• Nie Znaleziono Wyników

Forecasting Returns Using Threshold Models

N/A
N/A
Protected

Academic year: 2021

Share "Forecasting Returns Using Threshold Models"

Copied!
14
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 192, 2005

M o n i k a J e z i o r s k a - P ą p k a *, M a g d a l e n a O s i ń s k a * * , M a c i e j W i t k o w s k i * * *

F O R E C A S T IN G R E T U R N S U S IN G T H R E S H O L D M O D E L S

Abstract. In this paper we present the problem o f forecasting efficiency o f the TAR models. Three methods o f forecasting are considered to compare their accuracy: the Monte Carlo method, and the two versions the bootstrap technique. The basic models are two- or three- regimes stationary threshold autoregressive models with the endogenous or exogenus switching variable. The time series set consists o f the weekly stock returns of the banking sector quoted at the Warsaw Stock Exchange.

Keywords: threshold models, foreasting, Monte Carlo, bootstrap. JEL Classification: Cl 5, C22.

1. INTRODUCTION

F o rec astin g financial prices as well as returns is n o t an easy task. O ften ap p licatio n o f even very com plicated tools d o n o t bring us to th e conclusion th a t the forecasting accuracy is satisfactory. It can be especially seen when the p rediction o f the co nditional m ean is m ade (cf. D unis ed. 2001). T h a t is why the m odels o f financial tim e series usually com bine tw o parts: i.e. the co n d itio n al m ean and the co nditio nal variance. O ne o f th e simple univariate case is the A R IM A -G A R C H representatio n. H ow ever, taking into acco u n t, th a t investors m ay react in one way in th e case o f high returns and in an o th er w hen the returns are low, the thresho ld autoregressive

* Mgr (M.A.), Department of Econometric and Statistics, Nicolaus Copernicus University, Toruń.

** Prof. dr hab. (Professor), Department o f Econometrics and Statistics, Nicolaus Copernicus University, Toruń. I acknowledge the financial support of Polish Committee for Scientific Research within the project 2 H02B 015 25 realized in 2003 -2006.

*** Mgr (M A .), Department o f Econometrics and Statistics, Nicolaus Copernicus University, Toruń.

(2)

m odels (T A R ) are considered (cf. Proietti 1998). T h e T A R m odels describe the con ditio n al m ean due to regimes given by the thresho ld p aram eter. It can be seen th a t the co nditional variance can be still described by the G A R C II-ty p e m odels (cf. O sińska and W itkow ski 2003).

In the presented paper we put o u r attention to the problem o f forecasting efficiency o f the T A R m odels. T hree m eth o d s o f forecasting are considered to co m p are th eir accuracy: one o f them is the M o n te C arlo m ethod, and th e tw o o th e rs are based on the b o o tstra p tech n iq u e . T h e basic m o d els a re tw o o r th re e regim es s ta tio n a ry th re s h o ld a u to re g ressiv e m odels w ith the endogenous or exogenous sw itching variable. T he tim e series set consists o f th e weekly sto ck re tu rn s o f th e b an k in g secto r q u o ted at the Stock E xchange in W arsaw , observed w ithin Ja n u a ry 1995 - S eptem ber 2003.

T h e p ap e r consists o f six sections. In Section 2 th e m odel is considered. Section 3 presents the statistical inference using the self-exciting threshold autoregressive m odel. Section 4 contains the m ethodology used in forecasting. T h e em pirical results are presented in Section 5. T h e final rem ark s are sum m ed u p in Section 6.

L et Y t den otes /e-dimensional ran d o m vector. L et us co nsid er the m odel

w here J t is a ra n d o m variable taking values o f finite set o f n atu ra l num bers {1, 2, 3, p}, BJ', AJ‘, H J| are k x /с-dim ensional m atrices o f the coefficients, £, is the /с-dim ensional white noise, C J| is a co n stan t vector. T he m odel (1) is called a canonical form o f the threshold m odel. It defines a wide class o f the m odels depending o n the choice o f J,.

W hen J , is the function o f Y t. we o b tain a S E T A R m odel (self-exciting th reshold autoregressive m odel). T h e S E T A R (p; k t , k 2, k p) m odel is defined in the follow ing way:

2. THE MODEL

(D Y, = BJ,Y, + AJ,Yt _ , + H \ + C \

(

2

)

i= i cond itionally on j = 1, ...p.

(3)

T h e m o re convenient form o f (2) is the follow ing

'Oto + a } У,_х + . . + <XkYt-k, + hlet for Yt-d < r L

(3) Yt = ,ag + a j y , . ! + + ^k,Yt-k, + ^ 2ßt for rt < y t_d < r 2

ag + a? У,_х + .. + ü£Yt-k, + for Yt~d ^ r p- 1

T h e thresh old variable is in (3) lagged Y„ b u t it can be also a n exogenous variable, say lagged Z t.

F o r tw o regim es we have the follow ing I ( y ) function

(4) /(>•> = f Whe" У 6 0 .

y ) W |1 when y > 0

an d the co rresp o n d in g S E T A R (2, k, k) m odel (5)

Y t — (“ o + a i Y t - \ + — + * k Y t - k + ( ß o + ß i Y t - i +••• + ß k Y t - k ) ' I ( Y t - d ) + ß , W hen all ß 0, ß l , ß k p aram eters are zeros th en (5) becom es the linear autoregressive m odel.

L eting e, to be a m artingale difference sequence, instead o f the w hite noise, we can m odify the classic S E T A R m odel by allow ing conditional heteroscedasticity. Let us consider the case w hen the co n d itio n al variance changes over tim e, b u t it does n o t changes w ithin the regimes. A s the result we have the second equation defining a G A R C H -ty p e m odel

ht), where: 9 P (6) h, = a 0 + £ citf-i + £ ß f o - i i = i i =i p~ž 0, q > 0 and a 0 > 0, a , > 0 fo r i = 1, 2, ..., q, ^ 0 fo r i = 1, 2, p (cf. Bollerslev (1986).

(4)

3. STATISTICAL INFERENCE WITHIN THE TAR FRAMEWORK

3.1. Testing for the TAR Model vs. the Linear one in the Presence of ARCH

T esting for threshold non-linearity vs. the linear alternative (e.g. H 0 :a = ß in (5)) one has to rem em ber th a t the threshold p aram eter r is unknow n and unidentified, as a rule. T h us the asym ptotic d istrib u tio n o f LM statistics is n o n -stan d a rd . U sually the LR type tests are used. T h e testing procedure while the residuals constitute the white noise proccss is described in T o ng (1990), O sińska and W itkow ski (1997).

H ansen (1996, 1997) indicates, th a t the presence o f A R C H affects the testing for non-linearity in the T A R m odels. In the case o f changing conditional variance the following procedure is recom m ended. A n ap propriate test is the W ald statistics, which is consistent in the case o f heteroscedasticity. It is constructed for p articu lar values o f the threshold p aram eter r. T he test has the follow ing form:

(7)

Wn(r) = (Яв(г))'[Я(А#|1(г)-1|;(г)М.(г)-1)Я']-1,

where: 0 = [а. Д ; R = [ I - I ] M„(r) = T.y,(r)yt(r)'; V„(r) = Z y t(r)yt(r)'ef-,

y , ( r ) - is a set o f lagged values o f Y, in each regime. A n ap p ro p ria te statistics for H a is

(8) Wn = supW „(r).

r e R

T h e critical values are generated using the b o o tstra p tech nique in the follow ing way: let u * be a sequence o f ran dom num bers such as u* ~ n . i . d . , t = 1, 2, ..., n an d let x* , =e,u*. U sing em pirical o bservatio ns y t, regress x* c o n d itio n a l on y t and y t( r ) . T a k in g the first regression we o b ta in the residual variance a * 2 , and the second regression gives a * 2( r ) . A ssum ing th a t W„ statistics converges to F distribution, which is the lim it d istri­ b u tio n w hen th e th re s h o ld p a ra m e te r r is k n o w n , we m ay c o m p u te K ( ľ ) - n(a*2 - a*2(r))/a*2 and F* = sup F*(r). H ansen (1996) show ed, th at

r e R

(5)

b o o tstrap procedure, and com puting F* we obtain th e asym ptotic distribution o f Wn. T h e asy m p to tic p-values are given by adding the ra tio o f b o o tstra p sam ples fo r w hich the F*n exceeds the com puted value o f W„.

3.2. The Parameter Estimation of the TAR Model

T h e param eters o f the T A R m odels are estim ated using the OLS m ethod, conditio n al on w hether the p aram eters d, r and к are k n o w n o r n ot. T he param eters arc usually n o t know n and have to be estim ated (cf. W itkow ski 1999).

L et us consider the follow ing m odification o f (3) m odel:

rtv. у _ | a o + + ••• +

1 1 ^ 0 + f l l ^ t - l + • •• + + ^ 2 e (

fo r Y , - d < r for Y , - d > r . T h e estim atio n proceeds in tw o steps (cf. T o n g 1983, 1990):

1. T h e estim atio n o f param eters stan d in g w ith lagged variables w ith fixed d, r, k it k 2. Let

(

10

)

( I D T h e d a ta [yk + 1, (12) 8j = |a i , a‘i, a jji = 1 , 2 , к = m ax(/ct , k 2, d).

yN] m ay be divided into tw o g rou ps J lt J 2 satisfying: yt e y i<> y j - d < r , yJe y 2<>y j d < r -Let (13) and (14)

У1 = lyj' • Уь>

yi,l. У2 = [у'.-уь.

Уу.

n l + n 2 = N — к, А, = 1 Ул- i Ул-2 - Уh-k,

i

ул-i

А-г

-

А-К

1 Ул- i

А-г

- Ул,-*( i = l , 2.

(6)

T h e estim ate o f a t m ay be expressed in the follow ing way: (15) fi, = (A j A,)- 'A { y „ i = 1 , 2 .

2. T h e estim ation o f all param eters. Let d, г be fixed at d 0, r0 (model 3). Let L d en o te m axim um ord er for each linear autoregressive m odel w ithin the regimes. D enote:

(16) A I C ( d 0, r 0) = A I C ( ^ ) + A I C ( £ 2). where:

A l C t f i ) = m in [n iln { ||e 1||2/ni} + 2(fc1 + 1)], 0 « * i 5 / .

A I C ( £ 2) = m in [n2 ln{||e2||2/n 2} + 2(fc2 + 0 ] .

(18) gi = У1 — AjSj i = 1, 2.

H ence, m inim ising (16) we obtain and fc2 w ith fixed d, r. U nder (16), A I C ( d 0, r 0) is determ ined.

F inally, we estim ate delay p aram eter d and thresho ld p aram eter r: (19) A I C ( d , ŕ ) = m in i m in A I C ( d , r ) I,

de{ 1 , 2 ... Г} (. re fi], t 2...tm} J

w here T m eans m axim um value o f d and {т1( x2, r m} is a set of p o ten tial can didates for estim ation o f r.

4. FORECASTING PROCEDURES USING THRESHOLD MODELS

F o recastin g based on the non-linear m odels is m ostly often based on the M o n te C arlo m eth o d (cf. Brown and M aria n o 1984), C lem ents and Sm ith 1997. T h e M C m etho d gives an asym ptotically unbiased predictor, while the stan d ard determ inistic predictor is usually biased. T ak in g a great nu m ber o f replications the M C predictor is usually m o re efficient - taking the m ean squared erro r - then th e determ inistic one. T h ere are, however, som e disadvantages. T he strong requirem ent o f the M C m eth o d is a prior assum ption o f the innovations distribution. While the distribution is improperly specified, the predictor becomes asym ptotically biased. T he alternative m ethod is based on the b o o tstra p technique, which uses the estim ated residuals of th e m odel instead o f th e generated innovations.

(7)

T hree m eth o d s o f forecasting the threshold m odels are discussed below: the m ean squared erro r m eth o d , the M on te C arlo and the b o o tstrap .

T h e m ean squared forecast erro r m ethod allows to co m p u te forecasts using any type o f the T A R m odel. F o r the m odel (5) the practical way o f tak in g the forecast is to com pute a weighted average o f the forecasts given separately from the first and second regimes. T he weights are usually the p robabilities th a t the forecasted series is in the first o r in the second regime w ithin th e forecast horizon. T h u s we have:

Ф, <p - d en o te correspondingly the stan d ard norm al d istrib u tio n and density N (0, 1). T he form ula (20) is the recursive one. T h e first step o f the p ro ced u re is as follows:

T he fo rm u la (20) requires the stan d ard e rro r o f prediction a„+k„ 1 to be estim ated. It can be com puted in the follow ing way:

T h e abov e fo rm u la is p ro p er only in the case w hen th e residual variances in each regim es are m utually equal to of.

4.1. The Mean Squared Forecast Error Method

(

20

) л+ Л — 1» Ý n+1 = a0 + iij У„ + (b0 + fcj Yn) ■ I n(r). ^ n + * = { ( f ll.O + f l l. l ^ n + A - l ) 2 + a U l & n + k - l } P k - 1 + + { ( a 2, 0 + a 2, 1 ^n + / k - l ) 2f l 2, l ^ n + k - l } + i a 2 ? l ( r ~ ^ л + J t - l ) + 2 fl2 , l ( a 2, 0 + 0 2 .1 ? n + k - l ) ~ { ( a l , l ( r — Ý n + k - l ) + 2 a i , l ( f l i , o + a l . l ^ n + k - l ) ) ' & n + k - l P k - 1 + — Y n + k-}

(8)

4.2. The Monte Carlo Method

T h e M o n te C arlo m ethod is a sim ple sim ulation based m etho d of forecasting used to a bro ad class o f the n o n-linear m odels. T h e forecast for one period ahead is identical to the one described in Section 4.1, i.e.

(21) Ý . + l = a 0 + в1 У„ + (b0 + b, Y„) • I„(r).

F o r longer forecast horizon a following sequence o f the forecasts is com puted ^rt+2» ^n +3* ••«•» ^л+ä) such as

(22) Ýi +2 — ao + a i ^n + l + (^o + ? . + i ) ' Д| + i(r) + <!*../>

(23) Ý i+3 = + a, Ýi + 2 + (b0 + b, ÝJn+2) • In+2(r) + £hXJ, and

(24) Ýi + k = fl0 + ö j ý í + t_x + (b0 + YJ„+k- 1) ■ I„+ * - i(r) + 7 = 1 , 2, 3, ..., N ,

w here ę 2 J , 1*^, j constitute a set o f ind ependent ra n d o m variables, norm ally d istributed, independent o f e. T h e superscript h m eans, th a t the variance o f the ra n d o m variable depends on the regim e o f th e process, i.e.

R epeating th e procedure given by the relation s (22)-(24) for y = l , 2, 3, ..., N we are able to com pute the final result as

(25) Ýn+k= l- Y Ý Í +k.

N ;= i

4.3. The Bootstrap Method

T h e idea o f the m ethod is very sim ilar to the M o n te C arlo m ethod, the difference is th a t the set %2j , Q j , tJ is the result o f the independent sam pling from th e estim ated erro r vectors £j, e2.

(9)

5. FORECASTING RATES OF RETURN USING THRESHOLD MODELS - SOME EMPIRICAL RESULTS

T h e p aram eter estim ates were obtained using EViews 4.0 softw are. T he follow ing assu m p tions were m ade:

• there is one or two threshold param eters (i.e. tw o or th ree regimes); • the m inim um an d m axim um value o f p aram eter d is equal to one and three respectively;

• the m axim um order for each linear autoregressive m odel is equal to 6. T h e exam ples o f the estim ated m odels (for BPH an d K re d y tb a n k ) are presented below: -0,000453 < + A ,e WTG,_, < -0 ,0 0 9 3 7 5 0,00629 - 0,1007B P / / , -0,04223 B P t f ^ - 0 , 492 ВРЯ,_ä+ 0.065-BPH,_4 + 0 ,1 9 3 B P //r_ 5 + /i2e - 0,000453 < WG,_, <0,069951 0,03308 + Aj£, WIG,_, >0,069951 K R T , = -0,002306 - 0,13607 K R T,_ , +ft,£ K R r ,_ j< 0,013351 0,00949 - 0,16998 KRT(_ , -0,297835 О Г , . j + 0,29448 О Г , _ j + 0,338059 + - 0,013351 <K R 7’1_ , < 0,030687 -0,010465 + Aj£, XRT(. , > 0 , 0306871

In the first m odel the W arsaw Stock Exchange index lagged by 1 was the threshold variable and in the second case we can see the S E T A R m odel w ith the th resh o ld variable lagged by 2.

T h e forecasting process was concen trated o n tw o m etho ds: th e M o n te C arlo and tw o versions o f the b o o tstrap m eth od . In the M o n te C arlo m eth o d the innovations o f the m odel were generated from the stan d ard n o rm al d istrib u tio n N ( 0 ,1 ).

T h e b o o tstra p sam pling was applied in tw o versions: BS1 - w hen the innov atio n s cam e from the whole sam ple o f the estim ated residuals and BS2 - when the innovations were taken from separated regimes. T h e forecast h o rizo n was 10 periods ahead. F o r each period 400 replicatio ns were m ad e and the forecast was taken at the m ean level and at the m edian level, respectively. T h e d istributions o f the forecast values in each replication, for 1, 2, etc. p eriods ahead were usually skewed.

(10)

T h e forecasting accuracy was m easured using m ean squared e rro r (M SE) and th e m ean ab solute percentage e rro r (M A P E ) and the m easures o f the direction accuracy such as (cf. Brzeszczyński and Kclm 2002)

(26) =

* N ( Y , Ý t * 0) where:

Y„ - the observed and the theoretical value o f Y„ respectively; N ( Y , Y t > 0) - num ber o f observations where the d irectio n o f the forecast and em pirical values was the same;

N ( Y, Ý, Ф 0) - num ber of non-zero products o f the observed and theoretical values.

In the T ables 1 and 2 the squared ro o ts o f the M SE and the M A PE results are rep o rted , respectively.

Table 1. The computed squared roots o f the MSE forecast errors using threshold models (10 periods ahead)

Model

Squared roots o f MSE

BS1 BS2 MC

mean median mean median mean median

BIG 0.05402 0.05291 0.05435 0.05420 0.05586 0.05683 BOS 0.02002 0.01920 0.01998 0.01837 0.02083 0.02139 BSK 0.01681 0.01703 0.01778 0.01694 0.01732 0.01612 HANDLOWY 0.03915 0.03993 0.03790 0.04005 0.03891 0.03844 KREDYT 0.10754 0.10837 0.10705 0.10708 0.10740 0.10699 KREDYT* 0.10770 0.10783 0.10670 0.10607 0.10636 0.10519 WIG 0.04340 0.04341 0.04309 0.04426 0.04389 0.04292 BPH 0.04327 0.04189 0.04244 0.04203 0.04295 0.04322 BPH* 0.04421 0.04314 0.04392 0.04065 0.04268 0.04316 BRE 0.06081 0.06097 0.06128 0.06104 0.06137 0.06172 BZWBK 0.06628 0.06533 0.06431 0.06400 0.06654 0.06792 РЕКАО 0.04090 0.04049 0.04097 0.03998 0.04192 0.04322

(11)

T h e first seven ro w s in T a b le s 1 and 2 c o n c e rn th e S E T A R m odels and the 5 last concern the T A R m odels in w hich lagged rate o f re tu rn o f W IG index is the threshold variable. T ak in g into account th a t we had to predict the threshold variable first, it is u n d ersta n d ab le th a t the results based on the T A R m odels are worse. A dd ition ally the forecasts for the W IG index were the w orst o f all forecasts based o n th e S ETA R m odels.

Table 2. The computed MAPE for the forecasts using threshold models (10 periods ahead)

Model

MAPE

BS1 BS2 MC

mean median mean median mean median

BIG -0.1592« 0.123184 -0.31656 0.016525 -0.30889 -0.00525 BOS -0.77150 -0.11910 -0.74446 -0.07428 -0.85644 -0.17040 BSK -0.95451 -0.13407 -0.90165 -0.12981 -0.76976 -0.22786 HANDLOW Y -0.68099 -0.05093 -0.44648 0.07791 -0.74387 -0.10452 KREDYT -0.28967 -0.23101 -0.35089 -0.13910 -0.37211 -0.22673 KREDYT* -0.42369 -0.38126 -0.24637 -0.18847 -0.42120 -0.27121 WIG 1.185956 0.574644 2.39827 2.333291 2.252129 0.964737 BPH 0.92199 1.00117 0.75706 -1.01767 1.35056 1.08186 BPH* -1.12421 -1.41804 -0.58183 0.26272 -1.62506 -1.41652 BRE -0.23200 -0.17912 -0.18270 -0.13152 -0.30956 -0.20334 BZWBK -0.73616 -0.66071 -0.71549 -0.66670 -0.67518 -0.64100 PEKAO -0.52122 -0.44558 -0.54569 -0.39966 -0.51608 -0.48785

* Denotes two-regime version o f the model, the remained are three regime models.

T a k in g the nom inal values o f the predicted retu rn s we observe th at they are rarely consistent with the realisations. H ow ever, som e values of M A P E related to the m edian m ay be found quite satisfacto ry . In gene­ ral, the m edian was a b etter basis o f com parison then the m ean, which results from the asym m etry o f the forecasts d istrib u tio n . T h ere are n o t significant differences betw een the forecasting m eth o d s applied, however the b o o tstra p 2 (sam pling w ithin regimes) is recom m ended. T h e direction accuracy o f the forecasts is presented in T ab le 3.

(12)

Table 3. The results of measuring the direction o f forecast consistency using threshold models

Model Method Percentage when the direction was consistent 1 period ahead 5 periods ahead 10 periods ahead

BIG BS1 - mean + 80 70 BS1 - median + 80 70 BS2 - mean + 60 70 BS2 - median + 20 60 MC - mean + 40 50 MC - median + 40 40 Handlowy BS1 - mean + 80 60 BS1 - median - 60 40 BS2 - mean + 80 80 BS2 - median - 40 30 MC - mean - 60 60 MC - median + 80 60 Kredyt BS1 - mean + 60 50 BS1 - median + 80 50 BS2 - mean + 60 50 BS2 - median + 80 50 MC - mean + 80 60 MC - median + 80 70 Kredyt 2 BS1 - mean + 80 40 BS1 - median + 80 40 BS2 - mean - 80 60 BS2 - median + 100 70 MC - mean + 80 70 MC - median + 80 80 BPH BS1 - mean + 80 60 BS1 - median + 60 40 BS2 - mean + 60 60 BS2 - median + 40 50 MC - mean + 60 60 MC - median + 60 60

(13)

Table 3. (cont.)

Model Method Percentage when the direction was consistent 1 period ahead 5 periods ahead 10 periods ahead

BRE BS1 - mean - 80 60 BS1 - median - 60 40 BS2 - mean - 60 60 BS2 - median - 40 50 M C - mean - 60 60 MC - median - 60 60

T h e consistency o f the forecasts direction was satisfactory in general. It was independent o f the chosen m ethod o f forecasting. In m an y cases the forecast d irectio n was the sam e as the realisation in 80 % , and occasionally in 100% . T h e forecasting using threshold statio n ary m odels is recom m ended for sh o rter horizon s (up to 5 periods ahead).

6. FINAL REMARKS

T h e aim o f the p ap er was to analyze the efficiency o f forecasting using sta tio n a ry th reshold m odels. T w o m eth o d s o f forecasting in th ree variants were applied; each o f them seems to be useful in p redictio n econom ic time series. Predicting weekly returns o f som e stocks quoted a t th e Stock Exchange in W arsaw a t the level o f the conditional m ean is very difficult. H ow ever, we have found great usefulness o f the threshold autoregressive m odels in ex-ante predicting the directions o f the changes. In m an y cases th e direction o f the forecasts was consistent w ith the em pirical d a ta in 8 0% , especially for sh o rt (up to 5 weeks) forecast horizon. T ak in g weekly retu rn s we have fo u n d th a t the A R C H effect was n o t to o strong, so we decided to skip it in o u r investigation. We expect th a t adding forecasts o f the conditional variances, m ay im prove the results.

REFERENCES

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal o f

Econometrics, 31.

Brown, B. W. and Mariano, R. S. (1984), “Residual-based Procedures for Prediction and Estimation in a Nonlinear Simultaneous System”, Econometrica, 52, 321-343.

(14)

Brzeszczyński, J. and Keim, R., (2002), Ekonometryczne modele rynków finansowych, Warszawa: WIG-Press.

Clements, M. P. and Smith, J. (1997), A Monte Carlo Study o f the Forecasting Performance

o f Empirical SETAR Models. Warwick: University o f Warwick.

Dunis, Ch. (ed.) (2001), Forecasting Financial Markets (in Polish), Kraków: Dom Wydawniczy ABC

Granger, C. W. J. and Terasvirta, T. (1993), Modeling Nonlinear Economic Relationships. Oxford: Oxford University Press.

Hansen, В. E. (1996), “Inference When a Nuisance Parameter is not Identified Under the Null Hypothesis” , Econometrica, 64.

Hansen, В. E. (1997), “Inference in TAR Models”, Studies in Nonlinear Dynamics and

Econometrics, 2.

Marcinkowska-I.ewandowska, W. and Serwa, D. (2002), Badanie efektu progowego tv wybranych

modelach rynków finansowych. In: Tarczyński W. (ed.), Rynek kapitałowy. Skuteczne inwestowanie, Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.

Osińska, M. and Witkowski, M., (1997), Linearity vs. Non-linearity Testing With Application

To Polish Business Outlook analysis, mimeo.

Osińska, M. and Witkowski, M. (2003), “Zastosowanie modeli progowych do analizy finansowych szeregów czasowych” , Materiały konferencyjne zgłoszone na VIII Ogólnopolskie Seminaria Naukowe, Dynamiczne Modele Ekonometryczne, Toruń: Uniwersytet Mikołaja Kopernika. Proietti, T. (1998), “Characterizing Asymmetries in Business Cycles Using Smooth-transition

Structural Time-series Models”, Studies in Nonlinear Dynamics and Econometrics, 3. Tong, H. (1983), “Threshold Models in Non-linear Time Series Analysis, Lecture Notes in

Statistics, 21.

Tong, H. (1990), Non-linear Time Series, Oxford: Oxford Science Publications.

Witkowski, M. (1999), “Estymacja modeli nieliniowych SETAR z zastosowaniem do badania koniunktury gospodarki polskiej”, Materiały konferencyjne zgłoszone na VI Ogólnopolskie Seminaria Naukowe, Dynamiczne Modele Ekonometryczne, Toruń: Uniwersytet Mikołaja Kopernika, Toruń.

M onika Jeziorska-Pąpka, Magdalena Osińska, M aciej W itkowski

WYKORZYSTANIE MODELI PROGOWYCH DO PROGNOZOWANIA ST Ó P ZWROTU (Streszczenie)

Celem artykułu jest porównanie metod prognozowania nieliniowych modeli progowych. Wykorzystane zostały dwie metody prognozowania: metoda bootstrap w dwóch wariantach oraz metoda Monte Carlo. Przedmiotem analizy są tygodniowe stopy zwrotu spółek sektora bankowego, notowanych na GPW w Warszawie. W konkluzji stwierdza się, że przewidywanie dokładnych wartości stóp zwrotu jest bardzo trudne, natomiast modele progowe dają bardzo dobre wyniki w zakresie przewidywania kierunków zmian w przyszłości.

Cytaty

Powiązane dokumenty

Streeter55 rzucali bez powodzenia wyzwanie tem u powszechnemu konsensusowi, dopiero praca Colwella i Royse’a przyniosła ostateczną odpowiedź na pytanie: „Czy bardziej

Rezultaty obliczania wymiaru fraktalnego szeregów czasowych wybranych spółek (tab. 3) potwierdzają zbieżność wyników (zaobserwowaną podczas oceny ryzyka indeksów

Sprawdź jak działa sieć przy innych postaciach funkcji przynależności (zmień wartość parametru inmftype funkcji genfis1) i przy różnej liczbie funkcji

W pierw szym etapie badania przystąpiono więc do szacowania widm mocy szeregów czaso­ wych, rep rezen tu jący ch przebieg procesu w poszczególnych w ojew ódz­

Sape- ckiego parafi i Radomyśl, faktem jest jednak, że 19 stycznia 1907 roku otrzymał probostwo w Racławicach 8.. Rozpoczynając duszpasterzowanie w

Ponieważ determinizm układów chaotycznych wskazuje na możliwość ich prognozowania, w kolejnym kroku badań oszacowano największy wykładnik Lapunowa w celu identyfikacji chaosu

– liczba neuronów w warstwie wejściowej jest zdeterminowana przez wymiar wektora wejściowego – każdy model ma ten sam zbiór sygnałów wejściowych, – sieć typu MLP

WPŁYW REDUKCJI POZIOMU SZUMU LOSOWEGO METODĄ NAJBLIŻSZYCH SĄSIADÓW NA DOKŁADNOŚĆ PROGNOZ FINANSOWYCH SZEREGÓW