• Nie Znaleziono Wyników

Remark on some theorem of Zajíček

N/A
N/A
Protected

Academic year: 2021

Share "Remark on some theorem of Zajíček"

Copied!
6
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FO LIA M ATHEM ATICA 7, 1995

Grażyna Horbaczewska

R E M A R K O N S O M E T H E O R E M O F Z A J i Ć E K

For a ty p ica l co n tin u o u s fu n ctio n / on [0,1], / has an I-essential d e riv e d n u m b e r a t each p o in t x 6 (0 ,1 ).

Zajicek proved [3] th a t, for a typical continuous real-valued func­ tio n / an d each x €E (0,1), th ere exists y £ which is a n essential derived n u m b er of / at, x. In this p ap er we shall prove th a t th is th eo rem rem ains tru e if we replace th e notion of an essential derived n u m b er of / a t x by an analogous notion for th e B aire category.

Let C denote th e set of continuous real valued functions defined on [0,1] furnished w ith th e m etric of uniform convergence. W hen we say a typical / e C has a certain p ro p erty V , we shall m ean th a t th e set of / 6 C w ith this p ro p erty is residual in C.

T h e n o ta tio n used th ro u g h o u t this p ap er is stan d a rd . In p a rtic ­ u la r, iH stan d s for th e set of real num bers, = 5H U { -o o ,o o } , I for th e cr-ideal of sets of th e first category, ||/ || for the no rm in C, B ( f , r ) for th e open ball in C w ith centre f and radius r an d \ A f° r th e ch aracteristic function of a set A.

D e f in itio n 1 . ([1]) We say th a t xo £ 5H is an u p p er /-d e n sity p o in t of a set A having th e Baire p ro p erty if and only if th e re exists an increasing sequence of real num bers {i„}ng;v tending to infinity, such

(2)

th a t

X i„ (B -i0)n ( -i,i) — * 1 w ith re sp e ctto I as n ooon ( - 1 , 1 ) (see [2] for th e definition of th e convergence w ith respect to I) . We shall use th e n o tatio n d j ( E , x o) = 1.

O bserve th a t xo is an u p p er I - density po in t of a set A if an d only if 0 is an u p p e r I - density point of A — xo = {x — xo : x £ A} .

It is easy to see th a t d j ( E , x o ) = 1 if and only if th ere exists an increasing sequence of real num bers {¿„}ngN tending to infinity, such th a t

n —*oo v

/ - a.e. on (-1,1).

D e f in itio n 2. We say th a t y is an /-essen tial derived n u m b er of / a t x if th ere exists a set E C having th e Baire property, such th a t d i ( E , x ) = 1 an d lim t^ x , t e E - - •¡I"- 5-- =

V-T h e o r e m . For a typical f £ C and each x £ (0 ,1 ), there exists y £ iH which is an I-essential derived n u m ber o f f at x.

Proof. Let {Pk}k£N be a sequence of polynom ials which is dense in C. For each k £ N , p u t M* = ||P ^ || = su p l 6 [01] \Pk (x)| a n d choose

6k such th a t 0 < 6k < ( k M k) ~ 1 an d 6k \ 0 as k —> oo. Let

g = n u b ( p ‘ - = n m r p B i P t '

m—1 k—m

For each m £ N , the set B ( P k , j f c ) is open and dense, so G is a dense G ^-subset of C. Hence G is residual in C. Choose an a rb itra ry / £ G. It is sufficient to prove th a t, for each x £ (0 ,1 ), th ere exists an /-e sse n tia l derived num ber of / a t x. Fix xo £ (0 ,1 ). Since f £ G, we can choose an increasing sequence of positive integers {fcn }n£jv such th a t / £ B ( P k n ,6kn • (4fc£)- 1 ) for each n £ N . Let h n = 6kn , A n = P'k (xo), z n = (A;n )- 1 . Since 6n \ 0 as n —> oo, we have h n \ 0 for n —* oo. F o r n large enough, we get (xq— h n , xq + h n ) C (0 ,1 ). We

(3)

R E M A R K ON S O M E T H E O R E M O F Z A Jl'C E K 27

shall show th a t, for such an n and for x e (x0 - h n , x0 - h n( k n ) ~ l ) U (a.’o + h n( k n ) ~ l , x o + /i„), we have

f i x ) - f ( x 0) x - x0 - A n

We can assum e th a t x <E (x0 + j ^ , x0 + h n ) (th e o th e r case is analogous). We have

(1)

f ( x ) - f i x o) P kn(X) - Pkn( x 0) x — Xo X — Xo < ~ A „ ( x ) | - f | / ( x 0) - P fc„(x0)| | x - X o | < « I ’ 1 1 « M M -1 2 k u -By th e T aylor form ula, for some f £ ( 0 ,1),

p kn {x) - Pkni x 0) X — Xo - p kni x o) \p 'k n( 0 ( * - * o ) (2) 1 ‘ikfi From (1) an d (2) we ob tain f j x ) - / ( x 0) X — Xq - n > o ) < A- ’ hence (3) f i x ) ~ f i x o ) XX o A n z n

(4)

D enote by y G iH a cluster po in t of a sequence { A n } n e N - T h en th ere exists a subsequence {np}peiv ° f th e sequence of positive in te ­ gers, such th a t A nr —» y as p —* oo. Define

£ = 0 +

We shall show th a t

f i x ) — f ( x o ) d j ( E , x 0) = 1 an d lim ---=

y-A ccording to th e above rem arks, it is sufficient to show th a t th ere exists a sequence of real num bers {t „}n€N tending to infinity, such th a t

hm Xt n l E- z0)n ( -i,i)(* ) = X (-i,i)(® ) n —♦oo

I - a.e. on ( — 1,1 ). Let t p = ( h Up) 1. T hen

t p ■ ( E - x 0) D t T hr

' h n ”

" ( h knr ) U ( k , ’ O '

Since h np \ 0 for p —» oo and k n /* oo for n —► oo, we have t p / oo as p -*• oo and 1 / k ni \ 0 as / -> oo. Hence, for x £ (0 ,1 ), x ^ 0, th ere exists p0 such th a t, for each p > po,

1 6 ( ■ 1, _ ^ ) u ( s ; ’1) '

T h en

x e t,

h " ”

c tp ■ ( E - Xo),

so, for p > po, we have

(5)

1-R E M A 1-R K ON S O M E T H E O 1-R E M O F Z A jfĆ E K 29

T herefore d j ( E , x o) = 1. We only need to show th a t

f j x ) - f j x o) _ lim

M e0 x ~ x °

Let e > 0. T h ere exists p0 such th a t 1 / k „ p < e /2 for p > p 0. T h en , for each x £ E such th a t \x — x 0| < h npo, we have

* € (J

°° r ' h Up, xi 0 — -— I h n, \ U ( l xo + -— , xq + h nh „

p-p o kn,: kn.

From (3) it follows th a t there exists p > p0 such th a t f j x ) - f j x q)

X — Xq

- A n , 1 £

< Zn” ~ JT~ K ^ np *2‘

Since A nf —* y as p —> oo, there exists p\ such th a t, for p > we get

\A *r

Let p2 = ma x { p o , p i ) and 6 = ftnp2- According to th e above rem arks, for x G E , if \x — Xq| < S, then we have

f j x ) - f i x o)

a; — xq - y < £. T his com pletes th e proof.

Re f e r e n c e s

[1] T . F ilip czak , On som e abstract d en sity topologies, Real A nalysis E x ch an g e 14 (1988-89), 140-166.

[2] W . P o re d a, E. W agner-B ojakow ska an d W W ilczyński, A category analogue o f the d en sity topology, F und. M ath . 1 2 5 (1985), 167-173.

[3] L. Z ajicek, O n essen tia l derived n um bers o f typical c o n tin u o u s fu n c tio n s , T a tr a M o u n ta in s M ath . P u b l. 2 (1993), 123-125.

(6)

G. H O R B A C Z E W SK A

G rażyna Horbaczewska

U W A G A N A T E M A T P E W N E G O T W I E R D Z E N I A L. Z A iĆ K A

Zajićek ([3]) udowodnił, że typow a funkcja rzeczyw ista m a w każ­ dym punkcie x £ (0 ,1 ) istotną, liczbę pochodną. W pracy tej dowo­ dzimy, że tw ierdzenie to pozostaje prawdziwe, jeśli zastąpim y p o ję­ cie istotnej liczby pochodnej przez analogiczne pojęcie d la kategorii B aire’a.

In s titu te of M a th e m a tic s Łódź U n iv ersity ul. B an ach a 22, 90 - 238 Łódź, P o la n d

Cytaty

Powiązane dokumenty

Keywords: stochastic process, Girsanov’s theorem, stochastic differ- ential inclusion, weak solution, Brownian motion.. 2000 Mathematics Subject Classification:

In [7], the problem was considered for the special case when X is a twisted sum of a one-dimensional space and a Banach space, so that there is subspace L of X with dim L = 1 and

In the case of a family of affine plane curves, the equisingularity is therefore equivalent to Whitney’s conditions at each com- mon singular point of the curves (including

In [2] Lion and Rolin give an explicit description of functions on R n (n ∈ Z, n &gt; 0), called by them LE-functions, defined as finite composi- tions of globally subanalytic

Another example (different from Goodman’s example) has been constructed by W... Krzyzewski for suggesting the

In general these generalizations have required complete restatem ents of the theorem s and their proofs, however, whenever possible we have simply made reference to

We sketch a proof of the Ohsawa–Takegoshi extension theorem (due to Berndtsson) and then present some applications of this result: optimal lower bound for the Bergman kernel,

We investigate ramification properties with respect to parameters of integrals (distributions) of a class of singular functions over an unbounded cycle which may intersect