• Nie Znaleziono Wyników

Remarks on the generalized doubly truncated gamma distribution

N/A
N/A
Protected

Academic year: 2021

Share "Remarks on the generalized doubly truncated gamma distribution"

Copied!
6
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FO L IA O EC O N O M IC A 141, 1997

Tadeusz Gerstenkorn* Joanna Gerstenkorn**

R E M A R K S ON T H E G E N E R A L IZ E D D O U B LY T R U N C A T E D G A M M A D IST R IB U T IO N

Abstract. In the present paper we discuss a doubly truncated generalized gam m a

distribution and give form ulae for the m om ents o f this distribution and special cases together with examples o f calculations.

Key words: truncated probability distributions, m om ents, generalized gam m a distribution.

1. IN T R O D U C T IO N

After introducing the generalized gam m a distribution to the literature by S t a c y (1962), the investigations of this distribution were carried out by m any authors such as Š r ó d k a (1964, 1966, 1967, 1970), S t a c y and M i h r a n (1965), M a l i k (1967), W a s i l e w s k i (1967), H a r t e r ( 1967), L i e n h a r d and M e y e r (1967), R o s ł o n e k (1968), H a g e r and B a i n (1970), P o d o l s k i (1972), K r ó l i k o w s k a (1973), J a k u s z e n k o w (1973, 1974, 1976), L a j k ó (1977), L a w l e s s (1980), A c h e a r and B o l - f a r i n e (1986), M a s w a d a h (1991).

The im portance o f this distribution lies in the fact it is a generalization o f the gamma, Weibull, Rayleigh and X distributions significant in m any technical and economic applications.

In the present paper we deal with a generalized doubly truncated gam m a distribution and give form ulae for the m om ents o f this distribution together with examples of calculations. This will enable us to apply the distribution and its special cases whenever the range o f the variable is essentially bounded to some interval o f values. In the practice of operation researches, these m ay be the cases quite frequently encountered.

* U niversity o f Łódź, Faculty o f M athem atics. ** U niversity o f Łódź, C hair o f Statistical M ethods.

(2)

2. T H E R ESU LTS

The density function of random variable X with the generalized gam m a distribution is given by

A part from m any articles in journals, distribution (1) is also easy to find in the lexicon M ü l l e r et al. 1975 and handbook G e r s t e n k o r n , Ś r o d k a (1983) listed in the references.

As some special cases of (1) we have: 1) gam m a distribution if a = 1, 2) Weibull distribution if a = p, 3) Rayleigh distribution if a = p — 2, 4) x distribution if a = 2, p = n,

(most frequently, a = 1/2, see M ü l l e r et al. 1975, p. 34),

a) a = 2, p = n = 2 - the Maxwell distribution with 2 com ponents (most frequently, X = 1/2a 2).

b) a = 2, p = n = 3 - the Maxwell distribution with 3 com ponents (most frequently, X = 1/2<т2).

We assume th at f ( x ) is a positive density function o f random variable

X with P ( X e ( c , í/)) = 1. The density function f ^ u ) o f random variable U,

given by

is called the density of a doubly truncated distribution of random variable

X. We consider a truncated distribution if the values of random variable

have to be limited to interval [a, b].

D istributions 1-4 are well know n and have been investigated in m any papers.

F o r distribution (1), we have from (2)

for jc > 0; a, p, X > 0, for a: < 0.

(

1

)

ь 0 for и < a or и > b a

(

2

)

ь f ď 1e A“7J x p 1e lx’dx o f 0 < a < и sg b, /i(m ) = S 0 o f и < a or u > b.

(3)

D enote

h

W„ = f vp~ i+ne ~ iy'dv, и = 0, 1 , 2 , ... (4)

a

Lemma. F o r (4), we have

W„ = j - [ a p+n~ae ~ Álŕ - b p+n- ae - Xa* + (p + n - a)ITn_ J . (5)

Proof. We can write 1 b

W„= - - r f-A<xva- 1e - iv"v',+n- adv. Aoc a

A fter integration by parts, we have

1 b

W„ = - T [(vp+n- ae - Xv’) l ba- ( p + n - a ) f v p- 1+n- ae - Xv‘dv] = (5)

A C C a

We denote by m n the m om ent of order n o f random variable U with density function (3), th at is,

m n = E i l ß ) = J unJ\{u)du. (6)

a

From (6) and (4) we immediately have

Theorem. If random variable U has density function (3) o f the truncated generalized gam m a distribution (1), then, for и > 1,

m n = W„/W0 (7)

where W„ is given by (4). Examples.

We calculate m 2 in the ease of truncated generalized gam m a distribution (3). F rom (7) and (5) we have

m 2 = T [ар+2- ае ~ Ха’ - b p+2- * e - Xb‘ + (p + 2 - a) W2- e]. Aoc VYq

We consider the following special cases: 1. Let a = 1, Я = 1; then (gam m a distribution)

m 2 = (ap+íe~a - b p+1e~b + (p + 1 ) fV1) / W 0 =

(4)

W e notice that

W Q - J vp_ 1e ~ vdv = Г (p, b) - Г(/7, a) (8)

a

where Г (p, x ) represents the so-called incomplete gam m a function

Г(р, a) = J- vp~ i e~'dv,

о

which means that one can calculate (8) with the aid e.g. K . Pearson’s Tables. 2. If p = 1 = a (special case of the W eibull distribution), then

W 0 = e - a - e ~ b,

therefore

m 2 = {a2e ~ 2 — b2e~b + 2[(a + \)e~a - (b + 1 )е “ ь]}/(<Га - e " b) =

= {(a2 + 2a + 2)e~a - (b2 + 2b + 2) e - b}l(e~a - e~b). 3. Let a = p = 2 (Rayleigh distribution). In this case

m 2 = W 2I W 0 = 2^ p r ( a 2e _A“J - b2e ~Xb’ + 2 ^ 0),

however,

Ж

0 =

}ve~l *dv

= - ^

“AvJ)la =

therefore

(a2 + ^ ) e - Aal- ( f c 2 + ^ ) e - A'’1

ffl2 = g-й * _ g-Abä •

4. Let а = 2, p = 3 (Maxwell distribution with 3 com ponents, then

т г= ~ b 3 e ~ Xb' + 3 W o ) where, in this case

W 0 = J v2e ~ Xv'dv.

a

A fter integration by parts, we have

(5)

and, further,

ь I JlXb [Z __ __

J e ~ Xv'dv = J е" ,2/2Л = / - [Ф(72Я6) - Ф(^2Яа)]. я \/2Я ,/2Аа V ^

Using the tables o f the norm al distribution Ф(/), we obtain the required result.

R E FE R E N C E S

A c h c a r J. A. and B o l f a r i n e H. (1986): The log-linear m odel with a generalized gamma

distribution fo r the error: a Bayesian approach, „Statistics and P roba bility L etters” , 4, 6,

p. 325-332.

G e r s t e n k o r n T., Ś r o d k a T. (1983): Combinatorics and probability theory, Polish Scientific Publishers, 7th ed. W arsaw, (in Polish).

H a g e r H. W. and B a i n L. J. (1970): Inferential procedures fo r the generalized gamma

distribution, JASA 65, p. 1601-1609.

H a r t e r H . L. (1967): M axim um likelihood estimation o f the parameters o f a four-parameter

generalized gamma population fo r complete and censored samples, „Technom etrics” 9,

p. 159-165.

J a k u s z e n k o w H. (1976): Bayes estimator in a generalized gamma distribution, Z eszyły N aukow e, Politechnika Łódź, (Sei. Bull. Łódź Techn. Univ.), 245, M al. 8, p. 25-33. J a k u s z e n k o w H. (1974): On properties o f the generalized gamma distribution, D em onstratio

M ath., 7, 1, p. 13-22.

J a k u s z e n k o w H . (1973): On some property o f the generalized gamma distribution, Ann. Soc. M ath. Polon., Ser. I, Comm ent. M ath. Prace M at., 17, 1, p. 237-242.

K r ó l i k o w s k a К . (1973): On the characterization o f some fam ilies o f distributions, Ann. Soc. M ath. Polon. Ser. I, Comm ent. M ath. Prace M at., 17, 1, p. 243-261.

L a j k ó К . (1977): A characterization o f generalized normal and gamma distributions, Colloq. M ath. Soc. János Bolyai, 21. Analytic F unction M ethods in Probability Theory, Debrecen (Hungary).

L a w l e s s J. F. (1980): Inference in the generalized gamma and log-gamma distributions, „Technom etrics” 22, p . 409-419.

L i e n h a r d J . H. and M e y e r P. L. (1967): A physical basis fo r the generalized gamma

distribution, Q uart. A ppl. M ath ., 25, p. 330-334.

M a l i k H. J. (1967): E xact distribution o f the quotient o f independent generalized gamma

variables, Canad. M ath. Bull., 10, 3, p. 463-465.

M a s w a d a h M . S. (1991): Structural inference on the generalized gamma distribution based

on type II progressively censored sample, J.A ustral. M ath. Soc., Ser. A, 50, 1, p. 15-22.

M ü l l e r P. H. und Autorenkollektiv (1975): Lexikon der Stochastik, Wahrscheinlichkeitsrechnung

und Mathematische Statistik, Akademie Verlag, 2. bearbeitete und erweiterte Auflage, Berlin.

P o d o l s k i H. (1972): The distribution o f a product o f n independent random variables with

generalized gamma distribution, D em onstratio M ath., 4, 2, p. 119-123.

R o s ł o n e k E. (1968): On some characterization o f the generalized gamma distribution, Zeszyty N auk. Politech. W arszaw., 173, p. 127-134.

S t a c y E. W. (1962): A generalization o f the gamma distribution, A nn. M ath. Stat., 28 p. 1187-1192.

(6)

S t a c y E. W. and M i h r a n G . A. (1965): Parameter estimation fo r a generalized gamma

distribution, „Technom etrics” 7, p. 349-358.

Ś r o d k a T. (1966): Composition o f the Laplace distribution with a generalized gamma, M axw ell

and Weibull distributions (in Polish), „Zeszyty N auk. Politech. Ł ódź” , 77, W łókiennictwo

14, p. 21-28.

Ś r o d k a T. (1970): Distribution o f the product o f powers o f two independent random variables

subject to generalized gamma distribution (in Polish), „Zeszyty N auk. Politech. Ł ódź” 112,

E lektryka 31, p. 47-66.

Ś r o d k a T. (1964): Estimateurs et intervalles de confiance d'un certain param etre dans la

distribution gamma généralisée, Rev. Statist. A ppl., 12, 2, p. 79-83.

Ś r o d k a T. (1967): On the distribution o f product and ratio o f powers o f two independent

random variables with the generalized gamma M axw ell and Weibull distribution, A nn. Soc.

M ath. Polon., Ser. I, Comment. M ath. Prace M at., 11, p. 77—85.

W a s i l e w s k i M . J. (1967): Sur certaines propriétés de la distribution gamma généralisée, Rev. Statist. A ppl., 15, 1, p. 95-105.

Tadeusz Gerstenkorn, Joanna Gerstenkorn

U W AG I O U O G Ó L N IO NY M PO D W Ó JN IE U CIĘTY M R O Z K Ł A D Z IE G A M M A

W pracy przedstaw iony jest podwójnie ucięty uogólniony rozkład gam m a i podane są wzory na m om enty tego rozkładu oraz jego przypadków szczególnych w raz z przykładam i ich wyliczeń.

Cytaty

Powiązane dokumenty

The information about the multidimensional Polya distribution one can find also in [2], p. The values of the random variables are truncated below fully

Please sign each piece of paper with your name and student’s number and the group sign (A, B, ....). When dealing with the CDF of the standard normal distribution, please use the

This means that the test we are using has almost no ability of distinguishing a value of p = 1 2 from a value of p = 0.51: if the true value of the parameter were p = 0.51, the value

Therefore, Theorem 4.3 may be generalized to all line graphs of multigraphs which possess maximal matchable subsets of vertices – for example, the line graphs of multigraphs

The germs at 0 of these new fibre-integrals, to which we add the function 1, have the structure of a C{s, s}-module; this module tensored by C[[s, s]] gives a C[[s, s]]-module

In this paper some algebraic results are given which allow distinguishing Reidemeister classes and hence computing the Reidemeister number of some maps.. Examples of computations

(For the case q = 1, this proof was also given in [11].) In fact, it shows that certain cases of Theorem (3.1) are equivalent to Doob’s results.. We end the section by deriving the

The carried out analysis of this synanthropization process was based on the example of stations of 31 anthropophytes of Poaceae family located in railway grounds