  :$# ^    ‚$q8[,0   ] 

(132)  

(133) %€$$; |  6$# 8 _:$$ # ^     6$$#   8  ]    _x`$# 60 :`$# ^    ]  <$q8[        

(134)    

(135)  :$$$; |  6$# 8 _:$$# 6 0    =   8^     6$$# ]  8         _ x`$ #  60   :`$ # ^     <$q8[ _    .     

(136)                0         [ #    0          V    [     _ 

(137)    [!]          0 $q6    $# 8  – 

(138)  

(139)    ]   %$$q

(140)    [  

(141)      V_ ^   – _%$$q6  V   

(142) 

(143)   

(144) 8[! 

(145)        | M kor. M CAN akt  M CAN 

(146) ˜ M CAN ° M CAN °  M CAN 

(147). 6%8.   | MCAN akt –  _             

(148)   

(149) uqv^ MCAN  –  _       

(150)   

(151) uqv^ MCAN ° –  _       

(152)   

(153) uqv[ #‚ ^ V   V   :$$$; 

(154) ::q6  _  :$$#  ]  :$$$; 8[?   

(155)    

(156)  ]   V  [#`      ]  0 –       

(157) 6      8[.

(158) 150. /  4  ^/   ^ ,  /=. 1400 Moment obrotowy M [Nm]. # 

(159) 

(160)  !

(161) . Mmax. 1200 1000 c:  Š @ƒƒƒ J'‹M- Œ min = 130 Nm d:  Š @ƒƒ J'‹M- Œ min = 150 Nm e:  Š @Žƒƒ J'‹M- Œ min = 200 Nm f:  Š Fƒƒƒ J'‹M- Œ min = 200 Nm. 800 600 400 200. e. d. c. f. 0 0. 500. 1000. 1500. 2000. 2500. n [obr/min]. ,[‚[4    d  

(162)   . 20. 0. 0. Zakres = 77%. Zakres = 78%. 23. Zakres = 100%. 16. 0. 24. Zakres = 100%. 16. Zakres = 100%. 40. Zakres = 84%. 60. Zakres = 100%. 80. Zakres = 84%. J+-=(- ‹max [%]. 

(163)  !

(164)  567 100. 0. 0. przed po przed po przed po przed po  (

(165) korekcji  (

(166) korekcji  (

(167) korekcji  (

(168) korekcji 1000. 1400. 1800 n [obr/min]. 2000. ,[`["          

(169) . "   

(170)        –    6[8[ 

(171)     ]     

(172)     6         

(173)    

(174)    8[ !     _   

(175)  

(176)         ^   .   

(177) [ #    ]   

(178)   

(179)  

(180) [/  ]

(181)        V ^ 

(182)     ^    V^ _  V ]  [   

(183)  ^0  V

(184)  ] 

(185)    [        $]  ] [       ^          CAN 6  V 8^

(186) ]       

(187) ^  V %`q[/ ]  V0  ^   ^   

(188)  V  [.

(189) &  0  

(190)   

(191)   . 151. Moment obrotowy M [Nm]. 1400. # 

(192)  !

(193) . Mmax. 1200 1000 M max 800. %# Œ4 (

(194) Moment obr. po korekcji. 600. c: Mmin = 0 Nm d: Mmin = 0 Nm e: Mmin = 0 Nm f: Mmin = 0 Nm. 400 200. c. 0 0. 500. f. e. d. 1000 1500 n [obr/min]. 2000. 2500. 2000. 1000. # 

(195)  !

(196) . 1800 1600. 700 Mq' = 580 Nm. 1200 1000. 600 500. Mq' = 450 Nm. 800. 400. Mq' = 310 Nm. 600. 300. Mq' = 200 Nm. 400. 200. Mq' = 110 Nm q'. 100. = 0 Nm. 0 1450. 900 800. Mq' = 700 Nm. n. 1400. 200 M. Mq' = 880 Nm. Moment obrotowy M [Nm]. '`#qv J'"<$  [obr/min]. ,[[     

(197)  

(198) . 0 1550. 1650. 1750 t [s]. 1850. 1950. 2050. ,[[4  

(199)    %‚$$; . & 0       

(200)  ^ ]      

(201)    

(202) ¡ -  ]   [{ 

(203)  

(204) %‚$$; 0        

(205)     

(206)     %`$ #  6      8  :$#       6[€8[,0       x  

(207) ^   

(208)   0   

(209)     

(210) 

(211)      6%`$q               %$$ # 8[ {              $ # ^      0    ^ V   . _ [{ 

(212)   

(213) %8$$; 0      

(214)  

(215)   :$$# 6     8<$#        [ ,0    

(216) ^ 

(217)  0  

(218)  

(219) 

(220) ]    6:$$q        %$$# 8[  

(221)    0   

(222)  V:$q[{  ].

(223) 152. /  4  ^/   ^ ,  /=.    0  V

(224)  <%–<q[{ 

(225) ]  

(226) :$$$; 0      

(227)  

(228)   :$$# 6     8‚$#        [  

(229)    0   

(230)  V`$q[{  ]    0  V

(231)  <$–36%. %#  $24 (

(232) Moment obrotowy (CAN) po korekcji. n = 1400 obr/min. 760. 800. 580. 540. 0. 310. 320 200. 250 150. 450. 430. 200. 700. 650 600 400. 900 880. 1000. 110. Moment obrotowy (CAN) [Nm]. 1200. 0 100 200 300 400 500 600 700 800 900 1000 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[€[0            6%‚$$; 8 200. %#  $24 (

(233) Moment obrotowy (CAN) po korekcji. 160. 150. n = 1400 obr/min. 140. MCAN. MCAN - M>$M. [%]. 180. 120 100 80. 60. 60. 43. 35. 40 20 0. 30. 27 13. 00. 10. 0. 3. 13. 16. 17. 10. 0 100 200 300 400 500 600 700 800 900 1000 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. Rys. 9. ?V                

(234) 

(235)  

(236) 6%‚$$; 8.   

(237)  0            .    6  

(238) 8       ]  ^  _^ 

(239)  0    

(240)  V     =6    

(241) 8[# 

(242)   X      

(243) 0      

(244)  6 V   =8 ]       silnika..

(245) &  0  

(246)   

(247)   . 153. 4 V0    V0  

(248)  ] 

(249)    0V 0  

(250)   0 0 ^0 ] VV 

(251)     V     [. †x#,|3##38)80)35,4146#,43 7))&12)00#A1&; 8)183881Œ   V   V   0     . 

(252)  [#%$           [           

(253)    _0V    [{ V   =^     

(254) ^   V    0V    ^            ^         €– %$q^  V_0V    V%^`[ 12. 1000. 1400. 1800. 2000. obr/min. obr/min. obr/min. obr/min. "`(- CO2 [%]. 10 8 6 4 2 0 0. 1000. 2000 t [s]. 3000. 4000. ,[%$[3     .     ^      V ^  ,         _   V  V   6 _  8[/   V   0 

(255) [ 4  V 

(256)      

(257)  V  ].  ^   _   [4 

(258)     0

(259)   

(260)    %`$$$ 

(261)   { 6diesel particulate filter)^ 

(262) .   

(263)  0 [.       0 .  V^  V3), 6selective catalityc reduction)   _   _[&_   

(264)  &  ] 

(265)   0  ^   V                 [3   &  %|%$[4     

(266)       V          .

(267) %`‚. /  4  ^/   ^ ,  /=.      _ V 3), 6[ %%8[               V 3 ‚6 `$ 8    ] 6 

(268)       8[/ ] czas          

(269)  0   V 

(270)  [ 90. 1000. 1400. 1800. 2000. obr/min. obr/min. obr/min. obr/min. 300 270. 80. 240. 70. Tsp. 60. NOx. 50. 210 180 150. 40. 120. 30. 90. 20. 60. 10. 30. 0 0. 500. M*'$",'$ !*$€- sp [oC]. $"`(- M-!4- Ox [M&‹!]. 100. 0 1000 1500 2000 2500 3000 3500 4000 4500 t [s]. ,[%%[#   

(271)  0   .     –  

(272)  

(273) %‚$$; –   

(274)  V  

(275)      

(276)   0   6   .  V%`$o)= V  – <   ^V   V%$$o) 

(277)      8[ rzed reaktor katalityczny    :`$ o) 6  .  

(278)    8 & ^   0  

(279)  V  V`]krotnie 

(280)  ^   6

(281) %$ 8[, 

(282)    V0 V –    .   V  6 ].      

(283)   €`q      8[ !

(284)      V        

(285)   . =        [# %:%< ono     

(286)   0     0=[N]    

(287)    V      [' ]        

(288)  0 [  

(289)  ]   

(290) 

(291) 

(292)  

(293) 6%$$$; 8^V  ]  

(294)   V3),[    ^   

(295)     V <$ ;[       

(296) . 0 V0VV    

(297) 

(298) 

(299)     . =[       

(300) 

(301) ] 

(302)  ^      

(303) ^   ]     V‚$$$$;6[%‚8[3 ^ 0   _   ^ 

(304) 

(305)          _ =    [      

(306)         

(307)   ^        [.

(308) &  0  

(309)   

(310)   . 155. $"`(- M-!4- 2 &‹>]. 90000 80000 70000 60000. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. 50000 40000 30000 20000 10000 0 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%:["      

(311)      0= $"`(- M-!4- x &‹>]. 350. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. 300 250 200 150 100 50 0. 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%<["      

(312)  0     0=. M-!4$ 4!"#<$ 2 &‹#>]. 1400 1200 1000. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. *'% #'#+4=. 800 600 400 200 0 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%‚["     

(313) 

(314) 

(315)      0 =6   

(316)    8.

(317) 156. /  4  ^/   ^ ,  /=.    

(318)   

(319)  

(320) V     

(321)    [ 

(322) 

(323) 

(324) ]   V  0  [    ]   

(325) . 0 V0    

(326) 

(327) ] 

(328)    . =^ 

(329)     

(330)     

(331)  [       

(332) 

(333) 

(334)    6[%`8 [%‚|       

(335)  =].        

(336) [  

(337) 

(338) ] 

(339)    %$$# 6 

(340)    8 ]    V x$$  %:$$ ;^           V ‚$$ ;     [   

(341) 

(342) ] 

(343)  0        =   ^ t     %$$ #  6 

(344)     8        $^:  %$–12 ;[   

(345) 

(346) 

(347)   

(348) 

(349)  

(350) ^ 0

(351)   V[{      

(352)  

(353)  do  V   6     ] 6[%88[. M-!4$ 4!"#<$ 2 &‹#>]. 1400 1200 1000. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. * #'#+4-. 800 600 400 200 0 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%`["     

(354) 

(355) 

(356)      0 =6  

(357)    

(358) ka).    =    V  

(359)    

(360) 

(361) 

(362) . 0 V0^  0       6[%8[?  

(363)      V    

(364) 

(365) 

(366)   . =[{    V 

(367)   =   ^      %$$ #  6      8 0   ‚`–62%..

(368) &  0  

(369)   

(370)   . M-!4$ 4!"#<$ x &‹#>]. 14. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. 12 10. 157. * #'#+4-. 8 6 4 2 0 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%["     

(371) 

(372) 

(373)  0     0 =6  

(374)    

(375) 8. n = 2000 obr/min n = 1800 obr/min n = 1400 obr/min n = 1000 obr/min. 90. [%]. 80 70. epo kor. epo kor - e*'% #'. 100. 60 50 40 30 20 10 0 0 100 200 300 400 500 600 700 $'"qv MM", J'"<& +%/"$$ $ >$M,€+, [Nm]. ,[%["    

(376)   

(377) 

(378) 

(379)   . =    0=6   

(380)  

(381)    

(382) 8. šx,02+0#)1 " 

(383)   0  

(384)  0 

(385)       

(386) ^0   _] 

(387)  |  

(388)   6 

(389)           8   V    

(390) 

(391) 

(392)   . =[{    V 

(393)  =  ^   V    =   V `$–$q[     V 

(394)  

(395)  .

(396) 158. /  4  ^/   ^ ,  /=.      |    = V%$–:$q[#

(397) ] 

(398)  0 

(399)      – 0   ]   [/   

(400)  ^      ] 

(401)        0

(402)

(403)  ^  

(404) ] _[?     

(405)    _ ].  [

(406)    ^0    0   V    [        6    8 V _X6   8^V   

(407) .  . = 

(408)  0  0   = 

(409)  [ 4 

(410) V    

(411)   . =[ 

(412)   [ FG 1. ? [^! /[^  &[| * ]{+ ) ( ? +43[9  9    +  ^/,)3   (  , ^ \   + ~^+ ~^:$%%[ 2. ) {  :$%$;:;+~<%4 :$%$ {  x;€;+) + ]   )  °   4  3                   in non]     [ 3. ) {  :$%:;‚;+~{  :$%: {  x;€;+) +    )  °   4  3                   in non]     [ ‚[ {  :$$‚;:;+) +   ) :%&:$$‚ {   x;€;+) °   4  3                  ]     [ 5. +  &  ^, , |·%$`[x:$+43   ^ 2$$€^<6%:8[ 6. !([^}  )[^([| 9+of the 2.5 inch {  3+4(+)*Ï +°4  }   ¨   ^3 ‚&3~#63+4(+)*~ # 8 )   ^&&:$$[ 7. []   [ ; ;   $$6:%[$‚[:$%8[ 8.   [  ;]  ;;:$%‚;%:; ] ][

(413) 6:$[$‚[:$%8[. )730H511))1¤0,14),4114)2H4404 10)2+4)0,140)0)23)0114 Summary: &    ] ^   

(414)                  [?               ]road applications. Thi          #,44 6#],4 4  8[+      ^  ] ^   ]         D   [ (              °  [(            °     dyna   [3              ]       °  ['        .

(415) &  0  

(416)   

(417)   . 159.           [(                             D             [ & ^               [ = ° ^]   ^   .

(418)

Cytaty

Powiązane dokumenty

Results of the voltage measurement of the batteries set, voltage reduction of the set after the performed tests, the current strength, driving time on the measurement length of 100 m

work organization which influences the value of the start-up temperature, the start-up time and the value of the mean current consumed by the starter during the engine start-up is

The results of the analysis show that the another analyzed parameters, connected with the organization of the LUBLIN III delivery truck work conditions (the time of the

obtained regression curves were not parallel (utilization of proper test led to discarding hypothesis that they are parallel). It was noted that changes of power and fuel

The developed approximation functions can be used in the optimisation of the engine control parameters aiming at the selec- tion of such control parameter values, which assure

The response time of the tractor’s braking system control unit was determined from the recorded variations in the brake pedal force and the pressure at the end of the 2.5 m-long

Уколико би се слична истраживања извршила и на другим материјалима, могао би да се створи обимнији и користан списак лексике стилски

Na postawie natężenia emisji składników spalin (E i,j ) oraz określonych udziałów faz (u i ) oraz mocy w poszczególnych fazach (uwzględniając udział czasu pracy –