• Nie Znaleziono Wyników

Luminescence method of examination of 3d level structure of Mn²⁺ions in glasses

N/A
N/A
Protected

Academic year: 2021

Share "Luminescence method of examination of 3d level structure of Mn²⁺ions in glasses"

Copied!
11
0
0

Pełen tekst

(1)

Luminescence method o f examination of

3 d

level

structure of Mn2+ ions in glasses

STANI8LAW GrĘBALA

In stitu te of P hysics, Technical U n iversity of W roclaw, W ybrzeże W yspiańskiego 2, 50-370 W rocław, Poland.

It has been shown th at in th e glasses activacted w ith Mn2+ no absorption bands are noticed w hich would correspond to th e transitions d -d because of th e presence of th e absorption band Mn3+ am ong others. I t has been stated th a t th e application of the lum inescence excitation spectra allow s to exam ine the structure of the su b level 3d for Mn2+ ions. T he m ethod of th e lum inescence excitation separate offers a num ber of advantages: am ong others, it allows to spectra Mn2+ (4) and Mn2+ (6)* in a sim ple w ay.

1. Introduction

T h e m anganese ions (M n2+) o f electron configuration

3d5

belon g to the grou p o f v e ry efficient lum inescence activators, therefore the p rob lem o f lum inescence M n2+ is w idely discussed in papers [1 -8 ].

The lum inescence properties o f M n2+ a ctivated glasses o f different com position s are the su bject o f interest o f m an y authors [ 1 -5 ]. T he lum i­ nescence o f M n2+ ions is solely con n ected w ith th e transition o f electrons fro m th e excited level

*Tlg

[4£ ] to th e fundam ental level

6A lg

[6$ ] . The electrons transit from th e other ex cited levels to th e fundam ental level

*Tlg[*G-}

w ith ou t lum inescence em ission [9 ]. Since the p osition o f the level

4T lg [4G]

depends on th e coordin ation sym m etry o f the surrounding ligands (for oxid e ion glass), then the spectral properties o f lum inescence is also con dition ed b y this sym m etry. In general, it is assumed th a t M n2+ (4) gives green lum inescence, w hile M n2+(6) — th e lum inescence o f red colour. In th e presence o f b o th M n2+(6) and M n2+(4) the resulting cu rve o f th e spectral distribution o f lum inescence w ill depend on th e quantitative M n2+(4 )/M n 2+(6) ratio, w hich depends u p on its glass com position , an essential part bein g p la yed b y the qu a n tity and sort o f M e20 oxides.

Thus, b y increasing th e num ber o f M n2+ ions fo r th e constant com posi­ tion o f b asic glass w e will increase th e num ber o f M n2+ w hich can n ot b e im bedded in the glass structures in the tetrahedric surrounding [10].

(2)

132

S. G

abala

The exam in ation o f the structure o f th e level

3d

fo r M n2+ ions and the determ ination o f crystallic field param eters

B , C, Dq

is based exclusively on thp results o f absorption m easurements. T he absorption bands as well as the corresponding w ave num bers are sought fo r the electron transitions from level ‘ ¿ „ [ ‘ A] t o the levels: % ,[* < ? ], % , № , · ! „ № 4i f s [46 ] , 4H „ [4D ]. The ions M nI+ (6) and M n2+(4) show similar splitting o f th e levels depending on param eters

Dq.

T h ey are presented in the diagram due to Tanaka and Sugano [6, 7 ] (fig. 1). E lectron transitions

F ig. 1. The energy diagram for ions of electron configuration d5 as a function of Dq

param eter

fo r M n2+ ions o f coordinations 4 and 6 d iffer in intensity and shift in the respective light w avelengths. The absorption bands are o f v e ry low intensity due to the fa ct th at these transitions (betw een th e levels) belon g to th e fo r ­

(3)

b id d en ones. T he dependence o f the sublevel splitting u p on the crystal field is different. I f the sublevels

4A lg[4G], 4E g[4G],

and

4E g

[4D ] are independent o f the field strength (up to

D J B fa

3) then th e rem aining levels are characterized b y the directional coefficients and th e respective ban d w idth depends on the value

dEId [Eg).

Thus, th e energy o f transition o n the levels

4Tlg

and

4T 2g

depends on the field strength. W ith th e increase o f the field strength the transition energy lowers, causing an absorption ban d shift tow a rd th e longer w avelength region. I n a field octahedric sym m etry th e levels

4E g [4G]

and

4A lg [4G]

superim pose each other. A redu c­ tion o f sym m etry results in splitting the a b ov e levels [6, 7].

In th e exam inations o f the

d-d

ty p e transitions fo r M n2+ the m ost d ifficu lt p roblem consist in finding th e corresponding absorption bands. I f th e con cen tration o f M n2+ is low or if som e other absorption bands appear sim ultaneously, fo r instance, those attributed to M n3+, the re co v e ry o f those bands is p ractically im possible. In this paper w e shall show th a t in spite o f th e fa ct th at the spectral exam inations cannot b e carried ou t b y using th e absorption m eth od it is possible to determ ine th e structure o f

3d

level fo r M n2+ ions b y applying th e m eth od o f lum inescence e x c i­ ta tion spectra.

2. Measurement method

T h e o p tica l glasses w ith an addition o f M n2O s m elted in the ironless ceram ics w ere used fo r exam inations. The con ten t o f M n20 3 in the respective glasses is th e fo llo w in g : 0 .5 % in F K 5 , 0 .1 % in B K 7 and S K 4. T h e glass samples w ere o f th e sizes 13 x l 4 x 3 0 m m and 0.5 x l 2 x 2 0 m m . The absorption m easurem ents w ere perform ed on a Specord TTV Y IS spectrophotom eter. T he m easurem ents o f the spectral lum inescence distributions w ere m ade in th e setup consisting o f H B O -5 0 spectral lam p, H g M on 436 and S IP 436 filters o f C. Zeiss m ake, th e UM-2 m onochrom ator, the M12 PC 51 p h o to ­ m ultiplier o f spectral ty p e, S20/SbK N aC s cathodes o f th e sensitivity range 3 2 0 —760 m m , and the G l - B l p lotter w hich, bein g cou pled w ith a m on och rom a tor was able (beside drawing the graphs) to change the w avelength. The excited lum inescence was recorded in the setup com posed o f a halogen lam p (100 W ), deuter lam p, a SPM -2 m on och rom ator w ith a quartz prism , a P K attachm ent, interference and glass filters, an M12 P C 51 ph otom u ltiplier and a G l - B l plotter, w hich being again coupled w ith a m on och rom ator changed the excitin g w avelength.

T h e lum inance tem perature o f th e halogen lam p was 3200 K , its spectral distribution I 0(A) was the same as th at o f b lack b o d y o f th e same tem perature. In the near ultraviolet Z0(A) takes v e ry low values, and w ith increasing ligh t w avelength (in accordance w ith th e P la n ck form ula)

(4)

134

S. Gabala th e intensity becom es respectively higher. The application o f the steady geom etric w idth o f th e m on och rom ator slit, as it was in onr case, results in som e increase o f th e differences in th e value o f lum inescence excitin g ligh t flu x betw een th e near ultraviolet and th e visual range. T o ob ta in th e true distributions o f th e excitation spectra th e indication o f the p lo tte r should b e d ivid ed b y

I 0(X)AX.

F o r exam in ation o f the excitation spectra o f M n2+ ions lum inescence th e deuter lam p was used. This allow ed to broaden the excitation spectral range (starting w ith 200 nm ) and to m ake it closer t o the true spectra. I n order to select th e intervals o f the lum inescence spectra w ith th e help o f filters th e generally used division was assumed, accordin g t o w hich th e lum inescence w ith in the w a v e le n g th 'ra n g e o f 50 0 -6 0 0 n m com es fro m th e M n2+ ions in th e tetrahedric com plexes, w hile th a t w ithin th e 600 -7 00 n m w avelength range is em itted b y the M n2+ ions in th e octahedrie com plexes.

Tig. 2. The spectral distribution of excitin g ligh t beam from th e deuter lam p (1) and halogen lam p (2), as related to the constant differences of th e ligh t w avelength

(5)

In th e figure 2 th e dependence betw een the ligh t flu x and th e w avelength is show n fo r a deuter lam ps (1) and a halogen lam p (2) m easured w ith a va cu u m V T h 5 therm oelem ent supplied w ith a quartz w in dow . T he results w ere referred t o a constant ligh t w avelength interval.

3. Results of examinations

T h e presentation o f th e results of exam ination w ill b e started w ith showing th e dependence o f th e op tica l density u p on th e w ave-num ber fo r the sam ples 14 m m th ick m ade o f F K 5 glass containing 0.5 % o f M n2O a and o f B K 7 and S K glasses w ith 0 .1 % con ten t o f M n 20 8. I n th e glasses F K 5 and B K 5 th e w ide absorption ban d o f M n3+ m a y b e n oted . In contrast to this, bands con n ected w ith the

d-d

transitions fo r M n2+ ions are p ra cti­ ca lly unn oticeable (fig. 3).

F ig. 3. D ependence of the optical d ensity upon the w ave num ber for glasses activated w ith m anganese (d = 14 mm).

1 - FK 5 (0.5%Mn2O3), 2 - BK 7 (0.1%Mn2O3), 3 - SK 4 (0.1%Mn2O3)

In th e figure 4 the curves o f lum inescence spectral distribution are show n fo r the sam ple o f F K 5 , B K 7 and S K 4 glasses a ctiva ted b y m angane­ se ions. The spectral distribution o f m anganese lum inescence indicate

(6)

136

S. G

íbala

a pproxim ately th e p roportion s o f those ions depending on th e coordination. Thus th e results ob ta in ed fo r the B K 7 glass (curve 2) speaks fo r a decisive dom inance o f lum inescence c o m ing fro m the M n2+ (4) ions. In the S K 4 glass th e quantities o f M n2+(4) and M n2+(6) are com parable (curve 3), w hile in the F K 5 glass th e predom inance o f th e com pon en t com ing fro m M n2+(6) is v e ry distinct (curve 1). F o r these glasses th e intensity o f lum i­ nance due to M n2+ is different. The curves in fig. 4 are p lo tte d fo r different ranges o f th e p lotter sensitivity.

In th e figures 5 -7 th e excita tion spectra o f lum inescence are shown in th e spectral range corresponding t o th e M n2+(4) an d M n2+(6) bands. A b o v e 600 n m w avelength th e lum inescence was separated b y the edge filter (A > 600 nm ). F ro m the longer w avelength side the spectral range was restricted b y the lim it o f ph otom eter sensitivity. O n th e other hand, the spectral range o f M n2+(4) lum inescence was separated b y I F 550 interfe­ rence filter o f th e half-w idth 5.0 n m — fo r excita tion w ith a halogen lam p,

P ig. 4. The spectral distribution of lum inescence in glasses activated w ith m anganese

(7)

and b y a glass filter (green V G , 2 m m ) fo r the denter lam p. The excitation spectra are registered in th e graphs, w hich correspond t o M n2+(4) lum i­ nescence (curves 1) and to th e M n2+(6) lum inescence (curves 2). The curves o f .excitation spectra induced b y th e deuter lam p (la , 2a) as w ell as b y the halogen lam p (la , 2b) are presented fo r th e fix e d w id th o f the m on och rom ator slit. W h ile th e intensities o f the excitation b a n d fo r deuter lam p are closer th e true ones, th e intensities o f th e excita tion ban ds indu­ ced b y th e halogen lam p (for w hich an increase o f th e light flu x occu rs w ith the increase o f th e ligh t w avelength) are enhanced.

M any bands are observed in th e excitation spectra o f M n2+ lum inescence in the F K 5 glass (fig. 5). A ban d w ith a m axim um at 220 nm appears fo r

F ig. 5. The lum inescence excitation spectra for Mn2+ ions em bedded in F K 5 glass under th e influence of deuter lam p (a) and under th e influence of halogen lam p (b) la — green glass filter (VG-9), 2a — edge filter (600 nm), lb — interference filter (550 nm), 2b — edge filter (600 nm)

lum inescence w hen m easured a t the presence o f either a green filter or a red one. T he intensity o f this ban d is tw ice less fo r lum inescence o f M n2+(4) than th a t fo r lum inescence o f M n2+(6). T here exist several bands w ith in the interval 3 00 -4 00 nm , the highest intensity being associated to the ban d w ith th e m axim um position ed betw een 350 and 360 nm (422a [4D ] . W ith in this spectral region the intensity o f the ban ds is defin itely higher fo r lum inescence due to Mn2+ (6). H ow ever, the highest intensity fo r this glass corresponds to the bands w ith m axim a fo r th e w avelength ranging

(8)

138

S. Gabala betw een 420 and 430 n m

{*Eg *A

lg) . I t m ay b e n o te d th at these bands are splitted. T h e bands, corresponding to the transitions to the sublevels

4T 2g

and

4T lg,

are v e ry low and w ide. O nly b y increasing the light flu x (halogen lam p) th ey m a y b e m ade w ell visible. A n increase o f the light flu x w ith th e increase o f th e w avelength causes an apparent shift o f these bands tow a rd th e longer w avelength.

In the B K 7 glass th e con cen tra tion o f manganese ions is considerably low er (0.1 % ) and b y the same means th e ratio M n2+ (4) /M n2+(6) is different. H ere, the greatest num ber o f ions w ith fou r ligands occurs and therefore the ban d w ith m axim um at 220 nm fo r M n2+(4) has th e highest intensity (fig. 6). O n the other hand, th e excita tion spectrum fo r lum inescence o f M n2+(6) w ithin th e interval 2 0 0 -3 0 0 nm has tw o bands w ith m axim a at 220 and 275 nm , b u t o f low er intensity. W ith in the interval 30 0 -4 0 0 nm tw o bands o f m axim a at 350 -3 60 n m and 380 n m are visible and v e ry low intensity is observed if com pared to bands fro m th e interval 2 0 0 -3 0 0 nm . The bands

4E g 4A lg

(420-440 nm ) are also o f less intensity b u t their splitting m a y b e seen v e ry well. The ratios o f these bands are different fo r M n2+ (4) and M n2+(6).

In th e case o f S K 4 (fig. 7) glass th e differences in th e excitation spectra distribution are observed betw een 20 0 -3 0 0 nm . H ere, there exists one

(9)

w ide ban d exten ded betw een 230 and 240 nm . In spite o f this, th e

*Ea *Alg

(420-440 nm ) are splitted to a less degree. This is p ro b a b ly due to th e excitation o f M n2+ in tw o coordinations.

4. Discussion o f results

T he lum inescence m eth od m a y b e used to exam ine the structure o f the 3d level in M n2+ ions and determ ine th e crystal field param eters in a m uch m ore p erfect w a y than it is allow ed b y absorption m easurements. The m eth od discussed m a y b e also applied t o exam ine the samples fo r w hich th e

d-d

transitions m a y n o t b e con trolled b y absorption m easurements.

T h e positions o f the absorption bands o f M n2+ fo r the silicon glasses are know n fro m th e literature data. F o r instance, the b a n d con n ected w ith th e electron transition to th e levels

*Eg

[4$ ] and

4A lg [*G]

is associated w ith the w ave num bers w ithin the region 23500-23800 cm 1 [1 ], while th e transition t o the level

*Eg

[4D ] is associated w ith th e w ave num bers 28000 cm - 1 . These results are absolutely consistent w ith those obtained fro m th e excita tion spectra lum inescence. The exparim ental data fo r th e lu ­ m inescence excita tion spectra o f M n2+ (4) and M n2+ (6) as w ell as the param eters o f th e crystal field are contained in table. In this table no excita tion bands are reported w hich w ou ld b e contained betw een 200 and

(10)

140

S. Gębala

T a b l e . W ave numbers for Mn2+ (6) and Mn2+ (4) and tbe param eters for the crystal field N otations F K 5 [cm “ 1] B K 7 [cm “ 1] SK 4 [cm - 1 ] Mn2+ (6) Mn2+ (4) Mn2+ (6) Mn2+ (4) Mn2+ (6) Mn2+ (6) *Tlg 4P 30300 29400 % 4L> 28170 28410 28090 28250 27930 28200 b 26400 27300 26300 27300 26400 27200 % 4G 23700 23580 23700 23500 23700 23600 ‘•¿ i, * 6 23250 23000 23000 23000 23400 23000 *T2g 4G 20400 20400 20400 'T la * O 21500 21500 20200 B 638 690 627 678 604 657 870 460 900 460 770 650

300 nm . T h e latter bands o f v e r y high intensities m a y b e ascribed t o con d u ction bands. T he respective calculations have b een carried o u t on th e base o f form ulae fro m the b ook s b y Ba b t e c k i [ 6 ] and Be k s t j k e b [ 7 ] .

T he results obtained in this w ork are (w ithin th e m easurem ent a ccu racy) consistent w ith th e literature data. T h e m easurem ent accu racy o f th e applied m eth od m a y b e im proved b y th e respective changes in th e m easu­ ring setup and b y perfection in g th e m easurem ent technique.

The splitting o f the

*Eg

and

*Alg

ban ds indicate th a t there exist consi­ derable deviations fro m the octahedrical sym m etry. F o r instance, in th e B K 7 glass the difference betw een the w ave num bers fo r

4E g [46]

and

*Alg [*0]

bands is equal to 700 cm - 1 . T h e m eth od o f th e lum inescence excita tion spectra is th e simplest so far as th e separation o f th e com pon ents com ing fro m M n2+ (4) and Mn2+ (6) is concerned. Such a separation w ou ld n o t b e possible w ith th e help o f ab sorp tion measurem ents.

References

[1] Ma r g a r y a n A . A ., et al., D oklady A N SSSE 221 (1975), 665.

[2 ] Ma r g a r y a n A . A ., Ka r a p e t y a n S. S., X l- t h International Congress on Glass, Prague 1977, Section A8, p. 79-85.

[3] Go r b a c h e v a N . A ., Kab a k o v a A . J ., Zh. Prikl. Spektr. 6 (1967), 478. [4] Sz ó r e n y j T ., Szollósy L ., Sz a n k a K ., P b ys. a. Cbem. Glass. 17 (1976), 104. [5] Go l d b e r g P ., Luminescence o f Inorganic Solids, Academ ic Press, N ew York,

London 1966.

[6] Ba r t e c k i A ., Spektroskopia elektronowa związków nieorganicznych i komplekso­

wych, P W N , W arszawa 1971.

[7] Berstjker I. B ., Elektronnoe stroenie i svoistva koordinacionnykh soedinenii, Izd. K him iya, Leningrad 1976.

(11)

[8] Bo k sh a O. N ., GtRu m-Gzhimailo S. V ., Iesledovanie optichesTdch spektrov Tcristallov 8 ionam i gruppy zheleza p r i Tcomnatnoi i niskikh temperaturakh, Izd. N auka, Moskva 1972.

[9] Ko n s t a n t in o v a-Sh l e z in g e b M. A ., K h im iya lampových geterodesmicheskikh ljuminoforov, Izd. N auka, Moskva 1970.

[10] Appe n A . A ., K him iya stekla, Izd. K him iya, Leningrad 1974.

Received A p ril 15, 1980 ^ш йш иссцсвпш ш MC I и д и ш ю д ш ш ш х структуры УРОВНЯ 3d ИОНОВ Мп+2 В стеклах Показано, что в активированных стеклах Мп+2 полосы спектра поглощения, соответству­ ющие переходам d-d, не обнаруживаются, между прочим — из-за наличия полосы спектра поглощения Мп+3. Доказано, что применение в этом случае спектров возбуждения люми­ несценции позволяет успешно исследовать структуру подуровня 3d ионов Мп+2. Метод спектров возбуждения люминесценции обладает рядом преимуществ, позволяя, между про­ чим, несложным образом разделять Мп+ 2 (4) и Мп+2 (6).

Cytaty

Powiązane dokumenty

Beata Ziębińska believed that the role of the University of the Third Age is to coun- teract the marginalization of seniors by different forms of activities: social, physical

Natomiast jednostki prezentujące się jako niepolityk, nawet kandydując z list wyborczych komitetów tworzonych przez partie, wyraźnie podkreślały swoją

• ubóstwo w perspektywie islamu, posiadając swój wymiar religijny i doczesny, jest zobiektywizowanym stanem niemożności realizacji potrzeb podstawowych (dharuriyyat), służących

Przedmiotem zaintere- sowania autorów są psychologiczne i ekonomiczne wskaźniki szacowania stresu za- wodowego, znaczenie pomiaru wewnątrzorganizacyjnej mobilności pracowników w

Jest to dobra okazja, aby zasta- nowić się nad tym, czym jest chrystianizacja, ale także czym jest dechry- stianizacja, nie tylko w odniesieniu do Polski, lecz także w

Tadeusz Skwara , mgr – germanista, historyk sztuki, tłumacz. Absolwent kolegium MISH Uniwersytetu Warszawskiego, od 2012 r. doktorant na Wydziale Neofilologicznym UW.

Naar deze situatie is in het kader van de sluiting van het Brouwershavense Gat een uitgehreid onderzoek verricht door het Waterloopkundig Laboratorium Delft.. Het

Pour un moment encore Colomba se métamorphose, son teint s’anime, son œil est en feu, mais très rapidement elle se calme et prétend que rien ne s’est passé, en entretenant