• Nie Znaleziono Wyników

Analysis of Censored Life-tables with Covariates by Means of Log-linear Models

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of Censored Life-tables with Covariates by Means of Log-linear Models"

Copied!
13
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FOLIA O E C O N O M IC A 175, 2004

A g n i e s z k a R o ssa *

A N A L Y SIS O F C E N S O R E D L IF E -F A B L E S W IT H C O V A R IA T E S BY M E A N S O F L O G -L IN E A R M O D E L S

Abstract. In survival analysis the subject o f observation is duration o f time until som e event called failure event. Often in such studies only partial inform ation on the length o f failure time is available what yields the so-called right-censored observations. The m ain interest in survival analysis is either to estim ate the distribution o f the true failure tim e or to identify the relationship between the true failure time and a set o f som e covariates. A dditional troublesom e poin t o f theory and application o f survival techniques is treatment o f grouped observations (life-tables) alo n g with incorporating covariates.

In the paper a new approach is considered which allow s to treat the censored life-table with qualitative covariates as a standard contingency table. Such a table can be further analysed by m eans o f log-linear m odels or other standard m ultivariate inference techniques.

Key words: survival analysis, censored data, life-tables, log-linear m odels.

1. IN T R O D U C T IO N

T h e usual rep resen ta tio n o f the right-censored ra n d o m sam ple w ith covariates takes th e form

(Tj, Xj), i = L 2, ..., n (1)

where öt = 1 if an i-th individual actually failed at tim e T t, St = 0 if an individual was right-censored at time T t and X t is a p-dim ensio nal vector of know n covariates, fo r exam ple, sex, age and o th er characteristics o f an individual.

N early all the statistical m eth o d s for censored survival d a ta are based °n the assu m p tio n th a t censoring m echanism is n o t related to m echanism causing failures. T h u s th e usu al m odel fo r censored survival analy sis assumes in d ep en d en t ra n d o m censoring. In this m odel v ariab les T t an d ô\ can be defined as follow s

(2)

T, = m in (У,, Z (), S, = 1, if T l = Y l (2)

0, if Г,if 7’, = Z,

where У, are independent copies o f a positive random variable У representing true failure tim e with a cum ulative distributio n fun ctio n (cdf) F. Sim ilarly, Z, arc independent copies o f a positive rando m variable Z with a c d f G. It is assum ed th a t variables У an d Z are independent, con d itio n ally on X. T h u s th e observed v aria b les T, rep resen t here in d ep en d e n t copies o f a v a ria b le m in ( y , Z ) w ith a c d f II satisfy in g th e e q u a lity

A special case o f in dependent censoring occurs in studies w here failure time is m easured from entry into the study and one observes th e true failure tim es o f those individuals w ho fail by th e tim e o f analysis and censored tim es fo r th o se in dividuals w ho do no t. In such a case all censoring tim es Z, are know n an d the sequence

instead o f sequence (1) is observed. It is w orth n otin g th a t in th e repeescn- tatio n (3) variables S t are re d u n d an t and therefo re can be om itted .

T h e m ain interest in survival analysis is either to estim ate th e d istrib u tio n o f the tru e failure tim e У represented by F o r the so-called survival function F = 1 — F o r to identify the relationship betw een the tru e failure time У and a set o f covariatcs X. A dditio nal trou blesom e p o in t o f theo ry and application o f survival techniques is trea tm e n t o f g rouped o bserv atio n s (life-tables) along w ith in co rp o ratin g covariates.

S ta n d ard life-tables techniques are the oldest techniques m o st extensively used by actuaries, m edical statisticians and d em o grap hers, startin g from the w ork o f J. G ra u n t in 1662 (cf. D. V. G l a s s (1950), B. B e n j a m i n (1978)).

T h e life-table d a ta arise from a p artitio n o f the range [0,7” ] o f o b ser­ vations into som e tim e intervals = [tk, tt + 1 ) , к = 0, 1, К — 1 where

the en d p o in ts 0 = I0 < < . . . < tK < T* are pre-specified. T he life-table d a ta can be ch a rac te rized by d efining n u m b ers o f in d iv id u a ls alive a t th e beginning o f each tim e interval and by defining nu m b ers o f failures and censored o b serv atio n s in these intervals.

T h e m ain p u rp o se is to estim ate co nditional pro b ab ilities o f failure in the intervals Qt given survival to tk o r to estim ate p ro bab ilities o f survival 11= 1 - ( 1 - F ) ( l - G ) .

(3)

(3)

past in +1 for к = 0, 1, К — 1 (sec E. L. K a p l a n and P. M e i e r (1958), C. L. C h i a n g (1968)).

D . R. C o x (1972) gave a First system atic study o f use o f co variates in the analysis o f failure tim e. H e proposed a regression m odel fo r a hazard function and introduced a vector o f unknow n regression p aram eters specifying the effect o f co v ariates on survival. If the covariates are n o t tim e-varying then C o x ’s m odel can be term ed “ p ro p o rtio n al h a z a rd s ” because th e ra tio o f h az ard fu n c tio n s fo r an y tw o individuals is in d e p e n d e n t o f tim e. Sub-sequent p apers by J. D . K a l b f l e i s c h and R. L. P r e n t i c e (1973), N. B r c s l o w and J. C r o w l e y (1973), N. B r e s l o w (1974, 1975), O. O. A a l e n (1978), P. K . A n d e r s e n and R. I). G i l l (1982) are the substantial co n trib u tio n s to this subject.

T. R. H o i f o r d (1976) introduced the p ro p o rtio n al h azard s m od el for life-table d ata. In his m odel the baseline hazard fu nction was assum ed to be c o n sta n t w ithin each tim e interval i l k, w hat im plies piecewise exp on ential distrib u tio n s for failure times.

T his ap p ro ach was fu rth e r developed by T. R. II о 1 f o r d (1980) and N. L a i r d a nd D. O l i v i e r (1981), who discussed ap p licatio n o f log-linear analysis tech niques to life-tables with categorical covariates. T h e ir key result refers to tw o im p o rta n t observations. F irst, log-linear m odel fo r cell m eans o f Poisson contingency tab le d a ta is equivalent to log-linear m o del for a hazard fu nction in piecewise exponential survival m odel. Second, the likelihoods for b o th m odels are equivalent. T h u s, the statistical inference m ethods based on m axim um likelihood for these m odels are also equivalent.

T h e b ro a d survey o f the developm ent o f the survival analysis th ro u g h o u t the tw en tieth century can be found in T . R. F l e m i n g and D. Y. L i n (2000) o r D . O a k e s (2001).

3. LO G-LINEAR M O D E L S FOR LIFE-TA BL ES W ITH CA TEG O R IC A L C O V A R IA T E S

L og-linear m odels provide a flexible and p o p u lar to o l o f tre a tin g the m ultivariate categorical d a ta arran g ed in a m ultidim ension al co ntingency table. Som e o f the m o re attra ctiv e features o f this ap p ro ach are th e easy of m odel specification, flexibility in treating bo th dependent and independent variables and the fact th a t the equivalent m axim um likelihood estim ates o f m odel p aram eters m ay be o btained from different sam pling d istrib u tio n s, such as P oisson, m u ltin o m ial and p roduct m ultin om ial d istrib u tio n s.

As it was p ointed o u t by N. L a i r d and D. O l i v i e r (1981), log-linear techniques can be easily applied in life- tables analysis to identify the relationship betw een th e survival tim e and a set o f categorical covariates.

(4)

'Г. R. H o l f o r d (1976) considered the follow ing re p resen ta tio n for the hazard fu n ctio n h(y; X) o f failure time Y

where hk d enotes a c o n sta n t baseline hazard in th e tim e interval í)*, X is a fixed co v ariatc vector and ß is a vector o f unkn ow n p aram eters. N o n ­ p ro p o rtio n al h azards m odel can be reform ulated from (4) by allow ing the baseline h az ard hk, к = 0, 1, К - 1 to depend also on X.

T h e re p resen ta tio n (4) implies th a t, co n dition al on X, h az ard fun ctio n h (y ;X) is a stepwise function o f tim e and failure tim es have piecewise exponential d istrib u tio n s. L og-linear hazard m odel prop osed by L aird and Olivier flows directly from H o lfo rd ’s m odel and takes the form

Let us assum e th a t the vector X specifies the levels o f p categorical c o v a ria te s an d ea ch c o v a ria te X , o f X has / , levels in d ex ed by iv s = l , 2, ..., p. D en o te for sim plicity by i0 the index o f tim e intervals, i0 = 0, 1, 2, ..., К — 1. T h u s, for the given tim e interval Q io and for the fixed set o f co v ariates a t levels (iu i2, ..., ip) the h azard fun ctio n h(y ;X) given in (4) takes a c o n sta n t value, which can be d eno ted by 0ioii if. T h en em ploying the usual log-linear “ u-term s” n o tatio n , intro d u ced by M . W. B i r c h (1963), the m odel (5) can be rew ritten in th e follow ing form

w here param eters {effects} on th e right-hand side o f (6) satisfy the follow ing linear constrain s

T he n o n -p ro p o rtio n a l h az ard s m odel can be in trod uced here by a sim ple generalization o f (6)

K y i X) = /v c x p { X T/0 for y e C l k, fc = 0, 1, K - l (4)

h(y; X) = \nhk + X Tß for y e Q k, к = 0, 1, ..., К - 1 (5)

(

6

)

(5)

T hus, th e problem o f estim atin g survival d istrib u tio n s u n d er the m odel (6) or (7) reduces to estim atin g the u-param etcrs, w hat can be d o n e by m eans o f slightly m odified Iterative P ro p o rtio n al F ittin g R o u tin es (see N. L a i r d a nd I). O l i v i e r (1981) for details).

I'he fo rm u la o f estim ating the log-survival fu nction ln S (i) derived from the piecewise exponential d istrib u tio n is expressed as follows

ln£(i) = -e x p { ú * } I ( 0 + 1 - + 0 - i*)exp(t2jt°>}l t e C l k + 1

(

8

)

where ü* represents here the estim ated to tal covariate effect.

T he m odified log-linear m odel for censored life-table d a ta prop o sed here allows to han dle m an y IP F routines for log-linear m odels w ith o u t any m odification. T h e p ro p o sed m odel is closely related to the on e given in (7), how ever we will assum e th a t 0 , represent pro b ab ilities o f failure in tim e intervals Qio for fixed sets o f covariates at levels (ilt i2, ..., ip), T his approach is based on the extended life-table d a ta and is based on a m eth o d called here “ the co m p letio n m e th o d ” . T h e a p p ro a c h allow s to ap p ly standard inference.

4. E X T E N D E D LIFE-TA BL ES W ITH R IG H T -C O N S O R E D D A TA

F o r sim plicity, let us assum e th a t the covariate vector X is n o t observed. Let T * > 0 be a fixed real n u m b e r such th a t H ( T * ) < 1 . L et ® = fo < h < — < tK = T* < o° co n stitu te a p artitio n o f [0,T*] in to К sub- -intervals o f the form Q k = [t*, í, + J for к = 0, l , . . . , К - I . Let us also assume th a t n A. = [ix , oo).

Let us assum e th a t individuals enter the follow -up study a t ra n d o m time points. F o r an i-th individual we observe a p a ir o f ra n d o m variables f^i> Zj), w here T t an d Z ; are defined in Section 1. T h e o b serv atio n o f m dividuals term in ates w hen for s item s ( 0 2 is a fixed integer) we o b ta in T'i j >T*, j = I, 2, s. Let N s den o te the to tal n u m b er o f individuals observed in the experim ent. T hus, N , is a ran d o m variab le d istrib u te d according to th e negative binom ial distribution w ith p aram eters s and P = 1

-W e will co n sid er a n exten ded life-table d a ta ch a ra c te riz e d by the following statistics

(6)

N. Dk = 1 1 ( T i e Slk, Z ^ t k+l ), /= 1 k = 0, 1, .... K - 1 DK = 0, Ok = Í O ( T l eClk, Z l eClk), к i= i = 0, 1, ..., К N. M k = ^ 0(T , ^ i*, Z ; ^ tk + j), 1 = 1 1 о II о II * 5 Wk = Ok + M k, к = 0, 1, ..., К

where 1 (A) den o tes a characteristic function o f a set A. N o tice th a t th ere is W0Ok + M 0 = N , and WK = 0 K.

S tatistics defined in (9) co n stitu te an extended censored life-table and will be em ployed in the p ro cedure called “ a com pletion m e th o d ” .

5. C O M P L E T IO N M E T H O D KOR E X T E N D E D LIFE-TA BL ES

Let us consider a p ro b a b ility qklk defined as follows

qklk = P ( Y e C l k\ Y > t k), к = 0, 1, ..., К - 1 (10)

T his is the p ro b a b ility o f failure in Q*, co nditio nal on survival p ast tk. This prob ab ility will be estim ated by m eans o f the follow ing statistics

^ ' ‘ = л Г ? Т к = 0 ' 1 K ~ l (11)

T h e sim ilar e stim ato r o f qk]k was firstly considered by E. L. K a p l a n and P. M e i e r (1958) for the sam ple with a fixed size. It is usually called the R educed-S am ple E stim a to r (R SE). Let us define a p ro b ab ility qkll as follows

qk[l = P ( Y e a k \ Y ^ t , ) , k = 1, 2, ..., К - i , I = 0, 1, ..., к - 1 (1 2)

T his is the p ro b a b ility o f failure in the interval Q k co nd itio n al on survival past i, for 0 < / < к and can be estim ated from the following recurrent form ula

(7)

W 1

Ük\t = _ j к = I, 2, ..., К — 1, 1 = 0, 1, к —1 (13)

and the estimated number o f failures in the interval П, for О , individuals, who survived past th can be calculated as

Ą . I * O r &II-; l = k , k - 1... 1 , 0 , к = 0, 1, ..., К — 1 (14) Let 6 = Dk + £ ß u , k =0, 1... K - 1 i = ° (15) 0 K = N , -

е Ч

* = 0

I he sum E f=0Dt / on the rig ht-hand site o f (15) can be trea ted as an estim ated n u m b er o f failures in the interval Clk fo r those item s fo r which Z i < t k + i - T h u s, Ďk is an estim ated to tal num bers o f failures in the intervals 0» for k = 0 , 1 , ..., K.

T he set o f estim ates Dk determ ines a completed version o f an extended censored life-table defined by the statistics (9). T h is co m p letion p ro ced u re !S esplained in details in an exam ple in Section 6.

Generally, we can consider extended life-tables constructed for a categorical covariate vector X fixed a t levels (iu i2, ip) and calculate the estim ated num bers o f failures sim ilarly as in T ab . 2. P roceeding in such a way for each c o m b in a tio n o f levels (i lt i2... ip) o f X we o b ta in as a re su lt a P + 1-dim ensional contingency table with estim ated n u m b ers o f failures ior each co m b in atio n ( ij, i2, ip) and for each tim e interval П,о in its body. Such a table can be next analysed by m ean s o f sta n d a rd log-linear techniques m en tio n ed in Section 3.

6. A N U M E R IC A L EXA M PLE

W e will co n sid er a sam ple o f p atients who have had received a valve •niplantation (b io p ro th esis o r m echanical valve) an d h ad to be reopered because o f som e valve com plications. P atients en ter the stud y a t ra n d o m time points. T h e subject o f observation was the length o f th eir life after feo p e ra tio n (in years). T h e stud y w as term in ated w hen s = 8 p a tie n ts

(8)

survived p ast T* = 7 years. T h u s, the length o f life after re o p era tio n is a rando m right-censored variable, for som e o f the patien ts were alive by the end o f the study. T h e to ta l n u m b er o f p a tie n ts N a observed in such an ex p erim en t is a ra n d o m variable. Its re alizatio n observed here was equal to 50.

Let f0 = 0, tj = 1, t 2 = 1 and í í0 = [0, tj ), Q , = [ix, t 2), П2 = [l2, со). We will consider an extended life-table determ ined by the statistics Dk, M k, Ok for к = 0, 1 , 2 (see T ab . 1).

T a b l e 1

The Extended Life-Table

Tim e Dk o k My

Qo = [0, 1) 8 9 41

0 , - [ l . 7) 2 23 10

= [7, oo) 0 8 0

F ro m T ab . 1 we ca n now estim ate to tal n u m b ers o f d ea th s Dk in each interval by m eans o f form ulae given in (15). T hese estim ates co n stitu te “ a com pleted version” o f T a b . 1 (see T ab . 2).

T a b l e 2

Com pleted Version o f Tab. 1

Tim e intervals б к

fto = [0, D 9.8

= [1. 7) 8.0

« 2 = 17, 00] 32.2

N o te, th a t first tw o estim ates in the second colum n o f T ab . 2 represent estim ated values o f Dk for /c = 0, 1, and the last value is calculated as N , - U = 0 Ď k .

7. S O M E TH EOR ETIC A L R E SU L T S

Theorem. T h e estim ato rs Qklk and Qkll defined in (11) and (13) are unbiased estim ato rs o f respective co nditional probabilities qk}k an d qkц.

(9)

P roof.

Let us assum e the follow ing n o tatio n

P k - P ( T > x k) for /c = 0, 1, ..., K ,

4k = P ( T > x k, Z > x k+l) for k = 0, 1, K - l .

F o r 0 ^ l < k and l ^ k ^ K — 1 the estim ato r Qkll acco rd in g to (13) equals to

= Wl+lJ- \ Wl+2 - I Wk. t - 1 Wk - 1 Dk

М , - 1 M n i - \ ' M k- 2 - l ' M k- t - l ' M k - l

F o r I = к and 0 ^ k ^ К — 1 we have from (11)

Dk Qklk~ M ^ i '

T he e x p ressio n Dk/ ( M - 1) ca n be also w ritte n e q u iv a le n tly as * ~ (W * + i — l)/(Af* — 1), thus for 0^ l < k and l ^ k ^ K — 1

л Wl + i - 1 Wl +a - 1 W i - i - 1 W i - 1 / Wi+ 1 - 1

M, —

1

M, +

1

1

Л/ц _

2

1

M*-j —

1

у

M* —

1

and fo r / = к an d 0 < к < К — 1

ô - i W^ ~ l “ M , - 1

Let us d en o te by A rl, the follow ing expression o f the form

w , * i - i Wi+г - i w t - i - i w ; - i w t+ i — i Ar\i —

M , - 1 M 1+1- l "■ M r _ 2 - 1 M r_ ! - 1 M r - 1

(16) where r > / . N ow the e stim ato r Q*,, expresses as follow s

- _ {Ak- m — A k\t fo r 0 ^ l < k , l ^ k ś K - l

(10)

Let us find the expectation o f A rU defined in (16) using th e jo in t d istrib u tio n o f the variables N „ M t, Wl + l , ..., M r_ 2, Wr- X, M r- lt Wr, M T, Wr+i .

N otice, th a t the sam ple size N , is a rand om v ariable w ith a negative binom ial d istribution and th a t given N , = n the variables Wl + l , M r_ 2, Wr- i , M r- i , Wr, M r, Wr+l have a m ultinom ial d istrib u tio n . T h u s the jo in t prob ability d istrib u tio n function is o f the form

P ( N , = n, M , = m „ Wl + 1 = w) + 1, M r _ , = mr _ , , W, = wr , M , = m r, , = w r+ 1) = n - l V n - Л / m , _ S V r m r - l ~ S\ f W' ~ s \ ( m ' ~ S S _ 1 ) \ m l ~ s j \ w l + l — SJ \ W r ~ S ) \ m r - y \ W r + l ~ S ( l - q () " " И'( 9 < -P l + l ) m'” W,+ , • ■ ( P l + 1 - q ,+ 1 • ...(Я г -i - Р г Г ' - ' - №'(Рг - Я гГ '~ т ’(Яг - P r+ l ) " ' " ( P r + l - P K ) W,+í~ ‘PK> where n = s, s + 1, f f l, = s, s + 1, n , w i + i = s , s + 1 , m„ i = /, / + 1 , r, m, = s, s + 1, w, i = / + 1, r.

T h e d istrib u tio n function o f N s, M (, Wi + l , ..., M r- 2, Wr- U i, W,, M r, VFr + 1 can be expressed also equivalently as

P ( N S = n, M , = m„ Wl+1 = Air _! = m ,- ! , W, = wr, M r = m r, Wr+1 = = wr+1) =

n - l V

m ' _ 1

V

. ( m ' - l - S\ ( Wr - ' \ ( m r ~ ]

V Wr+1 -

1 i / \ w« + i ~ v v wr— 1 A n v - i A w r + 1 - i A s- 1 ( 1 9 , )""■ 9 Г -gi - p i + i \ m,~w,* ' ( p i + - д 1 + 1 \ щ+'~т,*%(д1+1\ т,*г . \ 4i J v Л + 1 у W v

(11)

^ p r - qry m^ q ry ^ r ~ P r . Л " ' w' " ^ P r < A " ' 4' / ,Рг+i- P kY ' * 1 V Pk P r + 1 / \P r + 1 where w r + 1 = 5, s + 1, m, = wl+1, wi + 1 + l , .... i = r, r - 1, / + 1, I, w, = m(, m ,+ l, i = r, r - 1, / + 1, I, n = m(, m, + 1, ... T h u s, th e ex p ectatio n o f A ril is equal to

00 00 00 00 00 Ш — 1 Ul 1 111 I £M ,„> = I E ... I S * r)1 = i ą = w , ( l W|+ ) = m i* i m, = w,+1 n = m, m l * m r - l I M r 1 • p ( w s = n , ..., w ;+ ! = wP+ j) = w f + ! — 1 \ / P r+ 1 Pk\ w ’ * x ~ ‘ ( Рк \ ’ у w r + 1 - 1 / m r — у / " r+ 1 * W Kr+1 I'K 1 / ť í 1 v-1 Wr+ 1 = * \ s — 1 / V P r + l / \ P r + l ) m , . w r + | w r — 1 V w r + 1 1 . | 4 ~ " Wr+ ‘^ r + 1 \ W,+1 _ £ / 4 + , - 1 V pI+ 1 - *,+ i y , ł l ' w,łV ^ t i \ " ,łł £ W,+ 1- 1/ m, — 1 \ W| + 1= m , + 1\ m ( + l — V \ P l + l / \ P ( + l / mi-wi+i m l ~ 1 \ W! + 1 — V i ( " ~ \ \ 1 - ЧГ = & ± i - Ł . . . P t t l . ? ! i i n = m \ m l ~ V <7r 9 r - l 9 i - l <?! P ( T ^ t r+1) P ( T ^ £ r) P ( T ^ t l+2) P ( T > t „ Z > t r+1) P ( T ^ i r _ i , Z ^ i r) P ( T > t l + u Z > t l+2) P ( T > t l+1) P ( T > t[, Z ^ i|+ i)

(12)

P ( y > t r+ 1 , Z > t r + ł ) P { Y ^ t „ Z t r) P ( Y ž í|+ 2 i Z ^ íi + 2) P ( Y ž t r, Z ž t r l l ) P ( Y > t r - u Z > t f) P ( Y > t „ u Z > t l + i ) ' P ( Y > t l t l L Z > t l t l ) _ P ( Y ž t i , Z ^ t i +1) = p ( y ^ t r+1) р (У 5 * о P ( ľ > t l+i) P ( y > t , +1) f ( ľ > < r t l ) Р ( У > * , ) P ( Y > t r - \ ) Р ( У > í | +1) P ( ľ > í , ) P ( ľ > t , ) '

F r o m th e r esu lt ju s t o b ta in e d and u s in g th e d e fin itio n (1 7 ) w e h a v e fo r 0 < / < / c ,

U U K - 1 , ч Р ( У > « * ) P ( Y > t k+1) Р ( У е П . ) Я (& к ) - Я ( Л - щ ) - -E(^*tí) = p ( Y p t , ) ~ Р ( У > 0 ~~ P ( Y > t , ) ~ qk>1’ and fo r I = k, O ^ k ^ K - l v r t П А Ф > Ь + 1) P j Y e C K ) _ ( ( M ( *1*) P ( y > í * ) P ( ľ > ý w h a t c o m p le te s th e p r o o f . R EFEREN CES

A a l e n O. O. (1978), N onparam elric Inference For a Fam ily o f C ounting P rocesses, “The A nnals o f Statistics” , 6, 701-726.

A n d e r s e n P. K. , G i l l R. D . (1982), C o x ’s Regression M o d e l For Counting Processes: A Large Sam ple S tu d y, “T he Annals o f Statistics” , 10, 1100-1120.

B e n j a m i n B. (1978), John G raunt, [in:] (eds.) W. H. K r u s k a l , J. M. T a n u r , International Encyclopedia o f Statistics, Vol. 1, Free Press, Macmillan Publishing C o., N ew York, 435-437. B i r c h M. W. (1963), M a x im u m Likelih o o d in T hree-W ay Contingency Tables, J. R oyal Stat.

Soc., Ser. B, 25, 220-233.

B r e s l o w N . (1974), Covariance A na lysis o f C ensored Survival D ata, “ B iom etrics” , 30, 89-99. B r e s l o w N. (1975), A na lysis o f Survival D ata Under the P roportional H a z a rd ’s M odel, Int.

Stat. Rev., 43, 4 5 -5 8 .

B r e s l o w N. , C r o w l e y J. (1973), Large Sam ple S tu d y o f the L ife Table a n d Product L im it E stim ates Under R an d o m Censorship the Annals o f S ta tistics, 2, 437-453.

C h i a n g C. L. (1968), Introdnction to Stochastic Processes in Biostatistics, John W iley, N ew York. C o x D . R. (1972), Regression M o d e l A n d Life-T ables, J. Royal Stat. S oc., Ser. B, 34, 187-220,

(with discussion).

F l e m i n g T. R., L i n D . Y . (2000), Survival A nalysis in C linical Trials: P ast D evelopm ents and Future D irections, “ Biom etrics” , 56, 971-983.

(13)

H o i f o r d 'Г. R. (1976), L ife-T a b les with C oncom itant Inform ation, “ Biom etrics” , 32, 587-597. H o i f o r d T. R. (1980), The A na lysis o f R a tes and Survivorship Using Log-linear M o d els,

“Biom etrics” , 36, 299-306.

K a l b f l e i s c h J. D. , P r e n t i c e R. L. (1973), M arginal L ikelihoods B a sed on C o x's Regression and L ife M odel, “ Biom etrika” , 60, 267-278.

K a p l a n E. L., M e i e r P. (1958), N onparam etric E stim ation From Incom plete Observations, J. Amer. Stat. A ssoc., 53, 457-481.

L a i r d , N. , O l i v i e r D . (1981), C ovariance A nalysis o f C ensored Survival D ata Using Lo g -L in ea r A na lysis Techniques, J. Amer. Stat. A ssoc., 76, 231-240.

O a k e s D . (2001), B io m etrika C entenary: Survival A nalysis, “ Biom etrika” , 88, 99-1 4 2 .

A g n ie s z k a R o s s a

A N A L IZ A TA BLIC T R W A N IA ŻYCIA D LA D A N Y C H C E N Z U R O W A N Y C H Z W Y K O R Z Y ST A N IE M M O D E L I L O G A R Y T M IC Z N O -L IN IO W Y C H

W pracy przedstaw iono propozycję analizy tablicy trwania życia dla danych praw ostronnie cenzurowanych. Przedstawiona m etoda pozwala na sprowadzenie takiej tablicy d o w ielo­ wymiarowej tablicy kontyngencyjnej, którą m ożna analizow ać standardowym i technikami wielowymiarowego w nioskow ania statystycznego, np. za pom ocą m odeli logarytm iczno-liniowych.

Cytaty

Powiązane dokumenty

1) MCAR (missing completely at random) – a fully random mechanism. Missing data are defined as completely random, when the probability of missing data neither depends on the

All the members of the “council of eight”, including Vytautas, were the appointees of Władysław Jagiełło, but four dignitaries from a group of eight had received their offices

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license CC-BY-NC-ND 4.0. Powered by

Młody scholar .rozejrzeć się mógł swobodnie po dziwnem mieście, ku któręm u zw racały się oczy całej Europy. Toć Orzechowski uciekał z miejsca, gdzie

Stwierdzono porządek anatomiczny w układzie szczątków kostnych w naczyniach - na dnie kości końozyn dolnych, w górnej części naczynia kości ozaszkl.. Wstępna

sekretarzem Hanna Krawczyk� Skład redakcji w kolejnych latach zmieniał się nieznacznie, liczył od 13 do 16 osób, przewodniczy jej cały czas A� Ruszkowski�

Już sam ciężar struktury serii wnętrz, których nikt się nie spodziewa, zawsze na wpół widocznych, niewy- starczająco oświetlonych, gdzie nie można być pewnym czy wędruje się

Na podstawie opinii respondentów weryfi kowano hipotezę będącą przypuszczeniem, że występowanie luki w obszarze kluczowych kompetencji banku powoduje, że pracownicy nie