• Nie Znaleziono Wyników

Effect of methylparathion on glutathione S-transferase isoenzymes in different rat tissues

N/A
N/A
Protected

Academic year: 2021

Share "Effect of methylparathion on glutathione S-transferase isoenzymes in different rat tissues"

Copied!
7
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA B IO C H 1 M IC A E T B IO P H Y S IC A 14, 1999

Z o fia W alter, M aria Gawrońska, Christos Kargas, Wanda M ajcherek

EFFECT OF M ETHYLPARATfflON ON GLUTATHIONE S-TRANSFERASE ISOENZYMES IN DIFFERENT RAT TISSUES

In th is w o rk we exam ined the influence o f the o rg a n o p h o sp h o ro u s insecticide (IF O ) m e th y lp a ra th io n o n th e activ ity o f g lu ta th io n e S -tra n sfera se in vivo in d ifferen t m ale W istar r a t tissues. W e exam ined p o stm ito c h o n d ria l, cytosol, and m icro so m al cell fractio n s, o f the liver, kidney, p an creas, spleen, and b ra in . T h e activity o f the G S T w as m easu red acco rd in g to each o f th e tw o su b strates: C D N B an d D C N B respectively, w h at p e rm itte d us to d iffere n tia te G S T isoenzym s. W e observed significant increases o f th e activity o f G S T w hich d e p en d ed o n the tissue an d cell fractio n .

IN T R O D U C T IO N

P h o sp h o ro -o rg a n ic co m p o u n d s used as insecticides (IF O ) con siderably d istu rb cell m etab olism in near-lethal doses to w hich m am m als are generally exposed in consequence o f using IF O in agriculture and in households.

IF O dam ag e deoxyribonucleic acid and d istu rb th e tran sfer o f genetic in fo rm atio n [2-4, 24-26, 28-32]. In vivo they pro duce m u ta tio n s and they also can be carcinogenic and teratogenic factors (6). T h e m echanism which leads to such serious dam ages is n o t fully k now n yet, because the d a ta in investigations in vivo relating to dam ages to genetic m aterials are d isco rd a n t an d n o t uni vocal.

T his p ap e r has been devoted to the investigation o f th e influence o f m eth y lp ara th io n (M P) on glutathione S-transferases o f different cell fraction s o f ra t liver, kidney, spleen, pancreas and brain. T he m etab o lism o f M P in ra t liver has been presented in Fig. 1 [10].

M e th y lp a ra th io n is activated by d esulfurization to p a ra o x o n (in h ib ito r o f acetocholinoesterases in m icrosom al fractio n o f th e liver). E n zy m atic

(2)

CH,0 S \ 0 p / X o CH30 0

CH3° \

/ (0)

n o2 n o2

Fig. 1. M e tab o lic p a th w a y o f m ethyl p a ra th io n in r a t liver

1 - m icro so m al m ix ed -fu n ctio n oxidases, 2, 3 - g lu tath io n e S -transferase, 4, 5 - B -esterase, 6 - m icro so m al m ix ed -fu n ctio n oxidases in h ib itio n , A - m eth y lp ara th io n , B - 0 -m eth y l-0 -p ara- n itro p h e n y l p h o sp h o ro th io a te (o r O -m ethyl-O -para-nitrophenyl p h o sp h a te), C - d im eth y lp h o s-

p h o ro th ic a te , (or d im ethyl p h o sp h a te acid), D - p a ra -n itro p h e n o l, E - m ethyl p a ra o x o n

d eco m positio n M P in the r a t’s organism is catalised by oxidases o f m ixed effect, hydrolases and g lu tath io n S -transferases.

G lu ta th io n e S-transferases (G ST - E. C. 2.5.1.18) are a m u ltig ene enzym e fam ily which perform protective functions against toxic effects o f xenobiotics [1, 7, 27], T h e study seems to be purposefull, because o f the lack o f univocal d a ta on th e subject o f possible processes w hich lead to a d am ag e o f cell genetic m aterial.

M A T E R IA L S A N D M E T H O D S

In this experim ent have been used m ale W istar ra ts w hich weigh from 2 5 0-30 0 g. M e th y lp a ra th io n (0 ,0 -d im e th y l-0 ,4 -n itro p h c n y lth io p h o sp h a te ), m inim um purity 98% (obtained from the In stitu te o f O rganic C h em istry

(3)

in W arsaw ), was adm inistered once into the tail vein 0,5 L D 50 (21 m g M P in olive oil per 1 kg o f body weight).

E xposure tim e to the insecticide was up to 150 m in utes. T h e prepared ra t tissues: liver, kidney, spleen, pancreas and brain, were kep t at the tem p eratu re o f -70°C . F ro m each o f these tissues was m ade h o m o g en ate so lu tio n in 0,25 M sucrose in 0,1 M p h o sp h ate sod iu m -p o tassiu m buffer (pH 7,4) on the to tal co n c en tratio n o f 20% (w/v).

E nzym e activity G S T was estim ated by the m eth o d o f co n ju g atin g G S H ( H a b i g ct al. [8]) with 1,2-dichloro-nitrobenzene (D C N B ) and 1 -chloro-2,4-dinitrobenzene (C D N B ). A ctivity was m easured in p o stm ito - c h o n d ria l, m ic ro so m a l an d cytosol fra c tio n s o b ta in e d by J a c o b y ’ s m eth o d [11] using 50 to 300 n g protein for C D N B and D C N B respec­ tively.

P rotein co n c en tratio n was estim ated by using L o w r y ’ s et al. m eth o d [13], G S T activity was expressed in specific activity units lU /ln m o l S -l- -c o n ju g a tio n form ed w ithin 1 m in u te in th e c o n d itio n s o f en z y m atic reactio n in term s o f m g o f protein. T h e results were analysed by S tu d e n t’s t-test an d confidential level appro x im atio n o f a = 0,05.

C hanges in G ST activity have expressed in % acco rd in g to the form ula:

S A p o is o n e d - SA control x ioO% SA control

w ere S A - Specific A ctivity.

R E S U L T S A N D D IS C U S IO N

In o u r w ork we have observed a statisticaly significant increase in the activity o f g lu tath io n e S -transferase tow ards D C N B and C D N B in all exam ined cell fractions in rats poisoned w ith M P in the liver, spleen, pancreas, b ra in and the kidney.

T h e degree o f the increase o f the activity o f cytosolic G ST was different in each o f the exam ined tissues. In the liver, the increase of cytosolic G S I to w ard s C D N B as a su b strate was 47% in the kidney, 53 /o in th e spleen, 19% in the pancreas, and 69% in the brain - Fig. 2. A s reg ard s the increase o f cytosolic G S T s to w ard s D C N B as a su b strate was 25,8 /o in the liver, 6,4% in the kidney, 34% in the pancreas, 18% in th e spleen, and 50% in the b ra in - F ig 3.

(4)

pancreas liver spleen kidney brain

F ig . 2. E ffect o f M P o n G S T activ ity in tissues o f th e W is ta r ra t. E nzym e activities w ere m ea su re d by th e co n ju g a tio n o f G S H to

C D N B

pancreas liver spleen kidney brain

F ig . 3. E ffect o f M P o n G S T activ ity in tissu es o f th e W is ta r r a t. E nzym e activities w ere m ea su re d b y th e c o n ju g a tio n o f G S H to

(5)

C ytosolic fractio n G ST s o f ra t liver belong to the best kn o w n enzym es o f this type. M an y isoenzym es are p resent there. T hey are protein s from 40 to 50 k D a , built o f tw o different o r identical su b u n its from 22 to 27,5 kD a. Till now, at least 10 subunits and 15 m olccullar form s o f this enzym e have been described in the ra t tissues.

T h e occurance o f isoenzym es o f overlapping su b strate specific qualities results from the existance o f a num ber o f d ouble co m b in atio n s o f sub un its.

V aried term inology is used to classify G STs. In o u r p aper a division in to 3 classes a, n, n has been ad o p ted according to M a n n e r v i c [14], Specific activity to w ard s the used substrates allow s, to a certain degree to d ra w conclusions th a t the classes a and fx, react m ainly w ith th e su b strate C D N B , while the isoenzymes 3-3 and 3 -4 o f the class ^ w ith D C N B [5], It is evident th a t the increase o f the activity in the liver concerned bo th , th e isoenzym es o f the class a and the class ¡i. Seven isoenzym es have been fo u n d in the pancreas [21]. T h e increase o f G ST activity in the p ancreas related also to isoenzym es o f the classes a and fi.

In the spleen, the increase o f G ST activity to w ard s C D N B was 50% an d to w ard s D C N B 18% . O n the basis o f division on S eph arose 2, tw o m ain form s o f isoenzym es 2 -2 (class a) and 7 -7 (class n) have been ch aracterized in the spleen, so the increase ol the activity related to the classes a an d n [23],

In the kidney, the increase o f cytosolic GST tow ards C D N B as a substrate w as 53% , and to w ard s D C N B 6,4% . A ccording to the investigations [22], in kidneys th ere are 8 isoenzym es G ST belonging to the classes a, fi an d n. O ur investigations show a p artic u la r increase of th e enzym es o f the a class. Enzym es o f the /i class also show a certain increase o f activity.

A n exceptionally high increase o f G ST activity has been observed in the cytosolic fractio n o f the r a t ’s brain. It was 69% in relatio n to C D N B an d 50% in relatio n to D C N B . It m ay be concluded th a t this relates to all classes o f cytosolic enzymes. A ccording to J o h n s o n ’ s et al. p ap e r [12], enzym es o f all cytosolic G ST classes a p p e ar in th e r a t ’s brain.

M icrosom al form o f G S T has a different stru ctu re th a n cytosolic form s. It has been exam ined in h u m an and ra t livers [15], It is built o f three identical subunits ab o u t 17,3 kD a. In o u r investigations, we have found in con siderable 10% increase o f m icrosom al G S I activity in th e p an creas an d liver, and a b o u t 18% increase in the spleen, while in the kidney, liver, an d b rain we have observed ab o u t 50% increase o f the G S T activity in re la tio n to to b o th exam ined substrates.

T h ere is very little literatu re d a ta concerning m icro so m al G ST o f the b ra in , so th ere is som e difficulty in th e in te rp re ta tio n o f th is result. P o stm ito ch o n d rial fraction contains b o th , the enzymes from m icro som al an d cytosolic fractions. T h e results for this fractio n seem to co nfirm ,

(6)

generally o u r observatio ns concerning the increase o f G S T activity in the exam ined fractions.

T h e ob tain ed d a ta clearly prove th a t the effect o f m c th y lp a ra th io n is an increase in the activity o f one o f the m ain enzym es o f the xen obiotic m etabo lism system.

O n the, -so far available, literature we h av e n ’t found d a ta related to the influence o f M P on G ST s o f all th e fraction s and tissues o f the rat.

Several new p apers on G S T s are given som e d a ta on the o f m icroso m al G S T in ra t tissues (also o f the brain) [16], the d istrib u tio n o f G S Il and G S T in m ito c h p n d ria and cytosol o f the nervous system [9, 17], th e G S H an d G ST s activity in the organs and blood o f ra ts follow ing ch ro n ic irra d ia tio n a t low doses [18], b u t none o f them uses M P as an in d u cto r o f G S T activity.

T h ere is also a p ap e r ab o u t the p u rp o se o f using cryopreserved tissue to study the m etabolism o f pesticides in fo o d -p ro d u cin g anim als an d rats [20] co ncluding th a t there is no q u alitativ e differances in th e results b u t a q u a n tity degrease appears.

T hese studies were supported by U niversity o f Ł ó dź g ra n t N r 555/255.

R E F E R E N C E S [1] A n d e r s o n P. N. , M u r p h y S. D . (1992), F u n d a m en ta l A ppl. T o x ico l., 18, 2 2 1-226. [2] B ł a s i a k J., K l e i n w a c h t e r V., W a l t e r Z., Z a l u d o v a R. (1996) P ol. J. E n v iro n . S tu d ., S/2, 5-8. [3] B ł a s i a k J., K l e i n w a c h t e r V., W a l t e r Z. , Z a l u d o v a R. (1997), C u rre n t T o p . B iophys., 21, 13-16. [4] B ł a s i a k J., T r z e c i a k A. , J a ł o s z y ń s k i P., S z y f t e r K. , O s i e c k a R. , B ł a s z c z y k A . (1997), Cell. M ol. Biol. L ett. 2, 389-397.

[5] C a r r i l o M. C. , N o k u b o M. , K i t a n i K. , S a t o h K . S a to K . (1991), B iochim . B iophys. A cta, 1077, 325-331.

[6] D e g r a e v e N. , G i l o t - D e l h a l e I., M o u t s c h e n 1., D a h m e n A. , C o l l i z i M. , H o u b r e c h t s N. (1980), M u ta t. R es., 74, 201-202.

[7] D w i v e d i R. S., P r i m i a n o T. , N o v a k R. F. (1993), B iochim . B iophys. A cta, 1174, 4 3 -5 3 .

[8] H a b i g W. H. , P a b s t M. J., J a c o b y W. B. (1974) J. Biol. C h em ., 241, 7130-7139. [9] H u a n g J., P h i l b e r t M. A. (1995), B rain R es., 680, 16-22.

[10] IA R C M o n o g ra p h s on th e E v alu atio n o f th e C arcin o g en ic R isk o f C hem icals to H u m a n s (1983), 30, 141. [11] J a c o b y W . B. (1985), M e th o d s in E nzym ol., 113, 495-499. [12] J o h n s o n J. A. , H a y w a r d J. J., K o r n g u t h S. E. , S i e g e l F . L. (1993), B iochem . J „ 291, 453-461. [13] L o w r y O. H. , R o s e n b r o u g h N. J., F a r r A. J., R a n d a l l R. J. (1951), J. Biol. C hem ., 193, 263-275.

(7)

[14] M a n n e r v i c B., A l i n P., G u t h e n b e r g C., l e n s s o n H. , T a h i r M. K. , W a r ­ c h o l m M . (1985), Proc. N atl. A cad. Sci. U .S .A ., 82, 7202-7206.

[15] M c L e l l a n L. J., W o l f C. R., H a y e s J. D . (1989), B iochem . J „ 258, 87-93. [16] O t i e n o M. A. , B a g g s R. B., H a y e s J. D. , A n d e r s M. W. (1997), D ru g M e tab . D ispos., 25, 12-19. [17] P h i l b e r t M . A. et al. (1995), N eu ro to x ico lo g y , 16, 349-362. [18] R a d u l o v i c L. L., K u l k a n i A. P., D a u t e r m a n W . C. (1987), X en o b io tic a, 17, 105-114.

[19] R e v a A. D . et al. (1994), R ad . Biol. R ad io eco l., 34, 769-773. [20] S a l m o n F. , K o h l W. (1996), X e n o b io tica, 26, 803-811.

[21] S i n g h a l S. S., G u p t a S., S a x e n a M. , S h a r m a R. , A h m a d H. , A n s a r i G. A. S., A w a s t h i Y. C. (1991), Biochim . B iophys. A cta, 1079, 285-292.

[22] T r a k s h e l G. M „ M a i n e s M. D . (1988), Biochem . J., 252, 127-136. [23] T s u c h i d a S., S a t o K. (1990), B iochim . J „ 266, 461-465.

[24] W a l t e r Z., C z a j k o w s k a A. , L i p e c k a K. (1980), H u m . G e n et., 53, 378-381. [25] W a l l e r Z. , J a s i c k i P., Z a s t a w n y T. H. (1989), Bull. Soc. Sci., 21, 1-10. [26] W a l t e r Z. , W i s z k o w s k a H . (1990), A cta B iochim . P o lo n ., 37, 73-76.

[27] W a l t e r Z. (1994), Transferazy S-glutationowe, Białka kom órek prawidłowych i patologicznych, red. Z. K i l i a ń s k a , M. K r a j e w s k a , A. L i p i ń s k a , Ł T N ., Ł ódź, 151-171. [28] W i a d e r k i e w i c z R. , W a l t e r Z., R e i m s h u s s e l W . (1986), A c ta B iochim . P o lo n .,

33, 73-85.

[29] W i a d e r k i e w i c z R. , W a l t e r Z. (1990), F o lia B iochim . B iophys., 7, 27-40. [30] W i s z k o w s k a H. , K u b i a k A. , W a l t e r Z. (1984), A c ta G e n et. P o lo n ., 25, 317-323. [31] W i s z k o w s k a H. , K u l a m o w i c z I., M a l i n o w s k a A., W a l t e r Z. (1986), E nvironm .

R es., 41, 372-377.

[32] W o j t y s i a k M. , W i s z k o w s k a H. , W a l t e r Z. (1987), S tu d . B iophys., 1, 4 3 -4 9 .

W płynęło d o R ed ak cji D e p a rtm e n t o f M o le cu lar

F o lia bio ch im ica et biop h y sica G en etics

24.04.1998 U n iv e rsity o f Ł ó d ź

Z o fia W alter, M aria Gawrońska, C hristos Kargas, W anda M ajcherek

W P Ł Y W M E T Y L O P A R IA T IO N U N A IZ O E N Z Y M Y T R A N S F E R A Z Y S -G L U T A T IO N O W E J W R Ó Ż N Y C H T K A N K A C H S Z C Z U R A

W niniejszej p racy z b ad a n o wpływ insektycydu fo sfo ro o rg an iczn eg o - m e ty lo p a ra tio n u n a ak ty w n o ść tra n s fera z S -g lutationow ych w tk a n k a ch szczura ra sy W istar. Z b a d a n o frakcję p o stm ito c h o n d ria ln ą , cytozolową. i m ik ro so m aln ą w ą tro b y , n erk i, trzu stk i, śledziony i m ózgu. A k ty w n o ść o zn aczan o z d w o m a su bstratam i: C D N B i D C N B , co pozw oliło w yróżnić izoenzym y G S T . S tw ierd zo n o zm iany aktyw ności zależne od tk an k i i frakcji k o m ó rk o w ej.

Cytaty

Powiązane dokumenty

W typie R natomiast podstawową rolę odgrywa nadmierna aktywność do- skonale wszystkim znanego mechanizmu renina-an- giotensyna-aldosteron (RAA). Laragh należy do pionierów badań

Key words: intermittent hypoxic training, ultra-structural lung and heart tissues changes, biological barriers thickness, mitochondria,

control). Administration of cyanate and lipoate signifi- cantly lowered ROS level in all the structures: in the cortex by 28 % of the cyanate-treated group, in the striatum by 41

In this study, as a response to glucose challenge, we found the more pronounced change of oxidative stress by- products, nitrotyrosine, and thiol groups in PCOS girls in

Celem głównym niniejszej pracy jest analiza dwóch polimorfizmów genu GSTP1 kodującego transferazę S-glutationu — enzymu odgrywającego podstawową rolę w procesach

Our results showed that curcumin exerted a weak stimulatory influence on the biosynthetic activity of the thyroid gland in young male rats, since the levels of FT3 and FT4

2 Overall patterns of Cd distribution [%] over different anatomi- cal compartments (DT digestive tract, MT Malpighian tubules, R all other tissues) in the ground beetle

In rats that received a high dose of dioxin (8 F g) hepatic lobules revealed parenchymal degeneration and vacuolization of hepatocytes was observed, and also an increased CYP