• Nie Znaleziono Wyników

A comparison of pitch measurements on an oscillation towed body using a vertical gyro and a pendulum indicator

N/A
N/A
Protected

Academic year: 2021

Share "A comparison of pitch measurements on an oscillation towed body using a vertical gyro and a pendulum indicator"

Copied!
32
0
0

Pełen tekst

(1)

Research and Development Report

July 1957

Report 1153 Lab.

v.

Scheepsbouwkunde7

Technische Hogeschool

Delft

NAVY DEPARTMENT

THE DAVID W. TAYLOR MODEL BASIN

WASHINGTON 7. D.C.

A COMPARISON OF PITCH MEASUREMENTS ON AN OSCILLATING

TOWED BODY USING A VERTICAL GYRO AND A PENDULUM INDICATOR

by

(2)

A COMPARISON OF PITCH MEASUREMENTS ON AN OSCILLATING TOWED BODY USING A VERTICAL GYRO AND A

PENDULUM INDICATOR by

Samuel M. Y. Lum and Chester 0. Walton

(3)

TABLE OF CONTENTS Page ABSTRACT INTRODUCTION 1 EXPERIMENTAL SET-UP DISCUSSION OF RESULTS BASIN TESTS DYNAMIC CALIBRATION

CONCLUSIONS AND RECOMMENDATIONS

ACKNOWLEDGMENTS 8

APPENDIX A. - THE DAVID TAYLOR MODEL BASIN HEAVING FACILITY

APPENDIX B. - ANALYSIS OF THE EFFECTS OF TOWED BODY MOTION 11

ON A PENDULUM ANGLE INDICATOR

4

7

(4)

Figure 4b Figure 4e Figure 4d Figure

5

-Figure 6a Figure 6b Figure 6c Figure 6d Figure 7 -LIST OF ILLUSTRATIONS

Figure I - Towed Body Used in Experiment Figure 2 - The Heaving Towpoint Facility

Figure

3 -

Experimental Set-Up Showing Dynamic Calibration of

Gyro and Pendulum Indicator

Figure 4a - Sample Records Showing Pitch Response of Towed Body as Indicated by Gyro and by Edcliff Pendulum, w = 0

Radian per Second

Sample Records Showing Pitch Response of Towed Body as Indicated by Gyro and by Edcliff Pendulum, w = 2.0

Radians per Second

Sample Records Showing Pitch Response of Towed Body as Indicated by Gyro and by Edcliff Pendulum, w - 2.4

Radians per Second

Sample Records Showing Pitch Response of Towed Body as Indicated by Gyro and by Edcliff Pendulum, m = 2.8

Radians per Second

Comparison of Maximum Pitch Amplitudes of Towed Body as Measured by Gyro and Pendulum for Different Input

Frequencies

Sanborn Traces of Gyro and Pendulum Dynamic Calibration,

w = 2.02, 2.17 Radians per Second

Sanborn Traces of Gyro and Pendulum Dynamic Calibration,

w = 2.26, 2.38 Radians per Second

Sanborn Traces of Gyro and Pendulum Dynamic Calibration,

w = 2.49, 2.57 Radians per Second

Sanborn Traces of Gyro and Pendulum Dynamic Calibration,

U) = 2.81,

2.88

Radians per Second

Effect of Horizontal Acceleration and Frequency on Gyro

and Pendulum Output

(5)

-A COMP-ARISON OF PITCH ME-ASUREMENTS ON -AN OSCILL-ATING TOWED BODY USING A VERTICAL GYRO AND A

PENDULUM INDICATOR by

Samuel M. Y. turn and Chester 0. Walton

ABSTRACT

A comparison is made of the relative accuracy of a pendulum indicator as compared with a vertical gyro in determining the

pitching motion of a cable-towed body under forced oscillation.

It is shown that serious errors are introduced in the measurement of body attitude with a pendulum indicator when the body is

sub-jected to accelerating forces.

INTRODUCTION

In the determination of the pitching response of a cable-towed body subjected to an oscillating input, pendulum indicators

are frequently used to measure angular orientation of the body.

Generally, space availability, the number of conductors required, simplicity of operation and recording, and cost economy have

dictated the use of pendulums. Since, however, these devices

were designed only for static measurements, the question of their

accurac under dynamic conditions has been cause for serious

con-cern. Recently, during the course of obtaining motion data on a

cable-towed body, the Model Basin had occasion to compare a

pendulum indicator with a vertical gyro under dynamic conditions. This report presents the results of this comparison.

EXPERIMENTAL SET-UP

The specifications for the gyro and pendulum units are given

in Table 1. The towed-body in which they were installed is shown in Figure 1. This body was constructed for another purpose and

was used for these tests merely as a matter of convenience. As

a result, no particulars need be given except that the body was

21

feet long and contained internal ballast to provide metacentric

stability and permit trimming to zero in the submerged condition. The gyro and pendulum were located as shown in the following sketch.

(6)

The tow cable besides being a strength member provided sufficient electrical conductors for powering the gyro and

pendulum and for transmitting the output signals to a 2-channel

pen recorder. The cable was connected to the TMB heaving towpoint facility shown in Figure 2 and described in detail in Appendix

A.

Basin tests consisted of simultaneously recording the out-puts of the gyro and pendulum with the body towed at various

speeds and subjected to an oscillating input at the towpoint.

The vertical motion of the towpoint was varied over a frequency range of 0 to 2.8 radians per second with a constant amplitude of

1 foot.

In addition to basin tests, it was deemed advisable to also

make a dynamic calibration of the gyro and pendulum units. This

was accomplished by means of the swing shown in Figure 3. Both

indicators were located in the box, as shown, and subjected to known motions controlled by the variable speed motor and measured

accurately with the angular potentiometer. Comparison was made

between the angle measured by the potentiometer and that indicated

(7)

Instrument Manufacturer Type Cost (Approx.) Power Accuracy (stati Principle Pendulum Edcliff Duarte, California $160 DC Battery TABLE 1

Comparison of Gyro and Pendulum

0.5 deg

Pendulum depends on gravity to give the vertical reference. The pendulum mass supported by instru-ment type ball bearing, actuates a potentio-meter producing an output linear with rotation. Liquid in case provides fluid damping. 3 Gyro Minneapolis-Honeywell Minneapolis, Minnesota Vertical, Self-Erecting JG-10414A $1,085 AC-DC 115v.,

400

cps single phase 4 0.15 deg Rapid spinning of gyro rotor provides stable reference. Long term drift com-pensated by mercury switches which actu-ates erection motors to maintain vertical alignment of gyro spin axis. Conductors Req'd I 3 Model Ident. 5-5-1 5 1/8" x 5

7/8" x 7 3/4"

5.0 lb Size 2.0" dia. x 1.1" Weight 0.75 lb

(8)

BASIN TESTS

The results of tests with the towed body are given in Table 2.

The sign convention is plus for nose-up attitude and minus for

nose-down.

TABLE 2

Comparison of Recorded Body Pitch from Gyro and

Pendulum Indicator

DISCUSSION OF RESULTS

Carriage Speed in Knots

0

+.2

1+4.2,- 4.4

-6.0,+ 8.6

L _

+3.80- 6.2

+5.2,- 5.0

-(.3,+23.0

Figures 4a thru Lld show sample records of the simultaneous outputs from the pendulum and gyro for the various test conditions.

Analysis of these records shows that the pendulum output is quite

irregular,

particularly

at the higher speeds. Furthermore, the

pitch

recorded by the pendulum is not in phase

Irith

the gyro output.

At 10 knots and the higher frequencies this phase shift

iP about

180 degrees.

Figure 5 shows 9 compavison of the absolute values of

max-imum pitch amE:itude

(10mald)

measured by the gyro and ,Jer!':,11:m for various input frequencies (w). At low speeds and frequencies the pitch measured by the pendulum is within 2 or 3 degrees of tht

measured by the gyro. At the higher speeds and frequencies, howe,'e,,

Input Frequency in radians per second V1 = 2.5 1

V2 = 5.0

v3 - 7.5

co

l

=

Gyro

Pend

+2.0

+1.5

+1.0

a)2

= 2.0

Gyro +7.0,-11.2 Pend +7.2,-

9.8

+6.6,-

(.2

+6.o,- 8.0

+5.0,- 6.0

4-4.2,- 7.0

w, = 2.4

Gyro

+8.4,- 8.2

Pend

+8.4,- 7.3

+6.0,- 9.2 +5.4,-10.1 +5.0,- 6.1

+8.o,- 7.0

a

- 2.8

Gyro

+13.2,-14.8

Pend

+13.0,-13.0

+11.0,-10.G+7.5,-10-O

+7.o,- 6.8

-8.2,+15.8

-.3

0

(9)

the pendulum shows a pitch amplitude as much as 4.5 times higher

than that of the gyro. It should also be noted that, in the plot

of 10,,,x1 versus w, the variation of pitch response with frequency

shown by the pendulum is entirely different from that shown by the

gyro.

DYNAMIC CALIBRATION

The results of the dynamic calibration performed under known angular inputs in the laboratory are given in Figure 6a thru 6d

inclusive. These records show that the gyro gives an accurate measure of pitch both in amplitude and phase. All gyro readings

were within ±i-degree of that of the angular potentiometer with apparently no phase difference whereas the pendulum record shows amplitude errors of as much as 17 degrees and phase differences as

great as 180 degrees.

To gain some insight into the effect of acceleration on the gyro and pendulum, the horizontal component was computed for the

conditions of dynamic calibration. In this case, the horizontal

acceleration is due entirely to the angular motion of the box in

which the gyro and pendulum were mounted. In the following sketch (See Figure 3 also)

(10)

P is the position of the transducer, P(i,)

is the length of the swinging arm, 5P

e is the angular displacement of the arm at any time t, is the horizontal displacement of P at any time t,

and co is the circular frequency of the oscillating input.

Taking fixed axes and C as shown, the horizontal displacement of the point P with respect to the origin at 0 is given by

= 2 sin e

The second derivative with respect to time is then

d2 = (g cos 8 - 62 sin (9) [1]

dt2

For a harmonic input oscillation, the angular displacement is given;

by

= 00 sin cot

where

ea

is the maximum angular travel of the swinging arm.

Substituting; the horizontal acceleration of the point P

is given by:

= -2060 [sin cot cos (9 + 60 cos2wt sin (3]

(2n-1)T

The maximum acceleration occurs at

e = eo

or at time t

4

where T is the period and n = 1, 2,

3,

- - -

Also, 27

the circular frequency by definition is w

= T.

Substituting, we

obtain for the absolute value of the maximum horizontal acceleration:

6

(11)

-Imaxl = 1.00 w2

I"41axl = Lw29 cos

In this particular case, = 6 ft. and ao = 9.7 degrees - .169 radians whence:

win rad/sec

k in ft/sec2

From this relationship, the values of gmaxl were computed for each

emax

frequency w and plotted against values of for the gyro and Go

pendulum.

This comparison is given in Figure 7. As can be seen from the

sample calibration records given in Figure 6a thru Od, it was

difficult to determine a value of 9ma, for the pendulum. The value selected for each w was taken from an average of the recorded peaks.

The significance of such a value is, however, subject to considerable

question. Consequently, Figure 7 serves only to qualitatively il-lustrate the effect of frequency and horizontal acceleration on the pendulum error. It also clearly shows that there is no such effect

on the gyro over the range of values considered.

To further illustrate the effect of body acceleration on the

accuracy of pendulum indicators, an analysis was made for the case

of the towed body subjected to motions in the vertical plane. This analysis is presented in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS

The results of this comparison between a gyro and pendulum indicator clearly demonstrate the danger in using pendulums to

measure angles under dynamic conditions. The range of input motions

applied to the towed vehicle used in making this comparison is typical of motions which could occur in towing such bodies from a

vessel operating in a seaway. This appears to preclude the use of pendulums for other than static measurement of angular attitude.

It is recommended, therefore, that future evaluations of cable-towed bodies such as the variable-depth-sonar be based on the use of

(12)

ACKNOWLEDGMENTS

The authors are indebted to Messrs. M. Graybill, J. Leahy and E. Frillman of the Applied Instrumentation Branch for their generous assistance in providing the instrumentation necessary

to make the measurements described in this report.

(13)

APPENDIX A. - THE DAVID TAYLOR MODEL BASIN

HEAVING TOWPOINT FACILITY

General Description and Purpose

The "heaving towpoint" is a device by means of which systematically varied vertical displacements can be applied

to the end of a cable from which a submerged body is towed.

This device is design to be attached to TMB Carriage 2 near

the 4, of the basin. This carriage has a top speed of about

17 knots. The purpose of this towpoint is to provide a means

of simulating the vertical motions of a real towing platform

such as a ship. The stability characteristics of towed bodies such as the variable depth sonar can thus be predicted more accurately from model tests.

Design Specifications

The tow point oscillates along an axis which is normal to a plane tangent to the earth's surface,

i.e., a line usually referred to as the vertical axis The total vertical displacement can be varied from 0

to 10 feet and the center of oscillation can be positioned

anywhere along the 10-foot length. It should be noted,

however, that the maximum amplitude is realized only when the center of oscillation is in the center of

the 10-foot length.

Either a single step function or a continuous

sinusoidal motion can be produced.

For the sinusoidal motion the double amplitude is variable from 0 to 10 feet and the period is

variable from about 3 seconds to infinity.

The maximum design loading on the towpoint is

1000 pounds horizontal (drag) force, 1000 pounds

vertical force (including dead load) and 500

pounds side force.

Maximum Permissible Model Size

The maximum size of model to be used on this facility will

be determined by the maximum loads specified above. These

loads are a function of several factors; namely, the shape of the body, the length of cable, the mass of the body, the accelerations which are to be imposed, and the maximum towing

speed. It is seen, therefore, that the maximum model size can

(14)

We can, however, obtain some idea of the limits imposed on the

simulation

of

full-scale parameters. This can be

done

since

we know that the laws of dynamic scaling will be followed in

determining full-scale values based on model tests. In other

words, when we model a dynamic towing test we preserve the

full-scale value of the ratio V__, where V is the speed of

igL

advance, L is a characteristic length dimension, and g is the

acceleration

of

gravity. On this basis, the

following

scale relations are obtained:

For a model scale

of X,

Full-scale length X -Model-scale length Full-scale time Model time -x2 Full-scale velocity Model velocity x2

Model linear accelerations = Full-scale linear accelerations

Model angular accelerations - Full-scale angular accelerationsq

Full-scale forces Model forces

-X3

As a result, the maximum full-scale loads which can be duplicated

are:

Full-scale horizontal (drag) force = 1000 X3 pounds

Full-scale vertical force = 1000 X3 pounds

Full-scale side force = 500 X3 pounds

Within the allowable loads then, the towpoint can produce a

sinusoidal motion

with a maximum full-scale doublq-amplitude

of 10

X feet and minimum full-scale period of 3 A.-2 seconds,

with linear accelerations equal for both model and full-scale. 1

(15)

APPENDIX B - ANALYSIS OF THE EFFECTS OF TOWED BODY MOTION ON A PENDULUM ANGLE INDICATOR

In the comparison of the gyro and pendulum for the laboratory

calibration, the origin 0 was fixed in space. As a result, the

acceleration of the point P was due only to rotation about a fixed

point.

In order to interpret the results of the gyro and the pendulum mounted in the body when undergoing oscillations under the sinusoidal

input from the heaving towpoint, it is necessary to consider an additional horizontal acceleration component at the point P in

addition to that at the origin,O. Here, the point 0 is in a movIng

axes system with freedom in translation as well as rotation. Using axes fixed to the body, we take Y positive toward the nose of the body and z positive downwards perpendicular to x, as in the follnwL1g

sketch:

We may define:

b = distance of point P from origin 0

e and C coordinate axes fixed in space

(16)

The instantaneous velocity of the origin may then be written

= lu + 'RIAT

where u and w are the velocity components along the respective x

and z body axes assuming two dimensional motion in the vertical

plane. The acceleration vector at 0 may be obtained by taking

the substantial derivative of the velocity vector,

D

yo = do

(E) x Vo)

Dt dt

where the vector cross product of the angular velocity vector aS

and the linear velocity vector Vo is given by

assuming only rotational motion about the transverse axis.

The acceleration of the towpoint with q = 0 can then be written as

D

vo = I

+ ew) + Tc (W - eu)

Dt

This must be combined vectorially with the linear component due to the angular acceleration of the point P rotating with respect to the origin 0 to get the total acceleration that the

transducer experiences.

The point P where the transducer is located can be referenced

to the origin by [2] 12

7

FD- x -70 0 q 0 u 0 w

(17)

-xp = b sin 0 = b sin (5-0)

Zp = b cos p = b cos (b-e)

The velocity and acceleration of point P which is fixed to

the body relative to the origin 0 can be obtained by taking the

first and second derivatives with respect to time.

= - IDE5

COS (5-e)

ip = be sin (5-9)

Kp = - bg cos (5-0) - bP sin (5-9)

2P -- be sin (5-e) - be2 cos (5-e)

[3c]

Combining the corresponding components from Equations [2] and

[3c], the acceleration of the point P may be given by its

longi-tudinal and vertical components along body axes as

ax 1.1 + we

-

be2 sin (s-(9) - bg cos (54)

[4]

az = *t;T

- ue -

be2 cos (5-e) + b.() sin (5-e)

Since the pendulum transducer works on the gravity principle,

we must refer the accelerations of the point P measured along body

axes to that of space axes. Using and C for the space axes as

shown in the preceding sketch, the relationship between the

accelerations along body and space axes are given by

= ax cos e + az sin

[5]

C = az cos 6 - ax sin

Considering only the horizontal space acceleration, the

resolution of can be obtained by substituting ax and az from

Equation [4] respectively in Eluation [5]. The resultant equation

for the horizontal space acceleration of the point P can be stated

as

(18)

-= U

This can be demonstrated by sliding the pendulum transducer

back and forth on a flat table to simulate pure surging. By such

means the mass in the pendulum could easily be made to move giving

erroneous readings.

However, in finally discussing the sum error of the pendulum transducer, the differential equations of motion of the mass in the transducer must be investigated assuming knowledge of the inertia, damping and spring constants in addition to the external

forces induced by the kinematics of the point P. The frequency

response of this subsidiary system of pendulum mass with fluid damping and friction can then be studied to show the errors in

magnitude and phasing of the output. The discussions previously mentioned are restricted to the kinematics of a point P where the

transducer is located to show the nature of the input to this

subsidiary compound pendulum system.

= U COS 0 * sin 9 + 9 (w cos - u sin 9)

- 13E52 sin

(e+p) - h5

cos

(e+p)

[6]

where (9113) = 5

To determine the magnitude of the horizontal space

accelera-tion, therefore, it is necessary to obtain u and w. Unfortunately, these were not obtained for the towing tests previously described.

By comparing Equations

[6]

to [1], however, it can readily be seen

that now there are more components in the expression for the

horizontal space acceleration. There is possibility of a greater

or less error in pitch measurement using the pendulum when there

is surging and heaving of the body. For the range of conditions

tested, the pendulum gave a pitch reading about 4.5 times that of

the gyro reading in the worst case. This can be attributed to the u component arising from increased surging at the higher speeds.

It is also evident from Eluation

[6]

that the location of the transducer characterized by the arm b and the angle p has an

influence on the magnitude of the acceleration. If the transducer

were to be located on the towpoint itself such that b = 0, the

latter two terms in [6] would drop out.

In addition, if there was no pitching of the fish for the

zero trim condition such that 9, 8, and 0 were zero, the horizontal space acceleration in Equation

[6]

reduces to one of pure surge,

(19)

PSD 68620

6-5-57

(20)

I Or-17 * g"----1/4,

it

, iiiP'-'11-kV t A -u IN 4 1 -71 .. . a A I '01- ' A s.. NP -.7 . . . 7 . .. ..! -- -: .- ill . 6T4 _ -__,..,...3..,r_ -I 2' 'PP.' .41 - it-.r .70

I

1111\-1 _ / 111 )1);jp;lia

,

-- .----..---,, ' .---, . * 'itovin .. . . -'7 1 jb-)..- - - --..-

...ago...q...__,-_-,.k..-4g.g.

_.,,, -7 ., -. a'& , it

reir

'' 4 \ "a II ' --.., I" WS. e I ,i - g -.. ..II _ ., , ...&:Ir -.-..-. I :..) L ....-1 1 a*

uI,

g-, I 1 1 i i 1111 f

Is

\ 1 r ,... j P 7 -e47 lib. I Lc) 4-) 4-) 0 0 E-1 a)

(21)

-_ 0 1 SD 68 7311 , TPendulum Arm, 6 ft. Angular Potentiometer C Irrf."7:1* .77 Edcliff Pdaduluin --L -ti --mAEEt71

D.C.. Variable Speed Motor

- vej,

----. ...Yak

i

_

...-,--....i Connection Rod,, 5 1/3 f t .

_-_- -af-__ i

----;--004.

c _--:-_-0

---71.

4

__ . ,Eccentric, 1 ft. ---3- _,

---77- 1

l'---AAL.

,./

cied V I

--.1 607,'5T

Figure 3 - Experimental Set-up Showing Dynamic Calibration of

(22)

10

-10

10 0

-10

1104111filiiipuunriiiiiMMUMO 11418-::::: la 11 iginneilinem i 1 ill ilii0P-mil

el...1

.. mpg

ippiiiviumilb -

1:1::: inInn:1 in. 1

dp

1 II I V' ' 1 .111 11111.911:911 liiiiii e-ile :I. nu: :a ... : ...

rl

pimonffigrmrpippigi ARN li :HIM I 1 ... EihIllithrun

tunivaquIpmm....sio..

IIIII

c"°1111111111111 heolio...-rdismingPiniiii ii 1 IN.:

orgrism

MIMI

"

3 I MMUS: I :nounimid, II :II : inn P 6midung 11111Q1E ...

"11

Speed: 2.5 knots

1111111111111111111111111111110 Min EithitlidFrojl PH

Speed:

5.0

knots

Speed:

7.5

knots

Speed: 10.0 knots

Figure

4a - Sample

Records

Showing Pitch

Response

of

Towed Body as Indicated

by Gyro and by Edcliff Pendulum,

(D. 0 Radians per Second

1

n

1

irr

Plin'n 1 %Ai id.

II FE

...

:

Winn

(23)

01110111001101101110111

puooas aad sueTpVld o

= m 'Iminpuad JJIT0PH

Rct pue oaJCDAq

paqeoTpuI seJZpoj pow)", .To esuodsall go 4-rd SuTmouS ppa00311

Idui

qt oarIBTg

sqou3! O'OT :peedg

s4ou3T

5-L

:peedg

s4ot3f

O.

:peed

sqoux 5.z :peedg

e

IIin

md* iiiiiP. 1 1 ''' ' ' inn 11 . limp ::I : . 1 . i "eselsilm e lifilid ' regrasited 1 e e i s im el

IIIHNIOIVI.

1 , 4 midi ir. 1 1" :iiihe . d

'MEM

....,....

husu. :91igei his e 11 1 :IFLIAni I Iblif Ihdir"PI 11;411 m I ing

Arg.L.Milled aitilli

111"UNUPPAPI 1 '' 2

''='''''''''

111111111 11 :1°111 Wu M i 1111

IN

IIM !Pah 3

.

VI

II

,,

MEL

N IMPROM im

NIMMUNIVIlla hillith

IMMIUMNIMORTMEll

INEMMENIMINIP

Fipme-Pq. whiqpidu vlifi

f % nil hilm mem aura

udid usiimil plui alms

gel.1 oup

Ilene

#... .I ' 1 1 imr.1191 ii 1 del ..161,1,0 MI 41 Hi e OT OT OT OT 1.1 0

(24)

to 'co El 0 ct. 02 Co El El

0

0 Ct

Deflection

in

0

... 1=zor-..iragerghteacrxsecraemera mmmmmmmm EifinrSIEF=Cril ."r:FACInrjalal: talWarantrin:=1 ISIVIEFEIZEN11";4 SIOnt=12:21:1411fainn tr=1"11ZEIllarit.Z.

E:Eft

MMMMMMM 111 17=Orare1=111111:n sum. MEM. intrirMt rThemol FIELL4IESSWarrItiailln mow nas ... mulmsnela- ..

sire

.r.terrxem nanaZnal=== ... ... ... 11:111... EOM.= =112:=122alplEgfirla 11:1=911141615: :ililillllilhi. MOM= Lumums,.. gVaratantr" :N1111. 1111 - ME-Minn. SM. MS mamma s::::::611=.110.11=1 Vr.-- .

ill4.

ratEIS ..., 1 ....----,, ... .. 7.

FEali

... :-... Tor:L9111

r

--- -:...:::::::::::::= tc-J..=..--.-..-ieram: ..---... ... MINN ::::::::iiilla . C.:11:"=11r."11:2 . II Milli "lil ,:=1.1... ..,- I ... ,,,,,,11:511..,..

deksrma..,,s

thl:Bilitalibl!:"" rffilFASISP.:SBEIR .26...-...::: ... ane. Inehrawrather. me.011===12 ;Prargall:=FICLICH 111 MASSIE 19 ... c IMMO MYER line,

(25)

puooeg

.id

sueTpe8 = m 'wninpued JJTIDPH "Cct pus oa.&D Rct

pe4soTpui se kpog pamoI Jo asuodseK 1404Td SuTmoqg spaooall aidweR - pt aan2Td

sq01131 WOT :peed

saoux 5.L

peed sqoux 0*5 :peed sqou7 5*z :peeds mama HIM I.. MI ::: mud

-"

Plorza.

impG.:: u MPH!

ruluilie

HUPP luuthillituuuum 1111""""13 NOM 01 Pk : Ort...ddiEdijthi gqi -11 ARBOhlillill HiP 1 u !II

pip

ihnrin7:1" NUP lugs nun!

drununurquir :mum

FpII

I ir"'"Iiihrl

,ikiiilliffilgrunisr

MR

qinin

IdIPEWHIru:PIP

MEM

1111101111=ra ... . ..uNE1141110

legindhiribliin!!"!In

IS tilinLq um FM "111h I

r

eay -1. 1 Ml u

...

.1021:un'r n MAND trilightUr UMW

'

lu INERM 11111111111110111111 9

"all

dMinplinMiNill i 10PM

."1

i:.. 1 ..1,....munium illiandLOIMILEuiliihillhigb

mpi

Uffiromogebrid

quitionimiunimulat

kumuillmonnommal

judiiiiiiikmaking

onopilighwawrrao

dgmIligillinki Hip

ihNIPPIEThilmiipirdlii.

Iiiingurquippww.

01 -0 01

01-0 OT

(26)

28 24. 20 8 4. 0

w in Radians per Second

Figure 5

Comparison of 1. aximum Pitch Amplitudes of Towed Body

as Measured by Gyro and Pendulum for Different Input

Frequencies

3.0

Legend:

Vertical Gyro

Ili

Edcliff Pendulum

0

2.5

Knots Knots

11/11/1111

0

7.5

Knots Knots

11111

Scope of Cable 12.5 ft.

IAMMI

Will

11111

III

11111

gm

gr:.

4....,

,...,.-

411Millibm.4111

111611111111111111111111111

111111111111111

Mill

1.0

2.0

I

(27)

II roo

oi

0 -:i ti CDCD C)5 0 0

a

H ct- 0

l1011!

JJJ -...____________ :iuii:un::::::::i:a;

:::

:r:IH::I;d-.i;;;;;::

0

0

.1-

0

- . :flu9 UhIIIliut! jijijijilijl.iiiii. Ii I .... . I uul!ii 1.! .iuur.ui:zz:i:u!i:i ____________niiiiu:iuiI ihii;;4 F ii ilillOG Ii9 lou;' IIllh1iIIPi1I1JL'! Q''':!:l_______ hullEr 'IIIillIOIIIlUhII HO I'IHiq; ; ' '::r : ' IIhft9rj ___________I IIIHUIII'

e

- ,__-__I 1110fl11111111 IllikiflkiOIll:I :H-r1b I :

:-'i

" iiiioor llOgw ;_ IJOb " I!;;! I I :. '

:

'IIdIIJ!IIIHIIIII :IL'118'lli I J : u:L:i L

,'_

tIIiI!::'4!I;;;;;rI;:

'r'

Hi i . ur ____________mlnwIuur.r;::uuiiui; I.- I I :i , _ I' On I' ! IE:,flIEr.. 'N!1!

!"L'

. ii u I I ;; " !! !'IllhI9IllI1'! 'ii!i 1I illbiiiiiiiilli;i;O: 'nui.r;. ! II I U -- I IIIUU ! ! j I :" di I OU 'JI'Ld'L1I 'Lh"I

lr

" ' ' 'h :

::::::.

:..: ::IrIr4:r::#:::::...i:::::r:::- .... , - I : i!!II I hjii ..1IldLE .!il : 9. i ..- ::u:i-;;;;

J:jr.:Iuv:r

I I ! P1. IPIP

il

'!'HUI' 4il'hIilOdP! i' II h' ' '

'.

- - ::

1F

: - - -

.'

..Lr iii i. - U - - -

-:

. .

-:

__ H1::::H:r.i:: ::1:I::::::::H:u i;;;::

___

.3 .. ..

.=

- __________ c

=

.::____________ th j .::::: 1 - h1I I I - 91 E ' : ::;: ::I1rIII:1I:9r:! ::::::::: I! - - oh - p - - ___________NIIC 1d 1 Ii

''

- ::Ir:::ir::r:::::::. I:::1:::H:::H: Ha

:"!!!!!!II:;ijiir

a 1 uI4i11h = - rI ll!ilbbilhliJ h '

i

Lii!:':

k',

H 1r

:

Ii

_

J

___________dill lfflij0Ih 'i r - iiIlIhidhu;.6' mji _.:qI :1:1. -..:1:::1:a:::a::;::::::::;::11:H l,l,uumIluII:I;:.::.-r:H:H:::a:H;r iii ItIffIloIu1;r.:I:i:u::U:1:Hir hIP : 1ip H IflhIIflIflliIh i1h.i i I' ___________ iiiIIIiliuinmi'"i IH ' 4arih::i:I1::!ii qra--IIIEIIIIHIHlflhI1IH ... ! ii I 1 11 'I I IIH i4i !'1"..__HrIIIIIIIlElI'H119 ' q1: I 01k H HI 'u'ui'lIIIIIPII!Ih .1 huH iO'um = 'I P1 '1 'ldllhjlPfIlPlIlI ' Ihmi;1

-

uh I Iliqopplip' I tIHIPI,II II

=

I I II IIIIIhuUIIIIFIdhI I ibma I II

-

h'IIIhIIII kill II lN'::iit' hI ::::I:::aa;::Ia::::::: iIuuImmIIrr! HH'...:a:a II1Il1Iil!!II1llII:mImI!! ...

-

. I1iI:ooIhIh Ii, IIhlii'i1IH !I1i.,! I :::....:::.:.r..;:.::::.::::.:: :.::I::..I....:.::fl...

____________

!O:::OpP

___________hiii:oEhihihIdiI}iIoi

:::::;;j:;;!ai!HpiHH!

___________IIhIIIllliiiiII..1hu1ilI!iiII! = :IIIIIIIIUIkhhI1h I 1111111111: _________ 11111 !!1;1:1L pq Jd I'

.0

:::::::: ii::::! ___________OO!iiii;;;; .,r 100 I II, III I 4 F - II Ill I III I liii ::HIIi. .:::a:: II:rlr:I:.ja. :: z::rrr ____________ lilt unl ' hi - I

-

4 t 1' q - ' k 1uoIIHllWIlfflkoIIrll It Ill H HHIW!_ :...____________ ...a...::a: :t:: 8 :uhIu". . .. 1uuII1qe11...111

-

I ___________lohi 1,1 I I I I II _IIiI1::iih Ihd I - I JI ___________'lId it L; 14111" 1 II :Ilio1wiII,:1IIi1!a1 ::-r ,' I- I'III I1IIIINlI1 I lur 4ldIIIIIIIlitP'hiI III Ii ;"I' , :1HrHUIrrHlFI,. --.1.i....a:::a: . iiliPIItI!"'"... IHOhU - - ___________ I ii IIIIIIIIIIIIIII L II 4 IlI1JlII,,:,!!.9!I1IihIi1lt Iii lIP

(28)

.0 Nd

OM

011111111010001110 111112PINNOSiarga

NV

-AMNION IMIPMEIMmmiliggiiillilia 10/11/11

mono

Illummimmithipits

- .11En....91.41 SSSSS OM 0 1.11117;- ''''' V= :um ''''''' SO ... Hiliailiniii --mu ..i="

1-, IMEME... 1W Fl OM IFIERM MIMS =1:::: hi MOB

It

a Farairnme- (D

vamp

ran 1::

....,....

ra. ' ct mesm. "I' li CD " IMF

I'

H. ::I

=Val

'a Imo ...

g

c

11

1 i- to LI::: ...rim (..D mt. ma ran= : I 111 KUM 1..t.

--iiiiiiiiinillimmli.

.1. am Cf... IMIldwala

.

VIEFEr 17 Mall In ... MIA

=

lin

1

iiir=. MINL. iliEtZraiiiL: ct- ..VIIIELI Onibuilim: ir1 s -lc uh: :sli 111110.19; 0 11

ilirigli

...look= 1 1 T 5:::HELP. .:MEI BEEinilif4 - 1=:: ... ig... ...1. 1...i. cz:: Illjirk.:::

a

ihmel

=

ERCERTIEriffiE:

i

ME

r"'".EITEIS.--=.-::::En t

=

'III .... ri i ::::::::Ni ErniiiiHilEitheliEsnanahOni i

Mk

rigglailiE

M

!Mligni

ni .... ....

OHM

illIMPEEMEMELVasi HIPINEK.

NE11111M=111.1.L.

qa utirrilw-".= 11111111ffirditang61:590=111

1110"10

0=.11

ilibliiiimmunina, aurzziyakaala. _I i sm.

=

' --siiiiimis umrarl OW ... Hi . =I 111401011irt

.000

0=01114111111101..

....

m

*pp . "4 ..

=.1. ::::::em EN:=NliffiNF. mu um um om

no==

gm IiiEfinuElillEH

.::::::::

BEIM--IMIHMIErai

nimmuuntr_

=no

MPUBRIP=Unnglnr.""aa"M ::::1...wmiiiiintialit

liTiM I"itilifili:BEI=Siiiii ...112ffilliEr:1-

gpionwsal;70

%pow

si pr:

gm=

gm :

.

E monA

ikaliailasnim--==imlliffilliUMPI

...1111111101111=111111ifiiiiiiiiiirit: ... ....g! L-= umnis,...rarx.axa.- ,1-- rarlrant.::::=

=mu.

mum ip=c u ,

,,:r.Rppl

-

--_--

Tuimmilifirgffig....==:::::= -- liE' dill EILIMEM um ftli mil ummgrap::::E.-- mrIp. mina=

-

il:

Itmannua:MILM:r-,gwnetr.fill

4..9E00

MIE:ErgrigliZiENIMPINIM

---

0,g1.0011111.11:7310=

titeLnittrAgma..m_1:4111

.114110..000

.P7,1..H ffiMMENBERwri4.tr..-

=

__... _....- -41 mstrARIETettszt=nra:;...

MENEP

-

REM

k

11121111Mitiiiiiirffl:

fffillIfik

1212-4. '

112-"Eriii_kiliffilliiim

1111110111111175

rilintii=11110

r

'"Etz121111

"unn/100 .qatiM Tomm.moznatesunnumw, siormumminma iim:_!ffil...1111:4ITLIII,

all

INIMirailligitETIN . lE

ss

EILARIENIE

,,,!

(29)

'0 '0

0

0

-

0

- : II . : 1IIr;- i::uur: ntu

muwinw'!!::-. 2H1th rihuw I .JI1flm!:______ P I

OL=uwftIIrn!WIIfflIUIHh1Uh ! : !ll'! !i'!Ip! ! IlIh.. 'Ie::iih:ii.ii _...iiinunIugI:iu . .. ::: !!!!!!!!I!!:11:: ..:: ;::: :Ii::;;i;iei ___________ :I:Iu!I. .I::I:#IIItI:I .

----"'u'niui

liii L1 ' . I I I kdIP'O .. OilhIIIRiII 'i I ;I - . I 1'::I!i '; I!!... . : IIIbi . 1p:Il1:qI:Iiiuiu i II _ II." dpIua1I.1. I i !Uu !h

E

--- 111!!!!!!!M" :::::i::u::::m;: Cl :::::i:;,... I I W!F ______

-

!hIW II E o :.;1:::::::F:::n::: -- :ir:u- . 'im -: ______,

L.

..;r tI: un _ p _______ !LIU.rF

=

iullth

:

!L . niuu

!!!!

'uiu':::::::uil:ma Lr" I , i i 'IIIPk.11_. 1I . ____________I :::::!!!!!::9 I ... ;i:i; ::9::::::I::;-.ilij.i. 1. .1 I

:

1]r

;1F' '

jJjjj1.

______=uw4;u=r 1mw .. .. ' w:r: I I I!.. ..

ir

_ - Itii 6 . : ai dIe". .9' .. LL :!!'.- i5;:;:: . :qrJn::: .

I

uiE1!IIEi

I. H !;2______ I :: ____________ . irU.Wr

i:i::::::I:i:iI:::

i

.:I - i: P'll&':EdEt INI

i:

I. _Jn

PHu'ømI!

: ;;ia...W_______ i::.:r.:".z::r.. ::i:

. . IiI'.tr

;:::I::p:__uuuum

. :

IIIIflIfliaii..-

. uP'-':: " __ :_ .. L iIb i

'i

h:

" g:::... .::zuim II VIII ...i;;-.;;;::::!!!!!!!!!!::I:: ::::1i:::

:;ii:: IiHHhIIIPiI'UL.. _______ "' EIl I

. : EL

Ii

IIWHIIIIUI Il! U I Jiiiir;.;ii;'

:

"

::!.

_

hIIOhu1llih! _ Euk I !r:;rnI.!fiii;irr..I... :II:IIuIIiIIA :::::::::::9:::ie

IIuIr;iiII;juj::::j::r.z:::Fj:: I :"iII' nIIhiIi

. " " _______IlilulkilO HILIP .P I _______'IIllOillIhimrnn z

r'L

____________UIflhII1I!I!!!!!!'!!.:::::;. 4r:::::I:::::I:uu:: -;u:::---IuuuruuuhI::u.. 1;IuIuI!I!H!I! I

kIll

F1'!

! ' ..._i:j!JOIJ!fltUujptI, mu1 iL _________Wilurni." L h i:i:zpII!;!!tti;;::---_!!!!--- ::rjjI:ur:zi;I- ? I ___________iiIliiiiUd ii'ilu I 1: 1 1 1 1 I r IUIIIIfl U 1:1:1 -.i;;;;;::::: .: IHIIP!r ____________ " 1L "fl I c _______Ildi P i i" I _______illiP Ililul urn. *rn U II fi 811111!! II I - III1Il9IlItIfl11fl -

i'

_

I p I

--flflfflfl

I I'IPIP' :'III

ir-

uiuniiui:uru ::u::::;:::I::::::u:: :: ir:1IuI:::::::rIu: :u:u:rIuIuu: :::i:::i;:ui::u:

:::uuu

" L th.![u1 IIIIIIIIIIUIIIIL

'

I' ILlIhIb 1 I ilulu I

Ir: IIIIIeruIl:1111:::Iu:: ::;:::...::::E# III I

I - Up i _______iI

jp

:::::::a #:: :::::i::::::r::m: u:::::::::::::::t:IIrIII;IIlIIzIIuu

nmi-rmu 1 I I'll f 11i II

___________1111i 111 LIIU' 11111 P ' .IIh'flPI 11I#ii. :u9118q . i II il 1 i I'III I - III'L. m..p" "PI I P 14! 1H IllillIlIjOililIjil JllhIhbi,11:irii

FId1

:11:Ir.:rn::::r::I B :u::::#:u::::::: ____________ilullur,iIrui:I::: .:::#uu:u:u .. - I II I',. I IrI .. ___________IIIIIIIkII1I 'III

- :u::...u:::U:::... :u:iIIsi:I::i:prii- ' :::::i:::::::i::::::u:

::prI:u:up:I:.;-;;..Iu:!iu::1u::Iu:j t i ilt tin -1112p!hlnul

ii

itu

ililli t - i CD I

1:PkililHkii' gHIllIHHIHllI: 1iiiriid1 ..._ .1 i '

ri

rI

ookllhIoIut'4 h'i1b1u ' '1 I I : ; 11 HU1llm011PI i ,itu

"

- .. - I 11411 IllIllilli i : : n I I I HIIJJIIIflhIJiI1fl IIiII1111!1

!!:i

: hi !P ___________OI'Ill:Hll4IiI P I': -

iII!11!;r!iir

it:iurnuuu:u -. !Ui. ... ___________1l!II'Hh1HII11h8_ 1 - m . II1IH il1 L Iii: i !!!ll!!1t:: ...____________ 1t;...t. niuuu:uuiuuin 1 iII lIt I III U II 1! i i 1 111111 '1 L ' 1111 :!II;1;;;:I,I::::uIn.u::u::i;:IIII:1 . lUiltilibi ._uiii

i

u:uu: 1ulr::.I;uu:;i;1:rnr9u:rn:rn:rn: .

Ifli

. ... I... I---.fl,...fl .112'LiL.. t :1111 . ... IF i IIIIIJI - . _______I lilt iilli I I i..

. ifl1U1Ui8UI1ii IIIIII - I1IIIIHhIIriIliI1liI 8IIIIIIUIIIIIUI tiltilultiul 1rIuIIII',Iu' :rIII121III!!'!'!!.:r;;;; 14 knit 1111111

III"III liP I i niH ii t1uj

=

2II I I.. I"11 1 9II IIhiiPui .. 'i'Lt 11111 I iiI , I :;:in;;---::;.!lu:::____________ ::::IIpIuIur:::! :::IItIiI1I::u:I::::::;ii;ii.i--- 1 1 121 tliill.th liii' - Id! I I I I

--U--

I:IrIuI:I#:1I##. I l 11 12 :rLi8 UI lI I I 111 I - -

--

II

I 11121 - I ::I:IUulItir:::riii- .:uu:u::::::::::: liii ...

::ti:u:::::: .ir 121 Ii i 2IiI______ -

- I I .... ' I ______t i I

-

I : - - I 11 1 liii It U .421 1 1" III 1 PIL! IL

i8

i It IIII1 .iEl 1'.. t 'I

'i

i.

:

- - I - - I III I I - - JI11112 111111 1 - I rJi - ______IlII'IlIflIIIIiIL. - FI

:

I. i tur - -

flu - :n o

j

ii. PIal! 11I II hlr I 1W I I

U .... 111i1IILIII 'I.... I IIIIIJIII

.11u1

' P9.2 r I - i I4 I4I!I I fi - J. - 121W

(30)

'1 CD

roo

. 0 co Cr' OD U Jo .2. çe

to

CD cI OCr'

op

I2. 0

a

'1 0 1 '-.0 I $ 'C

0

0

-

:__

!!!llfflEll

__I

:. i; I

'r

"L'9 ____I :

:;;.r:

J :L I

:

:.:iiill

;J!L

: ;;; ::IIflhImIWm!". 13M:!'!!f - ::

'

III!

l 'I P.!!Irii nq '9:!:

IIuI

l JIUF .J ,. :;:i

-

. . .--.. fti:nI:1rrn cY III I'I!llhI!flhI I Iii 21

'.iuibi'

H o IIllI. IIII!!!IIliuIIffuIIIIIIUIhIIi1IIlIII I fl 9!i , ! ---:

-

UuI'---UmI:1:m____________ : !! I I

..

_ .12 !!_LhiIW!______ UI m.- .wm;j:. _____ : :

-o1-_H11ffiH

. £1111111 :uhmi _______urn _______ri

"':ijurn

--

--

nw ii

u=

.

F

_______:::t" _______rn

-:!ImflUIUrnrnW"2i In I 1.11111 Un I...: _jfl UI U

:-..fl2

U..

.J

.:i:hi1_______ . . :iiiith: '1

r:

;rr

:

'!'

--Ii''111ii

;L

jrijp

.]0m-

WI1MOffl!!11t1

_

H01

;;

::::U:::

::rnu2q::Ifl:: :iiiiuiuiiiruiiiiiriii ii:: :.. iiiI:r1 u:uiiu:: u:nuiiiig:ti

::u::::::::::uiu: IJ1 I PIUIH 1111111111110 01 1h 2111111111111h11 Ill U L.

.

n IilIltilu:9:lUjlIIliUiuO. rn:q:iUI: :": :p::uI:::,iu:;:i a::::::: ::g :::::::::::::::U::::

iiu::: lIIIIIIIIIIhIdI° 2 9 1 2 9 1 i 1IluIIIIP lii: .1.. ii:: 1UiO. lb :U:UU: :r.:::::::: ur::i:urnu:w pUrn:urnr.U----wt:IlirIt:tfltIr; t hi .! ii!' 1: I ___________ 'Il1111IHl h1I t '1 __2 I1lUhIhIllIA Ii 1 1 ::::m:::::mrUt: :::1:i9Umii:::: -_:tu:rnrrno:rn n:::me:_:rn::rn:r:::::::::

::i::r:::

Q _______IhIIl:IlI11Ii11: :h _______ollIuuIhI I'I_ I i'

:

i

I :::::::;::::::::rn: :::::trzruu::u:__u:i::imuru:r ::::"::

_'::::uui::::::

- I : :1 '1 II iiliiiiiiiii'iliql it : l ___________ liii Il0:1I1l:lh 1 1 n"1

r C) ;:nIluIr:::u::lIi:: ::o:;::uui:r::: titlillIltIllIlt :o::::::::::::::;:

1u:::u::1uutU OIl : : I: : P '111111101001 ' : 1 'IIbiPIIIHIPI I r ni ::U:l::::o::::om :8::... #ri1i ____________ rnrnirntriri:: ... .u::: liUrnIirn... :ujtp:m::p::: i

r'

-"

1t1 ildip,_iI11hI000hIlIIlI - 11 II':' 1lilluihhPIiIbill II

IL

Lu11 r " I 11101111 iiiiI UOIOIHHIII Jill ::J,u___________ illllHHIllllHIkii lilt ddHlL -...!P!!I . IUUfl! !l!!!!!! UHIIHIIIIHIUi111 hill i: I 1:1tIRlilHhhIIIll 1llhiitiii,ii,iiiwur: iiuiu' I llH I'lIlllllih :!Iil!l UOlIIIIIIIHIH!IuhI '::IIliHHilhllII lIIhHhIIihIIIlliiIIGl;,:.!'!!HIlI l,lltIIli1:' h"tiI:

'"IIIh

iIHHIIHhIIHP00 '!1iI1lIIPHPIi OrIItr.I IIlIIlHhuIlIIItiquIui- 1018"Ut1litiii liii.' ,Iuuuflu!jjlIIIiIlInhIIIlutItIIiIIi 1' Id 'I 1.11 HIII IIiliiIIiiHhitt° '"' !!!I1t2il0HhIflI: ___________IIIiIIiiHiIIliHtuuti:ut:tn nii "fliP : dillilill ___________OhIIIHelIIllh11li1 i 110 lilt: 111111 2tl _...j IlflfluIIIII!IU' 1111U5 2211 I k.11 'hid 'hil ,:l 1: 9111 I hO' Iiii:oIIdIilt .1

'1't

I ___________IIihrnuii!11mlhbN11flIl1 I'lffll :r r:: t::uirorm--- jo:....1I....____________ lt,i,iIrttrnI2WHi!!

..-

ti1 lIP I u : ip ; a ii i ___________IiiIihhIiI iilllhiii u:I':" :Pi liW___________ hO, simhItIIltllHlIflh1lIfflJUflIOII : .11OlkIOI IIP!11I1ih11

iir-

iiiIuIIoohiIIIl___________ ii;llhirilll;IIIiIlf Oh! 11i!i:::1:i::;1aiait1i. ;.!:0 iltiII!iitIi"!: ___________iHIHflIphiiII!liIlI!i!I!!tOaIi. -

:lIil

___________liii. .2!hI:oih::h:o: :tI:Ii::duIhiHuu ::::!:::,i-...r:o:uUii:l:n:lrnI

.-....i.6iui.m:uuiiiilitIIi!iillIlt!:. h 8 18 a :::;;III: IlIIIllIohl. p p"!lIrI 01110 WllO!!i!: I. :rntrq...!,!!eu:o:u11 ItiItIllitltllhlIm...1I888::t:Il11:: ____________ IlIttIiuiiii. : 1112 il ii * "11:11 1111111 I1l'hu. ..I.9' I ___________ 0iiiiiiiuilUii1111i1huuuu1",,1 uI 1lil1I1I1ri11gm2

fl....UUUihh!iIflhiIiII1tfl1fl11i ,,,,,r.iii

'I'll

'Ii I

' . dIll HhuiIiluII. :iu 1,111111 I ___________01111101 WIIIhHIouumttlt ;u ' I,JI i

i'

' :2:Iii,*I:1I":PI ii ___________IilhIIIlllñOt!P, "I'b1I1I1 : flu n ' a : ':::ilIli II1l101IIIlIIP11bm ...1h6 oIIII;llh ___________iII1iiiuii'illlo1.:iwIIIiiIE .;;;::;OIUIO ruiitiirnuu -: lii11 .. 118

Itil"""

aarniIiI11U10tttlI

"

I ii ira !! ' 9 2 ltll I ___________hliiuiuiii,uiiu01li ._.iuI:d1 tilluillul ___________ II11,irn,!I!0!1' III liii

!iiioliIItili

___________lOhIUlllbiEIIlIiillllI1ill 1 IflIq,:!

'';r

______HIiiiIU IIiH1II ' i.mux:rnq. _______ppflg=;- ?'.-) -#w t' ______,'iHhII'lIfIL IJ..: 18 -

I

i L'..!!Jj1 lihil L j:iiiOhi

::"::::

.uirtuut:ua' neni#9p#;rna iP II.. - ___________ diii lIPhuii., 1111111 1 192 + 'C

0

(31)

Win

Radians per Second

Figure 7'

Effect of Horizontal Acceleration and Frequency on

Gliro and

Pendulum Output 11 , 1. i

.111

. -Pendulum

"MI

11111

IIIIPIIMEMII

111

e'

i

.70

.

1111=

,...3 ,

!II

.. Gyro ___ ' 1 . . t : -.

.-.'

I . : t -in . Ft . /*Se a .2 -8 3 0

1.)

-2 3 6 7 9 2 1

(32)

INITIAL DISTRIBUTION

Copies

Chief, Bureau of Ships, Library (Code

312)

(for distribution)

Technical Library

Sonar Branch (Code 8)46)

Attn: Mr. F. S. Andress

3 Commanding Officer and Director

U. S. Navy Underwater Sound Laboratory

Fort Trumbull, New London, Connecticut Director

U. S. Naval Research Laboratory

Anacostia 20, D. C.

1 Director

U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland

1 Director

U. S. Naval Engineering Experiment Station

Annapolis, Maryland

1 Director

U. S. Navy Electronics Laboratory San Diego, California

2 Telephonics Corporation, Huntington, New York

Attn: Mr. W. Lane

2 Naval Research Establishment, Halifax, Nova Scotia

Attn: Mr. Michael Barnes

2 Commanding Officer

U. S. Navy Mine Defense Laboratory

Panama City, Florida

Cytaty

Powiązane dokumenty

Applied to the study of neighbourhood effects, this approach can thus enable researchers to examine how neighbourhood experiences are embedded in larger individual

Мельник АНАЛИЗ ВЛИЯНИЯ СЕЙСМИЧЕСКОЙ НАГРУЗКИ НА ДЕФОРМАЦИИ ВЫСОТНОГО ЗДАНИЯ ПРИ РАЗЛИЧНОМ ЧИСЛЕ ЭТАЖЕЙ Вступление Возведение

Natomiast proponowanymi zagadnieniami są m.in.: ewolucja i deformacja kobiecego ideału w określonych epokach i gatunkach literackich, niewieście przymioty mieszczące się w

prawa wspólnotowego przez pewne państwa, zwalnia z obowiązku jego przestrzegania tak- że pozostałe państwa, Trybunał niedwuznacznie wskazał, że w prawie wspólnotowym pań-

Sin embargo, décadas antes, en pleno apogeo del fantaterror español, Amando de Ossorio llevó a la gran pantalla una propuesta totalmente original por inaudita, la de los

It was in Anglophone Western cultures that the French Theory gave rise to gender studies, women’s studies, postcolonial studies and cultural studies.. Texts by Foucault or

V erbally expressed aggression, containing em otional tax atio n of th e world, lets to vent th e cum ulated em otions and it frequently leads to various

[r]