• Nie Znaleziono Wyników

Multivalued Stop-Loss Stochastic Dominance Test

N/A
N/A
Protected

Academic year: 2021

Share "Multivalued Stop-Loss Stochastic Dominance Test"

Copied!
10
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

G r a ż y n a T r zp i o t *

MULTIVALUED STOP-LOSS STOCHASTIC DOM INANCE TEST

Abstract. Stochastic Dominance tests can be employed to assist decision-makers in ordering uncertain alternatives. Thes tests require specification o f alternatives probability distributions and the assumption of the utility function of the decision-maker. With these assumptions, decision alternatives can be partitioned into classes by stochastic dominance or inverse stochastic dominance (stop-loss dominance). This paper notices procedures to identify this class of alternatives in case of multivalued probability distributions.

1. INTRODUCTION

S tochastic D om inance tests can be em ployed to assist d ecision-m akers in o rd e rin g u n ce rtain altern ativ e s. T hese tests re q u ire specificatio n o f alte rn a tiv e p ro b a b ility d istrib u tio n s an d th e a ssu m p tio n o f th e utility fu n ctio n o f the decision-m aker. W ith these assu m p tio ns decision altern ativ es can be p artitio n ed in to class by stochastic do m in an ce o r inverse sto chastic d o m in an ce (stop-loss dom inan ce) depending on describing m odel fo r gains o r fo r looses. T h is p a p e r n otices p ro c ed u re s to identify th is class o f altern atives in case o f m ultivalued probability d istrib ution s.

2. MULTIVALUED STOCHASTIC DOMINANCE

L et F and G be the cum ulative distrib u tio n s o f tw o d istinct u n ce rtain alternatives X and Y. X dom inates Y by first, second and th ird sto ch astic d o m in an ce (F S D , SSD , T S D ) if and only if

H j( x ) = F (x ) - G (x) < 0 for all x e [ a , b] ( X F S D Y) (1)

(2)

H z( x ) = $ H 1( y ) d y š O fo r all x e [ a , b] ( X S S D Y) (2) a

x

Я3(х) = $H2(y)dy < 0 for all x e [a, h], and E(F(x)) ^ E ( G ( x ) ) ( X T S D Y ) (3) T h e relatio n sh ip between the three stochastic d om inan ce rules can be sum m arised by the follow ing diagram : F S D => SSD => T S D , which m eans th at dom inance by FSD implies dom inance by SSD and dom inance by SSD in tu rn implies dom inance by TS D . F o r p ro o f o f FSD and SSD sec H a d a r and R u s s e l l [1969], H a n o c h and L e v y [1969] and R o t h s c h i l d and S t i g - l i t z [1970]. T h e criterion for T S D was suggested by W h i t m o r e [1970].

W hen we have am biguities in probabilities and outcom es, we have no single-valued d istrib u tio n , such a situation can be represented by a set o f probability distributions. Each family has two extrem e probability distributions the scalar o utcom e space X .

Definition 1. Low er prob ability d istributio ns for all values x (e X , are d en o ted by

P*(xd = I p(Áj) (4)

A ccording to this definition wc have: £ p * (x ,) = 1. /

Definition 2. U pper probability d istrib u tio n s for all values x , e X , are den o ted by

P*(x i) = I P(Aj) (5)

J. Jti - m ax {y. y e A j }

N ow we also have: £ Х ( х (-) = 1. i

In case o f the p oint values o f ra n d o m variables bo th d istrib u tio n s (low er a n d u p p e r p ro b a b ility d is trib u tio n s ) are ex actly th e sam e: P * ( x i) = P*(xi) = p(x;) and we have probability distributions in classical sense.

Exam ple 1. W e determ ine lower and upper p ro bability d istrib u tio n s for ran d o m variable X, whose outcom es are m ultivalued, included in som e intervals:

(3)

[2, 4] 13. 4] 14, 5] [5, 6]

P(Aj) 0.2 0.5 0.2 0.1

A ccording to the D efinitions 1 and 2 we have low er and u p p er p ro b a b ility d istrib u tio n s for random variable X:

x) 2 3 4 5 6

P'(Xj) 0.2 0.5 0.2 0.1

-P'(Xj) - - 0.7 0.2 0.1

W hen we have lower and upper probab ility d istrib u tio n s fo r ra n d o m variables, w hose outcom es are m ultivalued, we can ra n k such a sto ch astic alternative.

Let tw o distinct uncertain m ultivalued alternatives X and Y have low er cum ulative d istrib u tio n s F * ( x ) and G * ( x ) respectively, u pp er cum ulative d istrib u tio n s F*(x) and Gr(x), for x e [ a , b] respectively, th en we have m ultivalued first, second and third stochastic d om inan ce if and only if

I I l (x) = F> (x) - G*(x) < 0 , for all x e [a, b], (X F S D Y) (6)

X

H2(x) = \ I I l(y)dy < 0, for all x e [ a , b], (X S S D Y ) (7) a

x

H3(x) = j H 2(y)dy 4 o, lo r all x £ [a, b], (X T S D Y)

and F ( F . (x)) > E(G*(x)) (8)

F o r p ro o f see L a n g e w i s c h and C h o o b i n e h [1996].

Exam ple 2. ( T r z p i o t , 1998) Let us take a ra n d o m v ariab le С an d D w hose outcom es are m ultivalued, included in som e intervals as follows:

[0, 1] [1, 2] [2, 3] [3, 4]

p(C) - 0.2 0.4 0.4

/>(!>) 0.3 0.15 0.55

-W e determ ine low er and upper probability distributions fo r ra n d o m variables С and D as follows:

(4)

xi 0 1 2 3 4

C: p*(Xj) - 0.2 0.4 0.4

-C: p'(Xj) - - 0.2 0.4 0.4

D: />.(*,) 0.3 0.15 0.55 -

-D: p'(xj) - 0.3 0.15 0.55

-N o w we can receive the values o f lower an d upp er cum ulative d istrib u tio n s (see Fig. 1). XJ ( - oo, 0] (0, 1] (1, 2] (2, 3] (3, 4] (4. oo) C . ( Xj) 0 0 0.2 0.6 1 1 C'(xj) 0 0 0 0.2 0.6 1 D. (x, ) 0 0.3 0.45 1 1 1 D\ x j ) 0 0 0.3 0.45 1 1

(5)

Fig. 2. Upper and lower integrals of cumulated distributions of С and D

It is easy to check, th a t th e D efinition 1 an d the D efin ition 2 are n o t tru e (see F ig. 1 and. Fig. 2).

Fig. 3. Upper and lower double integrals of cumulated distributions of С and D

In this exam ple we can establish a th ird degree m ultivalued stoch astic dom inance: С T S D D (see Fig. 3.).

(6)

3. MULTIVALUED INVERSE STOCHASTIC DOMINANCE

D en o tin g the density function by / , we have the cum ulative d istrib u tio n F and inverse d istrib u tio n F by the follow ing ( G o o v a e r t s , 1984).

J f ( x ) d x = J d F ( x ) = J dF(x) = 1 (9)

—00 — oo —00

F ( x ) = \ - F ( x ) (10)

Let F and G be the inverse cum ulative d istrib u tio n s o f tw o distinct uncertain alternatives X and У X dom inates У by first, second and third inverse stochastic dom in an ce (F IS D , SISD , T IS D ) if and only if

H v(x) = F (x ) - G (x) ^ 0 for all x e [ a , b] ( X F IS D У ) (11)

H 2(x) = j H ^ d y ^ O for all x e [ a , b] ( X SISD У ) (12)

X

Ь

H 3(x) = j í í 2( y ) d y > 0 for all x e [ a , h]

X

and E(F( x)) > E(G(x)) (X T IS D Y ) (13) F o r p ro o f sec G o o v a e r t s [1984]. F irst degree stop-loss (inverse) dom inance coincides with first degree stochastic dom inance. T h e л-th degree stop-loss dom in an ce im plies higher degree stop-loss dom inance.

D enoting the density function by f , we have the lower inverse p ro bability d istrib u tio n s F » ( x ) an d upper inverse probability d istrib u tio n s F*(x) by the following:

F * ( x ) = l - F . ( x ) (14)

F*(x) = 1 — F*(x) (15)

Let tw o distinct uncertain m ultivalued alternatives X and Y have low er inverse p ro b a b ility d is trib u tio n s F * ( x ) an d G * (x ) resp ectiv ely , u p p e r inverse p ro b ab ility d istrib u tio n s F*(x) and G*(x), for x e [ a , b] respectively, then we have m ultivalued first, second and third inverse stochastic dom inance if and only if

(7)

H 2( x) = \ H t ( y ) d y ^ 0 for all x e [ a , h] (X S IS D Y ) (17)

X

b

Н ъ(х) = ß 2(y)dy < 0 for all x e [ a , h] (X T IS D Y )

X

and E ( F ( x ) ) > E ( G ( x ) ) (18)

T h e p ro o f proceeds p arallel to provided by G o o v a e r t s [1984] and L a n g e w i s c h a nd C h o o b i n c h [1996].

Exam ple 3. Let us tak e ran d o m variables A and В w hose ou tco m es are m ultivalued, included in som e intervals as follows:

4 H , -5] [-5, -2] [-5, -11 К -31 l - i . oi

P(A) - - - 0.5 0.5

P(B) 0.25 0.6 0.15 -

-W e determ ine lower and upper probability d istrib ution s for ran do m variables A an d В as follows: XJ -6 -5 -4 -3 -2 -1 0 A: p. ( xj ) - - 0.5 - - 0.5 -A: p'(xj) - - - 0.5 - 0.5 B: p. (xj) 0.25 0.75 - - - - -В p'(xj) - 0.25 - - 0.6 0.15

-N ow we can receive the values o f low er and u pp er cum ulative d istrib u tio n s.

XJ (-CO, -6] (-6. -5] (-5, -4] H . -3J (-3, -2] (-2, -1] (-1. 0] (0, oo)

A.(Xj) 0 0 0 0.5 0.5 0.5 1 • 1

A \ x j ) 0 0 0 0 0.5 0.5 0.5 1

B . ( x j ) 0 0.25 1 1 1 1 1 I

(8)

Fig. 4. Upper and lower inverse cumulated distributions of A and В

It is easy to check th a t th e D efinition 1 is n o t true. W e determ in e low er an d u p p er inverse cum ulative distrib u tio n s for ra n d o m variables A and В as follow s (Fig. 4): XJ (-00, -6] H , -5] (-5, -41 H . -31 (-3, -2] (-2, -1] (-1. 0] (0, oo) A .(xj) 1 1 1 0.5 0.5 0.5 0 0 A' ( xj ) 1 1 1 1 0.5 0.5 0.5 0 B. ( xj ) 1 0.75 0 0 0 0 0 0 B'(xj) 1 1 0.75 0.75 0.75 0.15 0 0

(9)

Fig. 6. Upper and lower integrals of inverse cumulated distributions of A and В

W e can observe th a t the form u las (16) an d (17) are n o t tru e (Fig. 4, 5). In this exam ple we can establish a th ird degree m ultivalued sto ch astic dom inance: A T I S D B (see Fig. 6).

4. CONCLUSIONS

S top-loss do m in an ce ran k in g is an extension o f stop-loss o rd erin g in analo gy to the stochastic dom inan ce. W e can apply tw o different ra n k in g by stochastic d om inance o r stop-loss d om inan ce which d epends on o u r goals, w hether we look for a good criterion fo r m axim ising gains o r for m inim ising losses. Som etim es we need b o th and this is a case o f o p e ra tio n research problem . T h e c u rren t use o f stochastic d om in an ce assum es th a t prob ability distributions are know n an d unique. In em pirical study specifying uniq ue p ro b ab ility m ay be unjustifiable, so we need m ultivalued view o f the p roblem . Sim ple exam ple is the co n tin u o u s o bserv atio n o f assets, each day we have price from m in to m ax price o f the day. W h en we w a n t to ra n k these assets we should apply m ultivalued stoch astic d o m in an ce or m ultivalued inverse (stop-loss) stochastic d om in ance d ep en din g on o u r prob lem . T h e extended m ultivalued sto chastic d om in an ce to m u ltiv alued inverse (stop-loss) stochastic d om inance, established here, pro v id e a v alu able techniqu e to p are do w n th e n u m b er o f alternatives.

(10)

REFERENCES

C h o u S. R., L i a o T. L. (1996), The Relative Performance o f PER and PSR Filters with

Stochastic Dominance: Evidence from the Taiwan Stock Exchange, “Applied Financial

Economics” , 6, 19-27.

G o o v a e r t s M. J. (1984), Insurance Premium, Elsevier Science, Publishers В. V.

H a d a r J., R u s s e l W. K. (1969), Rules fo r Ordering Uncertain Prospects, Amer. Economic Rev., 59, 25-34.

H a n o c h G., L e v y H. (1969), The Efficiency Analysis o f Choices Involving Risk, Rev. Economic Studies, 36, 335-346.

L a n g e w i s c h A., C h o o b i n e h F. (1996), Stochastic Dominance Tests for Ranking Alternatives

under Ambiguity, “European Journal of Operational Research”, 95, 139-154.

L e v y H. (1992), Stochastic Dominance and Expected Utility: Survey and Analysis “Management Science” , 38 (4), 555-593.

L e v y H., K r o l l Y. (1970), Ordering Dominance with Riskless Assets, “Journal of Financial and Quantitative Analysis", 11, 743-773.

L e v y H., L e r m a n Z. (1985), Testing P/E Ratio Filters with Stochastic Dominance, “ Journal of Portfolio Management”, 11, 31-40.

L e v y H., S a m a t K. (1984), Portfolio and Investment Selection. Theory and Practice, Prentice- Hall Intentional, Inc.

M a r k o w i t z H. M. (1952), Portfolio Selection, “Journal of Finance” , 7, 77-91.

Q u i r k J. P., S a p o s n i k R. (1962), Admissibility And Measurable Utility Functions, “ Review of Economics Study” , February 29, 140-146.

R o t h s c h i l d L. J., S t i g l i t z J. E. (1970), Increasing Risk. A Definition, “Journal of Economic Theory”, 2, 225-243.

T r z p i o t G. (1997), Odwrotne dominacje stochastyczne, [w:] Zastosowania badań operacyjnych, Absolwent, Łódź, 435-448.

T r z p i o t G. (1997a), Stochastic Dominance in Optimal Portfolio Selections, [in:] Proceedings

o f the Mathematical Methods in Economics, Technical University of Ostrava, Ostrava, 185-187.

T r z p i o t G. (1998), Stochastic Dominance under Ambiguity in Optimal Portfolio Selection:

Evidence From the Warsaw Stock Exchange, [in:] Data Science Classification and Related Methods, Short Papers From VI Conference o f the International Classification Societies,

Rome, 311-315.

T r z p i o t G. (1998a), Multivalued Stochastic Dominance to Determine the Efficient Set o f

Assets: Evidence from the Warsaw Stock Exchange, Université Laval, CRAEDO 004,

QuéBec, Canada.

T r z p i o t G. (1998b), Wielowartościowe dominacje stochastyczne, [w:] Metody i zastosowania

badań operacyjnych, AE Katowice, 343-355.

T r z p i o t G. (1998c), Preference Relations in Ranking Multivalued Alternatives Using Stochastic

Dominance: Evidence from the Warsaw Stock Exchange, “ Control And Cybernetics” (in

the press).

T r z p i o t G., Z a r a s K. (1998), Stability o f the Stochastic Dominance in Times Series

Analysis, EURO XVI, Brussels (Mimeo).

W h i t m o r e G. A., (1970), Third Degree Stochastic Dominance, Amer. Economic Rev., 60, 457-459.

Cytaty

Powiązane dokumenty

You are not required to find the coordinates of the

Warto również zwrócić uwagę, że skutki wprowadzenia klauzuli o zakazie kon- kurencji jako elementu koncentracji mogą być różne w zależności czy dana kon- centracja

GeNIe allows for modeling systems of equations with uncertainty (modeled by continuous probability distributions). It derives the probability distribution over

[r]

As a third remark, we would like to point out to the reader that although this example fits in the setup of Gill, van der Laan and Robins (1997) for CAR on general sample spaces,

Paideia as a shaping, realizing form affects the human being, firstly through arete, teaching good manners and the bases for humanistic education to every

Probability analysis of monthly daily mean of maximum temperature of Mid- dle East was carried out by employing three probability distributions namely lo- gistic, Rayleigh and

This happens for example if we want to check whether a random variable fits (comes from) a specified distribution (when we will perform so- called goodness-of-fit tests), when we