• Nie Znaleziono Wyników

Dynamic Bayesian Inference in GARCH Processes with Skewed-t and Stable Conditional Distributions

N/A
N/A
Protected

Academic year: 2021

Share "Dynamic Bayesian Inference in GARCH Processes with Skewed-t and Stable Conditional Distributions"

Copied!
18
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 192, 2005

M a t e u s z Pipień*

DYN AM IC BAYESIAN INFERENCE IN GARCII PR O C E SSE S W ITH SKEW ED-T A N D STABLE C O N D IT IO N A L D IST R IBU TIO N S**

Abstract. In AR(1)-GARCH(1, 1) framework for daily returns, proposed and adopted by Bauwens and Lubrano (1997), Bauwens et al. (1999), Osiewalski and Pipień (2003), we considered two types o f conditional distribution. In the first model ( M ,) we assumed conditionally skewed-i distribution (defined by Fernandez and Steel 1998) while the second GARCH specification ( M 2) is based on the conditional stable distribution. We present Bayesian updating technique in order to check sensitivity o f the posterior probabilities o f considered specifications with respect to new observations included into dataset. We also study differences between Bayesian inference about tails and asymmetry o f the conditional distribution o f daily returns and between one-day predictive densities o f growth rates obtained from both models. The results o f dynamic Bayesian estimation, prediction and comparison o f explanatory power of models M , and M 2 are based on very volatile daily growth rates o f the WIBOR one-month interest rates and daily returns on the PLN/USD exchange rate.

Keywonis: stable distributions, skewed-! distributions, Bayesian updating, univariate GARCH. JEL Classification: С И , C32, C52.

1. INTRODUCTION

C om m only used tool in forecasting the volatility o f the financial tim e series, nam ely G A R C H processes, were initially defined as a white noise stochastic processes with conditionally heteroscedastic n o rm al d istribu tion . A fter Bollerslev’s (1986) definition o f G A R C H scheme, m o re lep to k u rto tic co n d itio n al d istrib u tio n s (th an those o f norm al) have been also proposed

* Dr (Ph.D., Assistant Professor), Department of Econometrics, Cracow University of Economics.

(2)

and applied. F o r exam ple, Bollerslev (1987) presented estim ation o f the conditionally S tudent-t G A R C H (with unknow n degrees o f freedom p aram e­ ter). N elson (1991) considered G A R C H -ty p e process with generalised error distribution (G E D ). Rachev and M ittnik (2002) present results o f m odeling the volatility o f the daily returns using G A R C H processes w ith conditional W eibull, D o u b le W eibull, m ixture o f norm als an d L aplace distribu tio ns.

G A R C H processes w ith co n ditional stable d istrib u tio n s have been also considered (e.g. M cC ulloch 1985, Liu and B rorsen 1995, P an o rsk a et al. 1995, M ittnik et al. 2002 and Rachev and M ittnik 2002). T h e m ain advantage o f stable G A R C H processes is the fact th a t co n d itio n al n o rm ality can be tested in this fram ew ork. A dditionally, stable d istrib ution s are able in general to c a p tu re heavy tailedness an d possible skew ness o f th e co n d itio n al d istrib u tio n o f returns.

F ernandez and Steel (1998) proposed a generalization o f S tudent-г distribu­ tion, nam ely the skewed S tudent-t distribution, which allowed in a very simple way for heavy tails as well as for possible distributional asym m etry. Osiewalski and Pipień (2003) presented Bayesian estim ation and fo recasting in G A R C H m odels w ith co nditional Skewed-£ distribution . T he m ain p u rp o se o f Pipień (2004) was Bayesian com parison o f A R (1)-G A R C H (1, 1) m odels with skewed-ŕ and stable conditional distributions. Pipień (2004) presented posterior probabili­ ties o f m odels, posterior distributions o f com m on and m odel specific param e­ ters as well as discussed differences between predictive d istrib ution s generated from b o th specifications. T hese em pirical results were based on three tim e series, nam ely daily returns o f the P L N /U S D exchange rate, daily returns on the W arsaw Stock E xchange index (W IG ) and daily g row th rates o f the W IB O R one m o n th zloty interest rate.

T h e m ain goal o f this p aper is to apply Bayesian u p d atin g technique in o rd e r to check sensitivity o f the posterio r p robabilities o f skewed-£ and stable G A R C H m odels, w ith respect to new ob serv atio n s included into d atase t. T h e results o f dynam ic Bayesian co m p arison o f ex p lan ato ry pow er o f conditionally skew ed-г G A R C H (1, 1) m odel (M x) and conditionally stable G A R C H (1 , 1) m odel (M 2) are based on daily g row th rates o f the W IB O R o n e-m o n th in terest rates (dataset A ) and daily re tu rn s o n the P L N /U S D exchange ra te (d a ta set B). In b o th cases (A and B) startin g from tim e series consisting o f 1 0 0 observations, every tim e when we updated daily observation

into d ataset, we recalculated posterior distribution o f p aram eters and posterior p ro babilities o f m odels M x an d M 2. We also study differences between B ayesian inference a b o u t tails and asym m etry o f the co n d itio n al distribu tion o f daily retu rn s o btained from both m odels. As a result o f ap plication o f d yn am ic Bayesian inference, we present highest p o sterio r density intervals o f tail and asym m etry param eters fo r m odel M l and M2 and one-step

(3)

2. SKEWED STUDENT-T AND STABLE DISTRIBUTION

F ollow ing the definition in F ern an d ez and Steel (1998) let d en o te by z a ran d o m variable with skewed-t distribution with v > 0 degrees o f freedom ,

m o d al p aram eter ц, inverse precision hO and asym m etry p a ram eter h > 0 у > 0 (z ~ Skt((v, n , h , y ) . T he density function o f the d istrib u tio n o f z is given by the form ula:

w here / , ( x | v, ц, h) denotes the value o f the density fu nction o f the S tu d e n t-г d istrib u tio n w ith v > 0 degrees o f freedom , m odal p a ram eter /i and inverse

precision h > 0, calculated a t p o in t x:

T h e sh ap e p a ram eter v > 0 controls tail behav ior, m o d e ц an d inverse precision h are the location and dispersion m easures. P ara m e ter у ca p ­ tu res possible asym m etry. In general y 2 is the ra tio o f the prob ab ility m asses on the righ t and on the left side o f the m o de o f th e distribu tion o f z. H ence, if у = 1, then z follows sym m etric S tu d en t-ŕ d istribu tio n. U n d er sym m etry (y = 1) it is also clear, th a t, for v > 1, E(z) exists and is equal to ц.

T h e class o f stable distrib u tio n s is defined as a p aram etric family of continuous random variables closed with respect to the o peratio n o f summing. H ence, for any finite subset {wt , ..., w„} o f stable ra n d o m variables, the linear com bination w = + ... + anwn has also stable distribution (al 5 ..., a„

are real num bers). A nalytic expression for the ch aracteristic fu nction o f stable ra n d o m variable is given as follows:

I ((v + D/2)) r (v/2) s/nvh [1 + (/i v r 1. ( x - p ) T (v+1)/2 (2) cp{t) - exp 1 c o (|i|, a)

]}•

tan(na.jl) if a Ф1

(4)

(e.g., Z o lo tare v 1961). In (2) the shape p aram eter a e (0 ,2 ] called index o f stability o r ch aracteristic exponent) defines th e “ fatness o f tails” o f density function (large a im plies thin tails), ц and h are th e lo catio n and scale p a ra m e te rs, ß e [ - l , 1] is the skew nes p a ra m e te r (th e sym m etric stable

d istrib u tio n corresp o n d s to ß = 0). F o r a e [ l , 2] an d ß = 0 the location ц is also equal to th e expected value o f ran d o m variable w. W e den o te by w ~ Sta(<x, n , h , ß ) , th a t w is stably distributed with index o f stability a, locatio n p aram eter \x, scale h and skewness ß. T here are th ree cases, where the closed form expressions for the density o f th e stable ra n d o m variable is know n. A norm al distribution is the case with a = 2, a C auchy distribution is the case w ith a = 1 and ß — 0, a Levy d istrib u tio n co rresp o n d s to the case w ith a = 0.5 and a. = 1.

P ractical ap p licatio n o f stable ran d o m variables in econ om etric m odeling requires deriving density function o f ran d o m v ariable w. It can obtained as th e integral o f (2):

Ci) 1 +„°° ,

f s . a( w\ ci ,n, h, ß) = = - Í e‘w‘<p(t)dt, — 00

and h ave to be ap p ro x im ated by num erical in teg ration (e.g. M ittn ik et al. 1999, R achev and M ittn ik 2002).

3. COMPETING GARCH SPECIFICATIONS

L et d en o te by Xj the value o f a currency (stock m a rk e t index, interest rate, exchange rate) a t tim e j. F ollow ing Bauwens and L u b ra n o (1997), Bauw ens et al. (1999), Osiewalski and Pipień (2003) let assum e an A R (2) process for \nXj with asym m etric G A R C H (1, 1) error. In term s o f logarithm ic g row th rates y} = 1 0 0 In (xj/x j- !) o u r basic m odel fram ew o rk is defined by the follow ing equation:

(4) y j - ô = p - i y j - i - ö + ö ^ n x j - i + E j , j = 1 , 2 , . . .

In the first m odel, M ls we assum e for the e rro r term Ej in (4), th at Ej = Zj(hj)o s , w here Zj are independent, skewed S tu d en t-t ra n d o m variables, with v > 0 degrees o f freedom param eter, m ode e ( — o c , + o o ), unit precision and asym m etry param eter y > 0; i.e. Z j ~ i i Skt(v,Ci,Ly)- D efining hj we follow

G lo sten et al. (1993) asym m etric G A R C H (1 , 1) specification:

(5)

w hich allow s to m odel asym m etric re actio n o f co n d itio n a l d ispersio n m easu re hj to positive an d negative sign o f sho ck e j - i . T h e o riginal G A R C H (1 , 1) form u latio n proposed by Bollerslev (1986) can be obtained from (5) by im posing restriction a j a f = 1. In (7) we also tre a t h0 as an ad d itio n al p aram eter. M odel M , assum es, th a t th e co n d itio n al d istrib u ­ tion (given the past o f the process, y / j - i , an d th e p aram eters) o f the e rro r term e; is the skew cd-i distribu tio n w ith v > 0 degrees o f freedom

p a ra m e te r, m o d e ^ e ( — oo, + oo), inverse p recision h} an d asym m etry p aram eter у > 0:

e j l V j - u M i * Sk t ( v , £ i , h j , y ) . j = 1, 2, ...

In m odel M 2, Ej = w^hj )0 5, where Wj are independent stable rand om variables w ith a e (0,2], location p aram eter i 2 e — ° o ,+ со), u n it scale an d skewness

p aram eter ß e [ - \ , 1]; i.e. Wj~iiSta(oi,C2, 1,/D- Ju st like in m odel M j we

assum e for hj asym m etric G A R C H (1 , 1) process, (5). In specification M2

Ej has conditional (with respect to ц/ j- 1 and the param eters) Stable distribution

w ith a e (0,2], locatio n C2e ( — oo, + oo), scale p aram eter h° 5 and skewness

№ 1,1]:

Ejlij/j-u M 2 ~ Sta(a,C2, h j ' 5, ß), j = 1, 2, ...

Let d en o te by 0 = ( ô , p , ô 1, a 0, a l , a { , b í , h 0) the vector o f all com m on p aram eters for b o th , M t and M 2, m odels. W e d en o te by r\x = ( C i,v ,y ) the vector o f m odel specific param eters in M x; r/2 = (C2,ct,ß) g ro up s ad dition al p aram eters fo r M 2. In m odel M , the co nditional d istrib u tio n o f is the skew ed-i d is trib u tio n w ith v > 0 degrees o f freedo m p a ra m e te r, m o de

/Ąl) = ô + р(у}- j — S) -(- ln x j - i + Cih°'5, inverse precision hj and asym m etry param eter y > 0:

^ P ( y j \ ' V j - i M l ,0,Til ) = f SkAy]\n'}í), h],y), j = 1, 2, . . .

In specification M 2 yj has conditional stable d istrib u tio n with a e (0,2], location pfjZ) = ö + p{yy . 1 - S ) + S l ln x 7_ ! + C2hj S, scale param eter (hj)0 5 and skewness ß e [ - \ , \ \ .

(7)

Viyj W ] - u M 2,0,ri2) = f s ta{y)\u.,tf\hO

j i ,ß),

7 = 1, 2, ...

In b o th m odels th e conditional distrib u tio n o f y t is heteroscedastic, where tim e varying dispersion m easure hj follows asym m etric G A R C H (1 ,1) equation (5). T h e degrees o f freedom p aram eter, v > 0 an d the ch aracteristic exponent a e ( 0 ,2 ] enable also fat tails o f p(yj \ii/j-l , M i, 0, ^ ;) (i = 1,2). T he possible

(6)

asym m etry o f conditio n al d istrib u tio n o f y} can be m odelled in M t by p aram eter у > 0 o r - in m odel M2 - by ß e [ - \ , 1]. H ence, b o th sam pling

m odels are able to ca p tu re tw o generally app eared featu res o f financial tim e series, i.e. heavy tails and asym m etry o f the co n d itio n al distrib utio n. F o r a discussion o f p oten tial differences in ex p lan ato ry pow er o f m odels JV/j and M2 caused by definitions o f stable an d skew ed-i families sec

F ern a n d ez and Steel (1998) and Pipień (2004).

4. COMPETING BAYESIAN MODELS AND DYNAMIC UPDATING

W e d en o te by y(i) = ( y lt ..., y t) th e vector o f observed up to d ay t (used in estim ation in day i) daily grow th rates and by y ' f — i y t n , y t+k) the vector o f forecasted observables at tim e t. T he follow ing density represents the i-th sam pling m odel (i = 1, 2) a t tim e t :

(8) P ( y m , 0, r / d = П р ( > - М - ь М „ 0, r/i),

]= i

i = 1 , 2 , t = T, T + 1, T + T '

In specification M , the sam pling m odel is based o n the p ro d u c t o f the a p p ro p ria te skew ed-i densities calculated a t d a ta p o in t, nam ely o n (6),

while in m odel M2 the density (8) is based on th e p ro d u c t o f stable

densities (7). C on stru cted a t tim e t Bayesian m odel M ;, i.e. the jo in t d istrib u tio n o f th e observables ( / ' \ y'p) and th e v ecto r o f p aram eters

(9) p(yw , y f , 0, VjlM;) = pi y w, y f \ 0 , tit, M ) p(0, >/i|Mi), i = 1, 2, t = T, T + 1, ..., T + T '

requires fo rm u latio n o f the p rio r d istrib u tio n p(0, 7,|М (), which is invariant

w ith respect to t. In both m odels we assum e p rio r independence between vectors o f co m m o n and m odel specific p aram eters. In each m odel we also assum e th e sam e p ro p e r p rio r stru ctu re for 0:

p(0, >/; IM,) = p(0) ■ pir/i I M ;) i = l , 2.

O u r p rio r in fo rm atio n a b o u t the com m on param eters is reflected by the follow ing density p(0):

(7)

(1 0) p(0) = p(ô)p(p)p(ôl )p(a0)p(a J p i a t )p(bx )p(h0) ,

discussed in details in Osiewalski and Pipień (2003). In m odel we assume:

p O íJ M j) = p ( C l , v , y ) = p(Ci)p(v)p(y),

w here p(Ct ) is stan d ard norm al, p(v) is exponential w ith m ean 1 0 and p(y)

is log standard norm al. T he prior distribution o f the m odel specific param eters in G A R C H (1 ,1 ) m odel, with stable co nditional density, (M 2) is defined as follows:

Р(Чг \M z) = Ж г .

a>P)

=

P(C2)p(ot)p(ß),

w here p(C2) is stan d ard norm al, p(a) is uniform over interval (0,2] and p(ß)

is uniform over [ -1,1].

T h e p rio r stru ctu re for com m on p aram eters as well as m odel specific p rio r assu m p tio n s for M , was presented in Osiew alski and Pipień (2003). Ilc rc we om it restrictions v> 2 and y e ( e x p (-2), exp(2)), im posed previously

to g u aran tee existence o f the second m o m en t o f p( yJ\ y / j - i , M 1, 0 , r ] l ). T he p rio r d istrib u tio n in m odel M2 was discussed in details in Pipień (2004).

5. EMPIRICAL RESULTS

In this p a rt we present an em pirical exam ple o f d y nam ic Bayesian co m p ariso n o f My and M 2. We considered T + T + 1 = 1398 observations o f daily grow th rates, y r o f the W IB O R one m o n th zloty in terest rate from 20.03.1997 till 5.09.2002 (dataset A) and T + T + 1 = 1657 observations o f daily returns on the P L N /U S D exchange rates from 5.02.1996 till 4.09.2002 (d a ta set B). S ta rtin g at t = T = 100 (which relates to 7.08.1997 fo r d ataset A an d to 25.06.1996 for d atase t B) we calculated p o sterio r probabilities o f m odels M L and M 2, and posterior distribution o f p aram eters based on d a ta se t yw, for each t = 100 up to t = T + T + 1. As a result o f daily up d atin g o bservations into y(i) we obtained 1299 (for d a ta se t A) and 1558 (for d atase t B) p o sterio r probabilities o f m odels and p o sterio r distrib u tio n s o f un k n o w n param eters. T h e m ain p urpose o f the follow ing p resen tation is to check sensitivity o f the po sterio r probabilities (as well as o f Bayesian inference ab o u t skewness and tails o f conditional d istrib u tio n o f retu rn s) w ith respect to new observations dynam ically included into d a ta se t y(,). We also study differences in the predictive d istrib u tio n s o f fu tu re g ro w th rates o b tain ed from b o th m odels.

(8)

60 50 40 30 20 10 0 1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

Fig. 1. Modeled time series with descriptive statistics

F igure 1 presents our both tim e series A and B. In F ig u res 1A and IB o n th e left axis we p lotted the vales o f daily grow th rates o f the W IB O R o n e-m o n th zloty interest rates and daily returns on the P L N /U S D exchange ra te (black line). In case o f d atase t A (Figure 1A) huge outliers in the plot o f yj, caused by changes in the m o n etary policy, to g eth er w ith the regions o f alm ost no variability, depicts very an om alous behavior o f daily changes o f th e P olish zloty m iddle term interest rate. T im e series o f daily grow th rates o f P L N /U S D exchange rate is characterized by the presence o f sparsely occured o u tliers with short-lived o u tb reak s o f volatility. O n the right axis

(9)

in F ig u re 1A and IB we plotted values o f th e sam ple k u rto sis o f y (,\ £ = 100, ..., T + T (grey line). In case o f d a ta se t A the fatness o f tails o f the em pirical d istrib u tio n o f y (,) dram atically change with respect to £. In both cases we observe considerable variability o f sam ple kurtosis, which - fo r d a ta se t A - reaches values even greater th an 130 an d n o t less than

18. T h e vertical d o tted lines in F igures 1A and IB locates í = 1 0 0 . It con stitu tes the sho rtest d a ta se t used here in Bayesian inference in M { and M 2. S tartin g a t this point, we recalculated posterio r characteristics o f m odels M v and M 2 every tim e the single observ ation o f daily g ro w th rates was included in to y(I).

F igure 2 presents po sterio r probabilities P ( M , |y (,)) (black line) and P ( M 2\y{,)) (grey line) obtained by assigning equal p rio r m odel probabilities ( P ( M t ) = P ( M 2) = 0.5). In the first colum n o f the first row o f F igure 2 we present the results for d atase t A, while the p lot in the second colum n o f the first row relates to the d atase t B. T he bottom plots o f daily grow th rates y} (j = 100 to 1398) m ay help in visual assessm ent o f the influence o f new d a ta included into y u) on changes o f the posterior probabilities. In case o f datset A, the first 500 o b servations yield decisive su p p o rt for G A R C H m odel with skewed-£ conditional distribution. A lm ost zero posterior probability P ( M 2\yif)) m akes stable G A R C H com pletely im probable in th e view o f the d a ta y(,), for £ = 100 till a b o u t 560. F o r d atase t A we also observe d ra m a tic fall o f the posterio r p ro b ab ility P ( M 1\ylt)) for £ greater th an 600. It seems to be caused by th e region o f alm ost no variability o f W IB O R o n e-m o n th interest rate, which lies roughly between £ = 500 and 650. Inclusion those observations into d atase t m akes y (t) (for £ = 6 5 0 , ..., 700) look like an alm ost n o n volatile series w ith huge negative outliers. Ever since, the d a ta clearly s u p p o rt G A R C H m odel with stable conditional distribution. We observe th a t, for £ > 1100, the posterior probability o f m odel M x again starts to lift, m aking this specification m ore likely a posteriori. R egular fluctuations o f y } for j = 1100, ..., 1398 su p p o rted G A R C H m odel with skewed-£ co nditio n al d istrib u tio n .

F o r d a ta se t В we observe successive grow th o f th e streng th o f the d a ta su p p o rt in fav o r o f m odel M v S tarting from t = 100 o bservatio ns, for £ = 100, ..., 250, skewed-£ G A R C H m odel quickly receives th e m ajo rity o f the posterior probability. F o r £ > 250 some occasional outliers - and especially stru c tu ra l b re ak a t £ = 385 - tem p o ra rily red u ce p o ste rio r p ro b a b ility P i M j y 0), m ak in g specification M 2 m ore p ro b a b le in view o f the data. A fte r including £ > 1 1 0 0 observations the p o sterio r p ro bab ilities o f b oth specifications becom e insensitive w ith respect to new o b serv ation s included into dataset. F o r £ > 1100 the dataset В decisively reject stable G A R C H model.

In F igu re 3 we present plots reflecting dynam ic changes in location and dispersion o f the m arginal po sterio r d istrib u tio n s o f tail and asym m etry p aram eters o f the conditional d istrib u tio n o f yj in m odels M L and M 2.

(10)

P ( M [ / V = 1 0 0 , 1657 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 ---/ W i l v ) ----p{a/2 Lv) 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 y „ t = 100,..., 1657 100 200 300 400 500 600 700 800 900 10001100 12001300140015001600 I N> ' О О

Fig. 2. Dynamic posterior probabilities of models M 1 and M 2 for datasets A and В

M ate us z P ip ie ń

(11)

Tail param eters Figure 3.1 Figure 3.2 Asymmetry parameters Figure 3.3 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4

— lower bound А/, — upper bound My — lower bound M 2 — upper bound М2 — symmetry under M\ — symmetry under М2

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Figure 3.4

— lower bound M \ — upper bound А/, — lower bound A/2 — upper bound M 2 — symmetry under M \ — symmetry under М2

100 200 300 400 500 600 700 800 900 1000110012001300140015001600

(12)

F o r each d a ta se t y(I) (for A t = 100, ..., 1398, and fo r B i = 100, 1657) we calculated 95% highest posterior density ( I I P D ) intervals for tail param eters a (M 2) and v (A /,) and for asym m etry p aram eters ß (M 2) and у (M j). Presented H P D intervals can be in terpreted as the B ayesian 95% credible intervals for estim ated param eters.

T h e H P D intervals, plotted on Figures 3.1 and 3.3 indicate fundam ental differences in inference ab o u t the tails o f the co nd itio n al d istrib u tio n o f y} in case o f d a ta se t A. Based on tim e series y(1) both m odels, for t = 100, ..., 650, su p p o rt different type o f conditional distribution o f retu rn rates. Given model M j, for t = 100, ..., 650, there is no d o u b t, th a t the second m o m en t o f the co n d itio n al d istrib u tio n o f y } exists. A t the sam e tim e, given m odel M 2, the d a ta locate index a in the regions th at would preclude conditional norm ality o f yj (cf. F ig ure 3.1). F ro m the definition o f stable ran d o m variables it is equivalent w ith non-existence o f the second conditional m om ent. Sim ilarly as for posterior probabilities o f both m odels, inference ab o u t tails o f the conditio­ nal d istrib u tio n o f yj changes for t greater th a t 600 and ad dition ally becom e quite unanim ous. A fter updating ab o u t t = 700 observations th e hypothesis o f existence o f the second conditional m om ent is strongly rejected in both models. F o r t greater th a n 700 H P D intervals for a (in M 2) and v (in M 2) are both tightly located around the value 1.5 precluding existence o f the variance o f the co n d itio n al d istrib u tio n o f у}.

F ig u re 3.2 in T ab le 3 presents the H P D intervals o f tail param eters in My and M 2 o b tain ed in d ataset B. B oth m odels yield differen t inform ation a b o u t existence o f conditional m om ents o f y}. F ro m the definition o f stable fam ily, stable G A R C H specification precludes existence o f second m om ent o f p ( y j \ y S j - i , M 2, 0, tj2). As seen from F igure 3.2 the H P D intervals for param eter a are very tight and located very close to value a = 2. A dditionally, location as well as spread o f th e H P D intervals o f p a ram eter a rem ains insensitive to new observations u p d ated in d atase t B. In spite o f significant changes in dispersion o f the H P D intervals o f p a ram eter v in m odel My , th ere is n o d o u b t th a t p ( y j W j - \ , M 2, 0, rj2) posses variance (cf. F ig ure 3.2). T h e p lo t o f lower bound o f the H P D intervals o f v show s, th a t for t > 120 m o re th an 95% o f the po sterio r probability o f p (v |y (l), M y ) is concentrated on the left side o f the value v = 2 (see F ig u re 3.2).

H P D 95% intervals o f asym m etry p aram eters are presented in F ig ure 3.3 (d a ta set A ) and F ig u re 3.4 (dataset B). By grey h o rizo n tal lines we located sym m etric cases o f the co n ditional distrib u tio n s (for My it is th e case with у = 1 and for M2 it corresponds to ß = 0). In case o f d a ta se t A , ju st like

for tail param eters, b o th m odels yield different conclusions ab o u t asym m etry o f the co nditional d istrib u tio n o f yj for t = 100, ..., 600. U n d er m odel My, d a ta se t y(I) (for t = 100, ..., 450) build p o sterio r d istrib u tio n o f у w ith very volatile location and dispersion. It m akes uncertainty ab o u t possible skewness

(13)

o f the co n d itio n al d istrib u tio n o f y} (given M x) very »sensitive to new observ atio n s u p d ated in d ataset. H uge negative outliers, to g eth er w ith the region o f no variability (£ = 500, ..., 650) leads to very tig h t p osterior d istrib u tio n p (y |y (,)) fo r í = 400, 600, w here 95% o f th e p o ste rio r p ro b ab ility is located at the very small region o f p a ram eter space. D ataset y (t) (for £ = 400, ..., 600) leaves no d o u b t th a t co nd itio n al d istrib u tio n o f daily grow th rates (given m odel M y) is skewed to the left. F o r £ greater th a n 600 the H P D in tervals for p a ra m e te r у quickly s ta rt to w iden. C onsequently, given m odel M ,, for £ greater th an 600, the d a ta y(,) d o not preclude sym m etry o f the conditional d istrib u tio n , because the value у = 1

lies am o n g low er an upper bound o f the 95% H P D interval. In m odel M 2 the H P D interval o f the asym m etry param eter ß seems to be m o re dispersed and less sensitive to new observations th an the H P D interval for p aram eter у in m odel M v Except for £ = 100, 150 and t = 480, ..., 650, the d ataset

y( 0 d o n o t preclude sym m etry o f the (stable) cond itio n al d istrib u tio n o f y}.

In m o st cases o f £ the value ß = 0 lies either in the in terio r o f 9 5% H P D interval o r is very close to its u p p er boun d. In m odel M 2, th e d a ta always su p p o rt the hypothesis o f left asym m etry o f the co n dition al d istrib u tio n o f yj, ra th e r th a n right asym m etry. Except fo r a very few cases o f £, the m ajo rity o f the p ro b ab ility o f the p o sterio r d istrib u tio n o f ß lies below the value ß = 0 (see F igure 3.3).

Q uite regular fluctuations o f daily return s o f P L N / U SD exchange rate (d ataset B) m akes, in m odel M „ inference a b o u t possible skewness o f p(yJ\i//j-l , M 1,0,Tii ) consistent with m odel M 2. F ro m F ig u re 3.4 we see, th a t, for £ = 100, ..., 500, b o th m odels su p p o rt sym m etric case, leaving great uncertainty about possible right or left asym m etry of p{yj \[)/j-i , M i, 0, j/j). F o r £ = 100, ..., 500 the H P D intervals o f ß an d у are very dispersed and its location and spread is very sensitive with respect to the new observations. B ut, for £ > 500, b o th specifications su p p o rt hypothesis o f righ t asym m etry o f co n d itio n al d istrib u tio n o f y;-. As in m odel M 2, fo r £ > 500, th e H P D intervals o f asym m etry param eter ß lies on the right side o f th e value ß = 0,

stable G A R C H su p p o rts right asym m etry stron ger th a n m odel M v In case o f M y the H P D interval for asym m etry p aram eter у includes sym m etric case (y = 0), b u t the m ajority o f p o sterio r prob ab ility m ass o f p (y \y l,\ M x)

is co n cen trated o n the right side o f the value у = 0.

F igure 4 presents quantiles o f o rd e r 0.95 and 0.05 o f the one-step predictive densities at tim e £ (predictive distrib u tio n s o f yt + 1 given y(t))

o btained from b o th m odels in d atasets A and B. F igures 4.1 and 4.3 plots the quantiles o f p( yt + i \ M h y(i)) in case o f d atase t A , while F ig ures 4.2 and 4.4 relates to d a ta se t B. A s usual, in the third row we p u t o u r tim e series (A and В ) in o rd e r to asses sensitivity o f spread o f considered predictive d istrib u tio n s w ith respect to new observations у у T im e varying inverse

(14)

quantiles 0.95, 0.05 o f/>(уж|Л/|У0)

Figure 4.1 Figure 4.2

quantiles 0.95, 0.05 o fp (y l+\M 2y )

Figure 4.3 Figure 4.4

Fig. 4. Quantiles o f orders 0.95 and 0.05 o f the one-step predictive densities obtained from models M 1 (it = 100, 1398) and M 2 (t = 100, 1657) ai eu sz n p ie n I D y n a m ic B ay es ia n In fe re n

(15)

precision in M j and scale param eter in M 2, which arc b o th m odeled by a sy m m ctric-G A R C H (l, 1) eq u atio n , m ake one day ahead predictive densities very sensitive to new observations included in observed tim e series. F o r b o th d atasets, spread o f p(y,+ l M i, y(,)) (as m easured by q uan tiles o f order 0.05 and 0.95) instantly responds to changes in the volatility (dataset B) o r occasional huge outliers (d ataset A). A dditionally, eith er d atase t A o r В indicate, th a t stable G A R C H m odel generate one day predictive densities m o re dispersed th an those obtained from m odel M ,.

Visible difference in distance between qu antiles o f o rd e r 0.05 and 0.95 o f th e predictive distrib u tio n s p(yl + 1 |M „ / ° ) ( i = 1, 2) m ay be the crucial

p o in t in analyzing discrepancies o f d a ta su p p o rt o f skew ed-i and stable G A R C H m odels. In the co n stan t location and scale fram ew ork F ern an dez and Steel (1998) com pared sam pling distrib u tio n s ob tained from skewed-t o r stable assu m p tio n ab o u t the erro r term . T h e b enchm ark o f com parison was em pirical d istrib u tio n o f m odeled time series. A s a one o f the results, w hich was also obtained fo r m any tim e scries by R achev and M ittnik (2002), F ern a n d e z and Steel (1998) re p o rt alm ost im perceptible differences in d a ta fit o f skew ed-i and stable regression m odels. T h e plots o f sam pling densities o b tain ed from location and scale skewed-t and stable m odels were very sim ilar, and fitted well to em pirical density. As seen from F igure 4, tak in g into consid eratio n the p osterior uncertainty ab o u t p aram eters, m akes the predictive densities (obtained from M , and M 2) very different. It seems th a t b o th m odels reflect different posterior info rm ation a b o u t com m on and m odel specific param eters. C onsequently, and M 2 yield different ex-ante un certainty a b o u t fu tu re grow th rates.

6. CONCLUSIONS

In A R (1 )-G A R C H (1 ,1) fram ew ork for daily return s, proposed and ad o p ted by Bauwens and L u b ran o (1997), Bauwens et al. (1999) Osiewalski and Pipień (2003), there are considered in the p ap er tw o types o f co n ­ ditio n al d istrib u tio n . In the first m odel ( M t ) we assum ed conditionally skew ed-i d istrib u tio n (defined by F ernandez and Steel 1998) while the second G A R C H specification (M 2) is based on the co n d itio n al stable d istrib u tio n . W e presented Bayesian updating technique in o rd e r to check sensitivity o f the po sterio r probabilities o f considered specifications, with respect to new o bservations included into d ataset. W e also studied differen­ ces betw een Bayesian inference ab o u t tails and asym m etry o f the co n ­ d itio n a l d istrib u tio n o f daily re tu rn s and th e o n e-step pred ictiv e d ist­ rib u tio n s o btained from both m odels.

(16)

Based on very volatile daily grow th rates o f th e W IB O R on e-m onth in terest rates (d a ta set A, 1398 observations) as well as o n daily returns on the P L N /U S D exchange ra te (dataset B, 1657 ob servations), we ca­ lculated the po sterio r probabilities o f m odels M , and M 2, and the p o ­ ste rio r d istrib u tio n o f p aram eters using d a ta s e t y (,\ fo r each t = 1 0 0

up to t = T + T + 1 (which is equal to 1398 for d a ta se t A and 1657 for B). T h e m ain em pirical result o f this p ap e r is g re at sensitivity o f the p o ste rio r m o d el p ro b a b ilities w ith respect to new o b se rv a tio n s o f yj included in to d a ta se t. D aily re tu rn s o f d a ta se t A ch a rac te rized by very weak variability with unexpected huge negative outliers decisively su p p o rted G A R C H m odel with conditional stable d istrib u tio n . A fter in­ cluding m ore volatile observations into d a ta se t A , we observed th a t the p o sterio r p ro b a b ility o f m odel M , started to increase. F o r d atase t В we observe successive grow th o f the strength o f the d a ta su p p o rt in favor o f m o d el M ,. F o r t > 1100 o b se rv a tio n s o f d a ily re tu r n s o f th e P L N /U S D exchange rate, skew ed-i G A R C H m odel receives th e whole p o sterio r p ro b ab ility , m aking stable G A R C H com pletely rejected by the d a ta se t B.

W e also checked conform ity o f inference a b o u t tails an d asym m etry o f the co n d itio n al d istrib u tio n o f daily returns. In case A , fo r s h o rt tim e series b o th m odels yielded different inform ation a b o u t existence o f m o m en ts as well as possible skewnes o f p(yJ\ y / j ^l , M l, 0, rj^- H ow ever, for datasets, which

consisted m o re th an 700 observations o f daily grow th rates o f W IB O R lm , b o th m odels pointed to qualitatively sim ilar results o f th e p ro p erties o f the co n d itio n al d istrib u tio n o f y y F o r d ataset В stable G A R C H m odels was n o t able to m odel properly tails o f the conditio n al d istrib u tio n o f returns. H P D intervals o f the degrees o f freedom p aram eter in m odel M i (skewed-£ G A R C H ) decisively su p p o rted hypothesis, th a t the second and th ird co n ­ ditional m o m en t o f p ( ^ | ^ - i , M 1, 0, t}x) exist. H ow ever, tightly co ncentrated

aro u n d value v = 3 po sterio r distribution p ( v |/ ° ) , precludes conditional n orm ality . D a ta se t В supp o rted m ore flexible skew ed-г G A R C H m odels, m ak in g co n d itio n al stability im p ro b ab le a posteriori.

B oth m odels built one day predictive d istrib u tio n s very sensitive to new o b se rv a tio n s includ ed. W e observed in sta n t re a c tio n o f th e spread o f p(y, + i |M j, y w) (i = 1, 2) on occasionally ap p eared outliers o r unexpected

in ten sificatio n s o f volatility. F o r b o th d a ta s e ts p re d ic tiv e d istrib u tio n s o b tain ed from m odel M2 has greater dispersion th a n those obtain ed from

skew ed-i G A R C H m odel. It seems th a t, in building predictive distribu tion s, p o ste rio r u ncertain ty ab o u t com m on and m odel specific p aram eters o f specifications M x and M2 lead u p to different ex an te u n certain ty a b o u t

(17)

Mateusz Pipień

REFERENCES

Bauwens, L. and Lubrano, M. (1997), “Bayesian Option Pricing Using Asymmetric GARCH, CORE”, Université Catholique de Louvain, Louvain: Discussion Paper, 9759.

Bauwens, L, Lubrano, M. and Richard, J.-F. (1999), Bayesian Inference in Dynamic Econometric Models, Oxford: Oxford University Press.

Bollerslev, T. (1986), “Generalised Autoregressive Conditional Heteroscedasticity”, Journal o f Econometrics, 31, 307-327.

Bollerslev, T. (1987), “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates o f Return”, The Review o f Economics and StatLitics, 69, 542-547. Fernández, С. and Steel, M. F. J. (1998), “On Bayesian Modelling o f Fat Tails and Skewness”,

Journal o f the American Statistical Association, 93, 359-371.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993), “On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks”, Journal o f Finance, 48, 1779-1801.

Liu, S. and Brorsen, B. W. (1995), “Maximum likelihood Estimation of a GARCH Stable Model” , Journal o f Applied Econometrics, 10, 273-285.

McCulloch, J. H. (1985), “Interest-risk Sensitive Deposit Insurance Premia: Stable ARCH Estimates” , Journal o f Banking and Finance, 9, 137-156.

Mittnik, S., Doganoglu, T. and Chenyao, D . (1999), “Computing the Probability Density Function o f the Stable Paretian Distribution”, Mathematical and Computer Modelling, 29, 235-240. Mittnik, S., Paollela, M. S. and Rachev, S. (2002), “Stationarity o f Stable Power-GARCH

Processes”, Journal o f Econometrics, 106, 97-107.

Nelson, D. (1991), “Conditional Heteroskedasticity in Asset Returns: A N ew Approach”, Econometrica, 59, 347-370.

Osiewalski, J. and Pipień, M. (2003), “Univariate GARCH Processes with Asymmetries and GARCH-in-M ean Effects: Bayesian Analysis and Direct Option Pricing” , Przegląd Statystyczny, 50, 5-29.

Panorska, A., Mittnik, S. and Rachev, S. T. (1995), “Stable GARCH Models for Financial Time Series”, Applied Mathematics Letters, 8, 33-37.

Pipień, M. (2004), Bayesian ComparLion o f GARCH Processes with Skewed-t and Stable Conditional Distributions, unpublished manuscript.

Rachev, S. and Mittnik, S. (2002), Stable Paretian Models in Finance, New York: J. Wiley. Zolotarev, U. M. (1961), “On Analytic Properties of Stable Distribution Laws” , Selected

Translations in Mathematical Statistics and Probability, 1, 202-211.

Mateusz Pipień

DYNAMICZNE WNIOSKOWANIE BAYESOWSKIE W PROCESACH GARCH ZE SKOŚNYMI T-STUDENTA I STABILNYM ROZKŁADEM WARUNKOWYM

(Streszczenie)

W artykule przedstawiono modele A R(1)-G A RC H (1,1) dla dziennych stóp zmian (por. Bauwens i Lubrano 1997, Bauwens i in. 1999, Osiewalski i Pipień 2003) z różnymi typami rozkładu warunkowego. W pierwszym przypadku (model M x) rozważono warunkowy rozkład skośny t-studenta (zdefiniowany przez Fernández i Steela 1998), podczas gdy model M 2 to

(18)

proces GARCH o warunkowym rozkładzie a-stabilnym. Prezentujemy bayesowską aktualizację rozkładów a posteriori i predyktywnych (wraz z napływem nowych danych) w celu zbadania, czy typ rozkładu warunkowego zadany w procesie GARCH wpływa na wnioskowanie o naturze procesów opisujących zmienność finansowych szeregów czasowych o dużej częstotliwości. Rezultaty dynamicznej estymacji wykorzystującej podejście bayesowskie zilustrowano na przykładzie dwóch szeregów czasowych, tzn. dziennych stóp zmian kursu walutowego PLN/USD oraz oprocentowań jednomiesięcznych lokat międzybankowych (WIBORlm).

Cytaty

Powiązane dokumenty

za początek zawarcia umowy uważa się chwilę doręczenia przez zakład ubezpieczeń dokumentu ubezpieczenia?. Czy chwila zawarcia umowy nie może być zatem dowolnie

Komitet Honorowy wystawy tworzyli i uczestniczyli w uroczystościach: ks. arcy- biskup Józef Życiński, wojewoda lubelski Andrzej Kurowski, marszałek wojewódz- twa lubelskiego

Obraz terapeutów, jaki kreśli Filon, rzeczywiście jest trochę przesadzony: według niego są oni wszędzie (nie podaje jednak żad- nej ich liczby), rozdali swoje dobra i nie

27 Por.. SERMO DE DISCIPLINA CHRISTIANA ŚW. Brevitas była zawsze jedną z głównych reguł przy organizowaniu narratio. W ten sposób ekspozycja miała stawać się bardziej

Od národního obrození do současnosti (Hl’adanie koreňov. Literatura Krnovska ajej predstavitelia. Od národného obrodenia po súčasnosť; Opava, 2010); Fryderyk Chopin v české

Ważną i cenną intencją książki Anny Czabanowskiej-Wróbel jest poszukiwanie i dookreślanie wybranych wątków twórczości pisarza nieuchwytnego, a jest to szczególne

Stan gotowości obronnej państwa czasu kryzysu wprowadza się w razie zaistnienia zewnętrznego zagrożenia bezpieczeństwa państwa wymagającego uruchomienia

Independent root-cause analysis of contributing factors, including dismantling of 2 duodenoscopes, to investigate an outbreak of multidrug-resistant Klebsiella pneumoniae.. Please