• Nie Znaleziono Wyników

Some Problems of Robust Estimation in the Case of linear Models. Part 1. Characterization of Robustneas

N/A
N/A
Protected

Academic year: 2021

Share "Some Problems of Robust Estimation in the Case of linear Models. Part 1. Characterization of Robustneas"

Copied!
14
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S F O L IA CŁCONOMICA AB, 1985

w ła d y o ła w M i lo * , Z b ig n ie w W a s ile w s k i* *

SOME PROBLEMS OF ROBUST ESTIMATION IN THE CASE OF U N EA R MODELS PART I s CHARACTERIZATION OF ROBUSTNESS

1. In t r o d u c t io n

We l i m i t ou r a t t e n t i o n to the ro b u s tn e s s of p o in t e s tim a ­ t io n methods f o r the f o llo w in g l i n e a r models

t m 0 - ( * n ,,kt 8, Y - X(S ♦ S , k0 - k, n0 - n, <Py - J r y ( X ( i , d 2 I ) ) , ¿Triu, » ( a 0**, a , y - xp + s , k0 - k, n0 - n, $>y - ¿ ^ C x p , n ) ) ,

w here t

^nxk _ th e 9#t o i r o a i nxk m a t r ic e s , Q

S ■ ( ‘U ,* F ,ł>) - a p r o b a b i l i t y space w it h th e co m p le te measure

1 T - B o r e l- t f - f ie ld o f s u b s e ts o f s e t U ,1i. - an elem en­ t a r y s e t o f e v e n t s , k o » r a n k ( X ) , n o • rank f> (Y ), ... X € Rn . Jb (Y ) - d is p e r s io n o f random v e c t o r Y , i . e . t - e x p e c t a t io n o p e r a t o r , “ f " t)P (X f y if - "n - d lm e n s lo n a l random v e c t o r has n - d lm e n s lo n e l norm al d i s t r i b u t i o n w it h 8 (Y ) • X(3 and & (Y ) ■ A*.

The c o n c e p t o f r o b u s tn e s s was in tro d u c e d in t o s t a t i s t i c s by B o x , A n d e r s o n [ 5 ] and i t was co n cern ed w it h the robu- ł s tn e s s o f t e s t s . A more fo rm a l p r e s e n t a t io n o f th e r o b u s tn e s s

* D r . , L e c t u r e r a t the I n s t i t u t e o f E c o n o m e tric s and S t a ­ t i s t i c s , U n i v e r s i t y o f Ł ó d ź .

* * S e n i o r A s s is t a n t a t th e I n s t i t u t e o f E c o n o m e tric s and S t a ­ t i s t i c s , U n i v e r s i t y o f Łódź.

(2)

ic łjn a waa In tro d u c e d by H u b e r [ 9 , 10, 111, H a m p e l [ &, 7 ] , B i c k e 1 [

4

] , B e r g e r [

3

] , B a r t o - s z y ń s k i , P l e s z c z y r t s k o [ * ] • Z i e l i ń ­ s k i [

20

] . H u b e r , C a r o l [ l 2 ] , and R o u

s-3

e o u w [ 1 8 ] . i

2. flob ustnyjsoj I n t u i t i v e and H®urlat^lc^hean£njj|

The* broad and i n t u i t i v e meaning o f r o b u s tn e s s sh o u ld be ch a­ r a c t e r i z e d moro f o r m a lly in o r d e r to a c h io v e g r e a t e r p r e c i s i o n . P o s in g the f o llo w in g q u e s tio n s sh o u ld h e lp in i t .

Q l ) What l a r o b u s t ?

Q2) A g a in s t what som ething i s r o b u s t ? ( a g a in s t what k in d o f changes ( d e v i a t i o n , p e r t u r b a t i o n , d is tu r b a n c e s « t r a n s f o r m a t io n s ) t h i3 sûm ething i s r o b u s t ) ?

Q3) In what p r o p e r t ie s o f t h i s som ething th e r o b u s tn e s s i s m a n ife s t e d ? ( w it h r e s p e c t to w h ich p r o p e r t ie s th e r o b u s tn e s s i s m a n if e s t e d ? )

Q4) W ith r e s p e c t to w h ich q u a l i t a t i v e m easures o f p e rfo rm a n ­ ce t h i s som ething I s r o b u s t ?

Q5) How to measure r o b u s t n e s s ?

Q6) What do we lo o s e In r e t u r n to r o b u s t n e s s ? Q7) To what d e g re e som ething I s r o b u s t ?

Q8) w h eth er th e c o n c e p ts " s t a b i l i t y o f so m e th in g " and " r o ­ b u s tn e s s o f so m eth ing * a re d i f f e r e n t In m eaning?

B r i e f q u a l i t a t i v e an sw ers a re as f o l l o w s : Ad Q l) Robust i s : a ) a s t a t i s t i c a l (e c o n o m e tr ic ) method o f e s t im a t io n , p r e d ic ­ t i o n , t e s t in g (a n e s t im a t o r , a t e s t , a p r e d i c t o r ) , b) a s t a t i s t i c a l m odel, c ) a n u n e r ic a l a lg o r it h m o f a g iv e n method. Ad Q2) IVe p o s t u la t e th e ro b u s tn e s s o f a g iv e n method ( o r an a lg o r it h m ) a g a in s t the changes o f : c h i ) a ssu m p tio n s of s t o c h a s t i c s t r u c t u r e o f th e g iv e n s t a t i ­ stic:.* 1 m odel,

c b 2 ) assu m p tio n s of n o n s t o c h a e t lc s t r u c t u r e o f the g iv e n mo­ d e l ,

(3)

P o s s ib le changes ( c h i ) c o n c o rn : c h l . l ) p r o b a b i l i t y m easures,

c h i . 2 ) s h i f t s in the p ern m o ter v a lu e of p r o b a b i l i t y . ¡ is t r ib u - t i o n , c h l . 3 ) r e p la c in g s ta n d a rd d i s t r i b u t i o n by a s u p e r p o s it io n o f d i s t r i b u t i o n s b e lo n g in g to d i f f e r e n t c l a s s e s , c h i . 4 ) d is t a n c e s botween d i s t r i b u t i o n s . P o s s ib le changes (c h 2 ) c o n c e rn : c h 2 . l ) l e v e l s o f b o d - c o n d itio n in g of dr»to m a tr ix ,

c h 2 .2 ) shapes o f r e l a t i o n s h i p s ( e . g . from l i n o o r in t o n o n - li- n e a r ).

P o s s ib le chonges (c h 3 ) co n co rn tho e le m e n ts of c r o n s - c le a a i- f i c a t i o n o f ( c h i ) and (c h c ) .

Ad Q 3 ) Wo p o s t u la t e th a t the r o b u s tn e s s sh o u ld m a n ife s t in tha in v a r lo n c o (a g o in o t changes ( c h l ) - ( c h 3 j ) o f one o r moro o f the f o llo w in g p r o p e r t i e s : p i ) u n b ia s e d n e s s , p 2 ) e f f i c i e n c y , p 3) p r e c i s i o n , p 4) c o n s is t e n c y , p 5 ) s u f f i c i e n c y , p 6 ) s t a b i l i t y , p 7 ) shape o f d i s t r i b u t i o n .

C o n firm in g o r n o t - c o n fir w in g the in v a r ia n c e o f some anum arat- ed p r o p e r t i e s i s n o th in g more than e q u a l i t a t i v e a n a l y s i s . I t h e lp s to s o y t h a t som ething i s o r i e n o t robu9 t in a sen se and no­ th in g moro.

Ad Q4) We p o s t u la t e t h a t tho r o b u s tn e s s w i l l m a n ife s t in the r e l a t i v e s t a b i l i t y o f th e range f o r tho f o llo w in g f u n c t io n s o f s t a t i s t i c a l p r o c e d u r e s : f l ) t o t a l b io 3 , f 2 ) e f f i c i e n c y , f 3 ) t o t a l mean sq u a re e r r o r , f 4) s ta n d a rd e r r o r , f 5 ) a v e ra g e r e l a t i v e a b s o lu te p r e d ic t i o n e r r o r , f 6 ) w e ig h te d t o t a l sum o f p r e d i c t i o n e r r o r s , f 7) speed o f co n ve rg e n c e o f i t e r a t i v e s t a t i s t i c a l p r o c e d u r e s , f 0 ) d e v ia t i o n between the p - th q u a n t i le s o f d i s t r i b u t i o n s of s t a t i s t i c s .

(4)

f o ) d is t a n c e s botween p r o b a b i l i t y d i s t r i b u t i o n s o f s t a t i s t i c s (m easured by d is t a n c e s between d i s t r i b u t i o n f u n c t io n s o r c h a r a c ­ t e r i s t i c f u n c t io n s o r moment q cn rjr.n in g f u n c t i o n s ) ,

f lO ) v a lu e s o f G Steaux d o n v a t i v e oi s t a t i s t i c a l p ro ce d u re o r lo g a r ith m s o f s t a t i s t i c s ' v a r i a n c e .

Ad Q5) R o b u stn e ss m easures w i l l be d e fin e d by u sin g ( f l ) - - ( f l O ) . T h ere a r e , among o t h e r s , the f o llo w in g o p t io n s :

- a ro b u s tn e s s measure i s tho d ia m e te r of one o f th e fu n c ­ t io n s ( f l ) - ( f l O ) ran g in g f o r tho g iv e n v a r i a n t o f changes (chl)- - (c h 3 ) o r t h e i r m ix tu r e s ,

- a ro b u s tn e s s measure i s th e r a t i o o f thp d lu m o te r of one of tho ran ges of f u n c t io n s ( f l ) - ( f l O ) and changes v e r s io n s ( c h i ) - - ( c h 3 ) f o r a g iv e n s e t of s ta n d a rd model n eig h b ou rh oo d s to the d ia m e te r o f tho s e t of ran g es o f d is t a n c e s between n e ig h b o u r­ hoods of a s ta n d a rd model ( o r a ro b u s tn e s s measure i s th e l i m i t o f t h i s r a t i o when the d en o m in ato r ap p ro ach es to z e r o ) ,

- a ro b u s tn a s s measure i a tho d if f e r e n c e between th e sup re- Mun o f one o f tho ran g es c f f u n c t io n s ( r l ) - ( f l O ) end the c o r ­ resp o n d in g infim um d e fin e d on e le m e n ts o f p a r t i c u l a r n e ig h b o u r­ hood o f s ta n d a rd m odel,

- a ro b u s tn e s s measure i s the d is t a n c e between u v a lu e of one o f the f u n c t io n s ( f l ) - ( f l O ) c a lc u la t e d f o r tho g iv o n s ta n ­ d ard model ond the range o f the c o rre s p o n d in g f u n c t io n c a l c u l a t ­ ed . f o r th e e le m e n ts of p a r t i c u l a r neighbourhood o f tho s ta n ­ d a rd m odel,

- a ro b u s tn e s s measure i s the d is t a n c e between the s o t o f j l l ran ges of f u n c t io n s ( f l ) - ( f i O ) c a lc u ln t « d f o r the g iv e n s ta n ­ d ard model and the s e t o f a l l ran g es o f f u n c t io n s ( f l ) - ( f l O ) c a l-lila t e d f o r the s e t o f neig h b ou rh ood s o f s ta n d a rd model ( s e t of a u p e rm o d e ls ).

Ad Q6) Robust msthods a r e , in g e n e r a l, more n u m e r ic a lly complex than n o n - rcb u st on u s. I t means th a t the n u m e r ic a l c o s t i f u sin g them ( a s measured by e . g . com puter tim e u sa g e ) i s g re a ­ t e r . We a re not in a p o s it io n to g iv e re a s o n a b lo com p ariso n s ©f o e n e f lt s and lo s s e s when u s in g ro b u s t m ethods.

Ad Q7) A d egree of r o b u s tn e s s sh o u ld be f ix e d on the grounds i n d ic a t io n s g iv e n by the m easures proposed in Ad Q5.

Ad Q8) The co n ce p t o f " s t a b i l i t y " was d e fin e d p r e c i s e l y i t h i n m echanics by P o in c s r ® and n ext by L a p u n o ff. U 1 a m [1 9 ]

(5)

d is c u s s e s I t In a more g e n e r a l c o n te x t o f s t a b i l i t y o f m ath em ati­ c a l theorem s. He u n d e rs ta n d s by i t the p r o p e r t y th a t w h ile chang­ ing assu m p tio n » of a th o o re n "a l i t t l e " , th e t r u t h of the th e ­ orem I s f u l l y p r e s e rv e d o r ''a p p r o x im a te ly " p r e s e r v e d .

I n t e r e s t i n g p r o p o s it io n s o f d e f in in g s t a b i l i t y wore g iv e n by Z o l o t o r o v [2 2 , 2 3 ] and extended by B e d n a r e k - * K o z e k, K o z e k [ 2 ] , and B a r t o s z y r t s k l , P l e s z c z y r t s k o [ l ] .

H ere we a re t r y in g to maka the co n ce p t of s t a b i l i t y more c o n c r e t e . P r o p o s it io n s o f c h a r a c t e r iz a t io n s and ro b u s tn e s s moa- ourea p re s e n te d In <j 3 and 4 were f i r s t fo rm u lo to d by M ilo In the work o f M i l o , W a s l l u w s k l 1 1 5 ]. A s p e c i f i e d k in d o f g iv e n m eth o d 's r o b u s tn e s s a g a in s t eotne changes o f s ta n ­ dard modol would be d e fin e d by u sin g th e co n ce p t o f s t a b i l i t y o f m easures b e lo n g in g to th e m easures ty p e s (M 1 )- (M 5 ).

3. A C h a r a c t e r i z a t io n

mmmmmmmmmmftaaCaa ■ — bb— b — — —i

o f L in e a r S ta n d a rd M o d e l's Neighbourhoods — Tr •• a

1

n 'n w i ini ■'imaaaMBCTaaa—

F i r s t we need to d e fin e n eigh b ou rh oo d s o f Y . They can bo de­ f in e d In term s o f L e v y 's , P r o c h e r o v 's , M e e h a lk ln 's , Kolmogo­ r o v 's o r t o t a l v a r i a t i o n m e t r ic s .

Duo to the d e f i n i t i o n o f random v e c t o r Y as

Y

1

(11, 7 , *>) --- ► (<ftn . 7 n , <Py ) 9.

we w i l l use f u r t h e r the p r o b a b i l i t y s p a c* (9.n , rf n , $>y ) . We w i l l

ro« t r l z e th e space Rn. ®

A f t e r m e tr lz ln g the space R ° becomes the m e t r ic space ( R 0, £ n ) (o r s h o r t l y , i f p o s s ib le , w r i t i n g Rn ,£ > ). . ®

L e t

^2

ke two r.o n - n e g a tlv e f i n i t e m easures d e fin e d on ^ „ ( 7 i s d - f i e l d o f B o r e l s u b n e ts o f ( R n , p ) ) . Then we con

*n ' -r. u

d e fin e th e above m entioned m e t r ic s os f o llo w s a ) M e s h a lk ln 'e m e t r ic s [ l 3 ] i

(6)

f}-1 f}-1 0 Wi a d y u Ui wMl i.j, Z b l c p l e w W u s i l e w - k i w b oro: A - an I n t e r s e c t i o n o f a t moat n h o lf - s p a c o e , a h a lf- e p a - ce to an a r b i t r a r y s o t o f p o in t s In R n d e te rm in e d by n { ( y j , y n ) ' « Rn ! < b | ; « i t b « R1 } 1»1 b ) L e v y 's m e t r ic s £ L C*»4 . \>2 ) - "»ox [ e * ( fJ 1 . H 2) . { J j ) } , « « w here i £ * ( * V tl2 ) * l n f

{ 5

: ^1 { ( " ° ° » V î } <^2 O “ 90* V i 6 } * S • V Y e R " ] * 5>0 **1* " in f { 8 s **2 f 1" 00» ***1 { ( “ ® . y ] 5 } + 5 , Vy e Rn }, 5>o ( -00, y f - I z « Rn : |0^n ( z , (-CJO, y ] ) <£ | c ) P r o c h o r o v 's m e t r ic s e P h2) • max { e j ( t v h 2 >» e p * ( ij 2 ‘ tJ i ) } .»hare Sp ( I V <J 2 ) * ln f * lJ l (A ) < H 2 ( a 5 ) + S » VA e 9= I , 5>0 R J B p * ( t*2* ¥%> " in f f S : Ï 2 ( A ) < 1*1(a5)+ S > VA * 7 n}> 5=0 R A5 - | y € Rn I A n ( y , A)< 5 j-d ) K o lm o g o ro v 's m e t r ic s

£ k ^ 1 * ^ * 8up " P2^A ) l 1 A " f -00' y]* y 6 R ° }>

(7)

e ) t o t e l v a r i a t i o n m e t r ic s

e ™ ( P l ' t12) " 3Up - i*2< A )l}-A « y

R

In fo rm u la tin g e x p e rim e n ts schemes one can r e p la c e p j , j j2 w it h the c o rre s p o n d in g d i s t r i b u t i o n f u n c t io n s F ^ , F 0 ( o r c h a r a c ­

t e r i s t i c f u n c t io n s ( ^ ( t ) , < p „ (t )). The enum eratud m e t r ic s d id not ex h a u st the l i s t o f e l l p o s s ib le m c t r ic s o f p r o b a b i l i t y space ( Rn , 7 n , i>y ) . They e n a b le u s , h o w e ver, to d e f ln o r j^ ,

R

i . e . the 1-th neighbourhood o f measure ■ P y ■ ctfy. w ith r e ­ s p e c t to th e m e t r ic s 1 (w h ere i - f o r o g iv e n m e t r ic s 1 de­ n o te s th e in d ox number a tt a c h e d to the g iv e r. 1-th v a lu e o f n . « ■■ m ■ i Q ■§ e . g . , f o r 1 • 1 , 3 ■ 1 , 2, 3 we have n ._ ■ 3 • 10 , V .

•1 „ o »11 *21 • 3 • i o , « •

3

«

10

z ) . Thua. D e f i n i t i o n 1, B y i j A1 - neighbourhood o f mea­ su re f>Y m ■ JPy (X(3, <J2I ) we u n d e rs ta n d ouch s e t o f d i s t r i ­ b u tio n s th a t the e le m e n ts o f U a r e d i s t a n t from th e moaaureo ^ 2 bY the v a lu e *>•••

U^ » {^ 2 * ^1 ^ 1 * ¿*2^ ^ ^11 } ’ 1 ■ M, L , P , K, TV.

U sin g D e f. 1 we can d e fln o - neig h b ou rh oo d o f tho s ta n ­ d ard model c*VM.0 as f o llo w s t

D e f i n i t i o n 2. B y - neighbourhood o f model

<^cU.0 we u n d e rstan d such a s o t t *10t f ^ o l n s jw nxl\ * , Y

-X f l + 2 , k0 - k , n0 - n , ♦ 11 11

W h ile u s in g th e name o f jdfcM.0j ^ i n d e f in in g the ro b u s tn e s s me­ a s u r e s I s v o r y f r u i t f u l In c o n s t r u c t in g schemes o f e x p e rim e n ts , I t tu r n s o u t on the o t h e r hand, t h a t o t h e r names a re a lc o con­ v e n ie n t ( e . g . ,,T

2

j

2

- s e t o f su p erm o d els w it h r e s p e c t to tho s ta n ­ dard model o r - s e t o f p r o b a b i l i s t i c e x t e n s io n s o f the s ta n d a rd model JTcU.0" ) .

N o te i I f i ■ 1 ,1 0 , th an under D e f. 1 ,2 t h e r e a r e 10 x 5 v a lu e s o f

12

A1 t h e r o f o r e I t I s 50 s e ta o f sup erm o d els f o r the oP<M.0.

(8)

{ W ^ i l " (RnXl<’ * , Y " X (J* S ' ko - k * " o » " . ^ u )» th a t 13 - neighbourhood o f w td e l .K’ iM.j.

A. Robu s t n e ss lionoures of E c t lm a t o r s A g a in s t Chungee of__the Model Neig h b o u rhoods

L e t b in o ( B j ) • - (3 bo the b la e o f t h e 'j - t h k in d of e s t im a t o r B f o r the p o rsm o te r v e c t o r (3 from JC<M,0 o r a model be­ lo n g in g to the s e t {ji’cW.J .Thus e t o t a l b ia s la t o b ia s ( ) * 8 £ ( B . ) - P 1 where | * | d e n o te s e u c lid e a n v e c t o r n o n » /

J ( j )

L o t ° V i l donot6 the range o f t o b la a (B ^ ) » t o b ia e

c a l c u la t e d f o r the p a r t i c u l a r d i s t r i b u t i o n s b e lo n g in g to the U, - neighbourhood o f ^ ) and th e c o rre e p o n d ln g m odels be­ lo n g in g to the s e t {«v*cM.0}-^

In o r d e r to be more p r e c is e we need to in tr o d u c e one wore in d e x ” d " co n n ecte d w it h c o u n tin g the c o n s e c u t iv e numbor o f "pu­ r e " o r “ c o n ta m in a te d ’' d i s t r i b u t i o n (b e lo n g in g to th e U„ ) f o r example : d - i -- ► (1 - v)JCy ( X ( l, d 2I ) ♦ vJTy (X|3 ♦ V ^ . d ^ D ^ w h e r e

mcN

u CH

Vra i s an a t y p i c a l i t y q u a n t i t y o f th e ra-th component o f v e c t o r Y, j n d e n o te s the u n it v e c t o r o f th e ro-th c o o r d in a t e a x i s . i s the c e t o f a t y p i c a l r e s u l t s o f o b s e r v a t io n s ' i n d i c e s . L e t the range of d ba d - 1 , . . . . d . Then

0

j t o b i a s j , d - X , d,(

U nder the above n o t a t io n s and d e f i n i t i o n s we have

D e f i n i t i o n 3. The e s t im a t o r B (;,) o f (3 from ,ICM0 w i l l be c a l l e d b ia o - ro b u s t in the ^ -n e ig h b o u rh o o d o f th® standc-rd r.cd el c/ftU0 i f th e f o llo w in g i m p lic a t io n

(d ) T i l

<y( | ) n,</P( b ( i j . -

0

) ) .

VEXD 3 _ > 0 V l Vd : ( u . e U*d) ) — *• £> (0 ' ^ d)ff(i >)< t,

^ i i 2 r 2 ^ ^

i l l h o ld s . ♦

(9)

No t o : the abovo im p lic a t io n con be ro p lo c o d , o .g . by V £ >0 > 0 Vu Vd : ( u e l / d ) ) — ► (diom

)

< 0 »

H i

f o r diam A ■ oup £ (o^. , a2 ^ ' Oj . 02 e A

Aa b ia 3 ~ ro b u 9 tn a a s mensuros f o r th e e s t im a to r ono con prop oca a ) DROMOjl b) BROM 0^2 (j ,d) diem ,

11

diam --- S l L _ , diom M l dinm O'.(j.d) c ) SwOH B .3 - lim J .... .. . n d ia n U diam Un — ►O 1 M l d ) BROM B..4 « 3 u p -{Tobias (B (i l ,0 ^1 1

;,‘ v)

in f d T o b ia s (o ,9 e ) BROM B .5 - in f p J d u v ^ i l ' f ) BROM 8^6 aup - iL _ (j. d ) 9UP d - in f A

K

“ }

r a . d) I x L . V/a s a y t h a t t h e e s t i m a t o r B ^ i ‘- m o r e b i a a - r o b u 3 t t h a n t h o c o - t i m a t o r B g i f BROM B^ r < BROM B2 r , r • 1 ,6 . I f someone i s in t e r e s t e d in tho p r o c is io n o f e s t im p to r s he sh o u ld s tu d y the p e rfo rm a n ce o f B^ w it h r e s p e c t to th e m ean-aquare-er- r o r M S E (B . ) , th a t i s th e c h a r a c t e r iz a t io n o f M S E (O j) » t \ B^ - (311 . VJe would be in t e r e s t e d in tho b e h o v io u r o f M S E (B j) w it h in the p r o b a b i l i s t i c neighbourhood o f eAfcW.0 , i*®.* { * ’***■ o } ^ •

L e t d eno te th e rango o f M S E iB ^ ^ ) c a lc u la t e d f o r the d i s t r i b u t i o n s o f Y b e lo n g in g to the n eighbourhood o f the d i s t r i b u t i o n c ^ y U f i, d 2l ) . (¿ j

F o r the g iv e n d i s t r i b u t i o n moasure H2e U l2ii,d “ l f da from t h i s neighbourhood the e s t im a t o r 0^ c o rre s p o n d in g to w i l l be denoted by 6 ^ * . Then

(10)

Ф f / ( b«J>\ . , 1 •K - \ MSEVB« d - 1 ... d f .

•11 v u >

Thus

D e f i n i t i o n 4 . The e s t im a t o r B^ o f v e c t o r (3 from jTcM. w i l l he c o l le d M SE-robust In the neighbourhood {Uf(tt0} i f the

° 1 J ‘l l f o llo w in g im p lic a t io n , (d>4 / (i,d ) O K , V O O S i j ^ O V ^ V d : (t» 2 6 )-->e ' * * ц ' * ) < l • * • h o ld s . ♦ Note i a n o th e r o p tio n l a V O O a ^ O V ^ V d « ( J i2 « ) — ► (d .o m i- K ^ ) < С ) .

On the ground o f O e f. 4 we can d e f in e M SE-rob u etn eea m easure», e . g. as f o llo w ? •

1

) MSERll B ^ l ■ d la e » d la ® Ы> H3ERH 0 j 2 - O T T D j f • d la . r i c c l ) HSERM В 3 . l l n m a i n j r 1- • 3 diem uj— *11 d l ) MSERM B 44 - eup ( ’K (1^ # d )|- i n f } d • 1 ... d , J d t ¿ i l J d *- * 11 e l ) HtfcRM B j5 • i n f g { * K ^ , d ) , i f l ) MSERM B fi - 5 Д . J * UP a m A r e l a t i v e l y s y n t h e t i c r o b u s tn e s s measure l a в ro b u e tn e e e л е з su re of B j a g a in s t the chan ges o f d is t a n c e betw een the d i s t r i ­ b u tio n ¿ Jj - P Y end o t h e r d i s t r i b u t i o n s o f Y w it h r e s p e c t to th e changes of d is t a n c e s betw een c o rre s p o n d in g d i s t r i b u t i o n s of

fe , Wo need ( B j )

D e f i n i t i o n 5. By the neighbourhood U.-^ o f ¿j3 • - P r ►«« u n d e rs ta n d such a s e t o f p r o b a b i l i t y d i s t r i b u t i o n s of

(11)

Dj w hich a re not moro d is t a n t from f*pj thnn by

0

q u a n t it y i j f 1«6* uf J - \ i»4: e ( f3 »

^4

< Ei }• ♦

1

*■ 4 Hence D e f i n i t i o n 6. The e s t im a to r B^ w i l l be c a l l e d d i- s t r i b u t i o n a l l y - r o b u a t a g a in s t changes o f d i s t r i b u t i o n s of ( w it h ­ i n the neighbourhood u j ? ' i f th e im p lic a t io n

M l

( Y1 i \

v E ^ o 3 , ^ » ^ v d , ( t . 2 « \ { ) ~ e \ V» h o ld s . ♦

Under th e D e f. 0 we con f o r m u la te , among o t h e r s , tho f o llo w ­ in g d i s t r i b u t i o n r o b u s tn e s s m oasuros:

(B ) 82) DIRM B . l - dium Uj- J ,

j X

dlam U ^ J 5 b 2) DIRM B .2 --- f t y - ,

J diom U „ ' H I

c 2 ) DIRM D .3 » lira DIRM Bj2 , J I « , № +

0

J ^ il d 2 ) DIRM B j4 - sup [<

0

( ^

3

* ^

4

) } “ 1^ f { d ^ 3 » **4,d^ } * ( B ) 1*3 ■ V j * t)4 , d ’< P 3 ' ^ . d a U £ 1 • / \ o 2 ) DIRM B .5 - i n f ) , J d 1 DIRM 0 4 f 2 ) DIRM D.6 » --- * J r u n f /

I n th e above d e f i n i t i o n s the sam ple s iz e n was f ix e d . H a m ­ p e l [ 6 ] p ro p o se « to v a r y n and c o n s id e r th e r o b u s tn e s s of sequence o f sam ple e s t im a t o r s w it h the v a r y in g sam ple s i z e . Be­ fo r e p r e s e n t in g h is id e a l e t us In t r o d u c e th a f o l l o w ing n o t a t io n :

•f « { f , G , . . . , P . Q } - th e s e t o f a l l d i s t r i b u t i o n s mea­ s u re s d e fin e d on ( <U ,'5 F ){

(12)

*V., *» |i-n , Gn , . . . . P(1, Qn , n > 1 | - tho s o t of o i l d i s t r i ­ b u tio n s -fjaoures d e fin e d on 7 n ) ;

n

{ B ( n ) , n > l j - th a soquonce o f 8 ^ t ( U , V )- * (S tn ,

F o r ouch sequence o f n-olem ent sam ple g e n e ra te d from F e *V i t c o rre s p o n d s to tho e m p ir ic a l d i s t r i b u t i o n from cVn .

The mapping G ^ In d u c e s the c o n d it io n a l d i s t r i b u t i o n

t h a t i s , the d i s t r i b u t i o n o f e s t im a t o r R ,_ v under tho (n J c o n d it io n th a t the sample was g o n e ra to d from th e d i s t r i b u t i o n F .

D o . f l n l t l o n 7. Tho sequence { ° ( n )» n > 1 } w i l l be c a lle d ro b u s t w it h r e s p e c t to changes In e m p i r ic a l d i s t r i b u ­ t io n s i f th e f o llo w in g im p lic a t io n VCn >03T2nVOVn , ( e ( F , 0 ) < TL n ) - + ( l i < x F ( B ( n ) ) , -cG( B ( n ) ) ) < h o ld c . ♦ D e f i n i t i o n s 6 and 7 d e te rm in e th e r o b u s tn e s s w it h r o s p e c t to tho e s t i m a t o r 's d i s t r i b u t i o n os such a p r o p e r t y w hich cnusos t h a t the c o n d it io n a l d i s t r i b u t i o n o f t h i s e s t im a t o r i s ch an g in g ” u l i t t l e " I f we change th e d i s t r i b u t i o n g e n e r a tin g th e sample u n d a r ly in g i t . These f a c t 3 a ls o d e te rm in e p o s t u la t e s t h a t sh o u ld ba a d d re sse d to ro b u s t e s t im a t io n m ethods. Due to sp ace l i m i t a ­ t io n and a h om ogeneity ro q u lre m o n t we w i l l n ot c o v e r t h i s t o p i c .

5, F i n a l Remarks

The p a p e r c o n t a in s some o r d e r in g o f th e known s t a t i s t i c a l c o n c e p ts co n n ected w it h th e p r o p o s it io n s o f d e f i n i t i o n s o f ro- w u itn e s s m easures f o r the e s t im a t o r s . We have n o t p re s e n te d r e ­ s u l t s o f e x p e rim e n ts c a r r ie d o u t by Z . IV a s lle w s k i co n n ecte d w ith

be p er f or ma n c e o f chosen e s t im a t io n methods t h a t would be p re- ic n te d in the n ext p a p e r. We have n o t d e s c r ib e d , among o t h e r s ,

icu au res o f ;

- o f f i c ie n c y - r o b u s t n a s s o f e s t im a t o r s ,

- f o r e c a s t in g p o vje r- ro b u o tn ess o f e s t im a t o r s ,

(13)

BIBLIO GRAPH Y

[ 1 ] B a r t o s z y r i s k i R. , P l e s z c z y r i e k a E . (1 9 8 0 ), R e d u c i b i l i t y o f S t a t i s t i c a l S t r u c t u r e s ond D e c i­ s io n P ro b le m s, M a th e m a tic a l S t a t i s t i c s Danach C o n te r P-ubll~ c a t i o n a . V o l. 6 , W arsaw, PWN, p. 29-38, [ 2 ] B o d n a r e k-K o z e k B . , K o z o k A. (i9 6 0 ), S t a ­ b i l i t y , S e n s i t i v i t y and S e n s i t i v i t y o f C h a r a c t e r i z a t i o n s , M a th e m a tic a l S t a t i s t i c s Banach C e n to r P u b l i c a t i o n s , V o l. 6, W arsaw , PiVN, p . 39-64. [ 3 ] B o r g e r D. (1 9 8 0 ), S t a t i s t i c a l D e c is io n T h e o ry , B e r ­ l i n , S p r in g e r - V e r la g . [ 4 ] B i c k e l P . (1 9 7 6 ), A n o th e r Look a t R o b u s tn e s s , Scan- d ln . J . o f S t a t i s t i c s , p . 145-168. [ 5 ] B o x G . , A n d e r s o n S . (1 9 5 5 ), P e rm u ta tio n The­ o r y In th e D e r i v a t io n o f Robust C r i t e r i a and th e S tu d y of D e p a rtu re s from A s s u m p tio n s , D. Ro y. S t a t i s t . S o c . , S e r . B , P . 1-34. [ 6 ] H a m p e l F , (1 9 7 1 ), A G o n e ra l Q u a l i t a t i v e D e f i n i t i o n o f R o b u s tn e s s , Ann. M ath. S t a t i s t . , p . 1887-1896. [ 7 ] H a m p e l F . (1 9 7 3 ), Ro b ust E c t im n t io n , Z e i t . f ü r W a h rsch . und V erw an d te G e b ie t e , p . 87-104. T B ] H o g g R . V. (1 9 7 9 ), An I n t r o d u c t io n to Robust E s tim a ­ t i o n , [ i n s ] Rob uotn oss in S t a t i s t i c s , ed . L a u n e r R. L . , N. Y . A cadem ic P r e s s , p . 1-18. [ 9 ] H u b e r P . (1 9 6 4 ), Robust e s t im a t io n o f a L o c a t io n Pa­ ra m e te r , Ann. M ath. S t a t i s t . , p . 73-101. r 103 H u b e r P . (1 9 7 2 ), Robust S t a t i s t i c s : a X o v ie w , Ann, M ath. S t a t i s t . , p . 1041-1067. [ 1 1 ] H u b e r P. (1 9 7 7 ), Robust S t a t i s t i c a l P r o c e d u r e s , P h i­ l a d e l p h i a : S o c i e t y f o r I n d u s t r i a l and A p p lie d M a th e m a tic s . [ 1 2 ] H u b e r-C a r o 1 C. (1 9 7 8 ), Q u elq u es p rob lèm es de s t a ­

t i s t i q u e ro b u s te e t n o n - p a ra m o triq u e . These l e g rad e da d o c te u r en s c ie n c e s , U n i v e r s i t é de P a r i s S u d : C e n tre d 'O r s a y . t l 3 ] M o s h a l k i n L , (1 9 6 8 ), On the R o b u stn e ss o f Some C h a r a c t e r i z a t i o n s o f th e Norm al D i s t r i b u t i o n , Ann. Moth. S t a t i s t . , p . 1747-1750.

(14)

estym ato ró w o b c ią ż o n y c h param etrów m o d e li lin io w y c h . P . l : E s ­ ty m a to ry r e g u la r y z u j ę c e , P a p e r w it h i n th e G ra n t R . I I I . 9 . 3 . 1 . [1 5 ] M i l o W, , W a s i l e w s k i Z . (1 9 0 0 ), Metody oa-

ty m o c ji poram etrów m o d e li lin io w y c h w przyp ad ku w ystęp ow an ia o b s e r w a c ji n ie ty p o w y c h . P a p e r w it h in th e G ra n t R . I I I . 9 .5 . [1 6 ] P o l l o c k K. (1 9 7 0 ), In f o r o n c o R o b u s tn e s s v s . C r i t e ­

r io n R o b u s tn e s s : an Gxomple, The Amer. S t a t i s t . , November. [1 7 ] R e y '.V. (1 9 7 8 ), Robust S t a t i s t i c a l M etho d s, L o c t . N otes

in M ath. 690, B e r l i n , S p r in g e r - V e r la g . [1 8 ] R o u e s e u w P . (1 9 8 1 ), New I n i f l t e s i m a l M ethods in R o b u st S t a t i s t i c s , P h . 0 . T h e s is , B r u s s e l s , F r e e U n i v e r s i t y o f B r u s s e ls . [1 9 j U 1 a m S . ( i 9 6 0 ) , A C o l l e c t i o n o f M a th e m a tic a l Problem s, V o l. 8 , N .Y . I n t e r s c i e n c e P u b l is h e r s , [2 0 ] Z i e l i n s k i R . (1 9 7 7 ), R o b u s tn e s s : a Q u a n t it a t i v e A p p ro a ch , B u l l . A cad . P o lo n a is e de S c ie n c e s , S e r i e des S c i. M ath. A s t r . e t P h y s . , V o l. XXV, No. 12, p . 1281-1286. [2 1 ] Z i e l i ń s k i R. (1 9 8 0 ), R o b u s tn e s s : a Q u a n t i t a t iv e A p p ro ach , Bonach C e n te r P u b l i c a t i o n s , V o l. 6 , M a th e m a tic a l S t a t i s t i c s , Warsaw , PWN, p . 353-354.

[2 2 ] Z o l o t a r e v V . (1 9 7 5 ), 0 n ie p r e r y v n o s t i s t o k h e s t i- c h e s k ik h p o s le d o v a t e ln o s t e y porozhdayem ykh re k u re n tn y m i p ro ­ c e d u ra m i, T e o r ia V e ro y . i y e yo P r im . , V o l. 4 , p . 834-847. [ 2 3 ] Z o l o t a r e v V . (1 9 7 6 ), E f e k t u e t o y c h lv o e t i ch ra k -

t e r l z a y l r a s p r e d e le n lt y t Zap. Nauch. Sea. LOMI AN SSSR, p. 38-55. • a •

.

i • ■ • * . . . . x .. «

W ła d y s ła w M i lo , Z b ig n ie w W a s ile w s k i

WYBRANE PROBLEMY 00P0RNYCH METOO ESTYM ACJI PARAMETRÓW MOOELI LINIOWYCH.

CZ. I l CHARAKTERYSTYKA ODPORNOŚCI

P r a c a z a w ie r a :

1) o p is in t u ic y jn e g o i h e u ry s ty c z n e g o z n a c z e n ia o d p o rn o ś c i, 2 ) o p is Ja k o ś c io w y m ia r o d p o rn o ś c i,

3) forroaln ę c h a r a k t e r y s t y k ę o t o c z e n ia stan d ard ow eg o a o d e lu lin io w e g o ,

4 ) d e f i n i c j e m ia r o d p o rn o ś c i e sty m a to ró w na zm iany o to ­ c z e n ia danego modelu stand ard ow ego ( t j . m ia r o d p o rn o ś c i o b c ią -ż e n ią i m ia r o d p o rn o ś c i b łę d u ś r e d n ie g o ) ,

5) d e f i n i c j e o d p o rn o ś c i w o d n ie s i e n iu do em p iryczn eg o r o z k ła ­ du e s ty m a to r a .

Cytaty

Powiązane dokumenty

Żył w ięc on [Feliński] najbliżej z tak zwaną młodą em igracją — a schodząc się z znakomitościami starszej emigracji, spomiędzy nich sercem i duszą

besides, in the same neighbourhood there must lie a zero z of multiplicity at least 2, which contradicts the fact that the function J}“ (z) must have exactly two zeros

In this paper, being a continuation of [15,16], we consider the sets of extreme and support points for compact convex classes of holomorphic functions with ranges in a given strip or

zaob- serwowano, że napady padaczkowe częściej występują u chorych z ADHD niż u dzieci bez cech ADHD, częściej też obserwuje się niechęć do leczenia objawów ADHD u chorych

W krajobrazie płockich ulic, szczególnie Starego rynku pojawiały się orszaki pogrzebowe, czasami nawet trzy w ciągu dnia.. Głośne modlitwy i żałobne śpiewy, przy biciu

Indem die vielfältigen literarischen, filmischen und journali- stischen Begegnungen einer eingehenden Analyse unterzogen werden, wird das Buch also auch für die jüngste Generation

The stresses due to the quasi static ship response will be calculated, after separation, by the so called direct method which calculates the structural response after the ”rigid

Secondly, we omit both LRT tests in the interpretations because of their very high type I error obtained in the experi- ments 1(a) and 1(b). For all of the considered cases we