• Nie Znaleziono Wyników

Lithological sequence of the Main Anhydrite (Zechstein 3) in the Piła IG 1 borehole (Poland) in comparison with the normal sequence in the Hannover area (NW Germany)

N/A
N/A
Protected

Academic year: 2021

Share "Lithological sequence of the Main Anhydrite (Zechstein 3) in the Piła IG 1 borehole (Poland) in comparison with the normal sequence in the Hannover area (NW Germany)"

Copied!
4
0
0

Pełen tekst

(1)

16. K 0 t a s A. - Przewodnik LIV Zjazdu PTG, 1982 s.45-72

17. Lip i a r ski I. - Pr. Inst. Geol., 1971 t. 58 s. 5-112.

18. Lip i a r ski I. - VII Sympozjum - Geologia formacji w~glonosnych Polski, 1984 s. 111-116. 19. N e m e c W., P 0 r ~ b ski S.J., T e i s s e y r e

A.K. - VeroiTentlichungen des Zeptralinstituts fiir Physik der Brde, 1982 nr 66 s. 267 -278.

20. M a lis z e w s k a A. - Oprac. arch. CPBR, PIG Warszawa, 1989.

21. M 0 r

a:

w s k a A. - Prz. Geol., 1985 nr 8 s. 444-448.

22. Pas z k 0 w ski M. - Prz. Geol., 1987. nr 4 s. 192-194.

23. Po k 0 r ski J. - Kwart. Geol., 1981, t. 25 z. 1 s. 41-58.

24. Si e die c k a A. - Rocz. Pol. Tow. Geo!., 1964 t. 34 z. 3 s. 309-392

25. Si e dIe c k i S. - Kwart. Geol., 1958, t. 2, z. 3 s. 544-552.

26. S z u I c J.,

C

wiz e w i c z M. -

Paleogeogra-1?hy~ -c~atol~gy, -ecology, 1989 t. 70 s. 107 -120. 27. S 11 wIn skI S. - Pr. Geol. Kom. Nauk. Geol.

PAN oddz. w Krakowie, 1965 nr 25 s. 1- 73. 28. T r z e pie r c z y

n

ski J. - Biul. Inst. Geol.,

1987 nr 357 s. 61-98.

SUMMARY

Terrigenous, coarse-grained clastic and volcanic Per-mian rocks occurring in north-eastern margin of the Upper Silesian Coal Basin (USC Basin) are traditionally included into the Rotliegend. Those deposits filled closed tectonic troughs named: Slawkow Trough and Trzebi-nia-Nieporaz-Brodla (TNB) Trough, which makes difficulties for the lithostratigraphic correlations with neighbouring Permian basins. Palynological, petrograp-hica} and sedimentological data, enable to introduce a new proposal of informal lithostratigraphic units. Asumptions for distinguishing formations and members were presented. Myslachowice Formation with Karnio-wice 'rravertine Member and Slawkow Formation re-present lower part of the Lower Permian (Rotliegend).

For the first time established Boleslaw Formation with Krzykawa Member and Tarnowskie Gory Member re-present Upper Permian. Sedimentation of Permian depo-sits began in eastern part of the Lower Silesian Coal Basin (TNB Trough) and continued in space and time and displaced on north-eastern margin

of

the USC Basin. It maybe indicated process of depocenter migration evoked by tectonic movements of USC Basin· crystalline base-ment. The total thickness of Permian molasse reaches 1000 meters, with considerable amount of Upper Permian red bed deposits (developed as Rotliegend lithofacies).

Translated by the author PE310ME

TeppBreBHhle, Kpynao06J1oMo'lBLle B ByJIK8JUIIfe-cme OTJlO)l(eHHJl nepMB, 3aneralO~e B ceBepo-BOCTO'l-HOM 06paMJIeHBH BepXHecBJIe3CKOrO yrOJIhBOrO 6ac-ceiiBa, Tpa.mm;HOHHO OTBOCHJlHCL JC KpacBOMY J1e)1(eumo. 3TH cx:a,nJCH BCTpe1f8lOTCJI B TenOBB'IecJCBX rpaOeuax CJlaBICOBa B Tme6HBB - Henopa3a -Epo.zua (HTIi). Hx B30JIJlIOljl 3aTpy,nmreT npose.neHBe JIHTOCTpRTBrpact>H-1fecKOit Koppemoum C coce.nCTBYIO~ nepMCXBMB 6acceiiHaMB. lloJIY1feJlHl,le HOBwe I18.JIIIBOJlOfH1fecme, neTporpa41u'IeCJ[ue B ce.llHMeBTOJlOfH1fecme MaTepHa-JIW n03BOJIBJIB Dpe,l{CTaBUTb BOBwe IIpe.ZVIO)l(eHIDI Beo-<pUQHaJIbHOrO J1HTOCTpanfrpa<pH'IeCKOrO paC'lJIeHeHHSI. Bhl,l{eJIeBLl CBBTId U nO,l{CBBTId, a Taxze npe.nCTaBJleBLl OCBOBaHBJI ,l{JIJI HX Bhl,l{eJleHHJl. CBHTa MblCJIJlXOBBU c nO,l{CBRTOi TpasepTBBOB K8pBeBIIQ H CBRTa JIaBICOBa npe,l{CT8BJlJlIOT HB:acBlOIO 'faCTI> BB)l(Bei nepMB. Bnep-Bwe Dpe,l{JIo)l(eaBaJl CBHTa IioJlecJIaBJI C nO,l{CBBTaMB Kunm:aBbI B TapHoBCKHX ryp npe,l{CTaBJIJleT BepX1DOIO nepMb. Ce.l{HMemauuSl nepMCIOIX oca.zocOB Balf8Ta B BOC-TO'IBoi 'faeTH EepxHecuJle3CXoro yrOJIhBOrO 6acceiiBa (BYE) (rpa6eB THE) Dpo,l{JlQ)J:aJlaCL BO BpeMeHB U npo-crpauCTBe, nepeMeIIUUlcb Ha ceBepO-BOCTO'lHOe 06paM-J1eBBe BYE. 3To yJ:a3bIB8eT Ha MBrpaJUDO :o;eBTpOB ,l{en03~, CBJl3aHBYIO MO)f(eT 6bITb C TeICTOHBJ[OB KpHCTaJIJIII1IeCJ[oro <p)'BmlMeBTa BYE. CyMMapBaJI MOII(HOCTb nepMcxoit MOJIJIaCCbI )J;OCTBraeT 1000 M; ee 60JIhIIlYJO 'IaCTl> npe.nCTaBJlJIIOT OTJlO)l(eBBJI BCpxBei nepMB j)a3BHTWe B

JlBTo<Panau

KpaCBoro J1e)l(eHJI.

MATTHIAS REIMANN, MANFRED RICHTER Gebr. Knauf, Niedersachsisches Landesamt

fiir

Bodenforschung

LITHOLOGICAL SEQuENCE OF TIlE MAIN ANHYDRITE (ZEcmTEIN 3)

IN THE PILA IGl BOREHOLE (pOLAND) IN COMPARISON

WITII THE NORMAL SEQUENCE IN TIlE HANNOVER AREA (NW GERMANY)

The stratigraphic assignment of a given sulphate sequence to a certain evaporite cycle is always difficult if it is not closely associated With any key beds. This is also the case with monotonous sulphate sequences that do not contain any key non-sulphate horizons. Considerable problems arise with correlation of individual beds within a sulphate rock succession over long distances since they are occasionally subject to rapid changes in lithofacies.

G. Richter-Bernburg dealt with this problem during

UKD 551.736.3.022.2:552.53(438.222

+

430.1- 43.27) the 1950s and correlated the different Zechstein 2 anhydri-te rocks by counting isochronous v~es; this was also possible for the Werra Anhydrite of Zechstein 1 in North Germany (6).

The same type of correlation using varves was also carried out on the North American continent over a distance of 100 km, i.e. for sulphate rocks in the Castile Formation (pennian) in the Delaware Basin (7).

However, this method cannot be used for the Main

(2)

Anhydrite of Zechstein 3 since it does not contain characteristic, clearly defined lithological units. R. Lang-bein (4) subdivided the Main Anhydrite in the southern part of the Ran Mountains on the basis of petrographic investigations using the fIrst subdivision set up by G. Seidel (8).

In the Hannover area, W. Kosmahl (2, 3) was the fIrst to carry out detailed subdivision of the Main Anhydrite. He divided it into 13 units on the basis of structural and textural characteristics, and recognized that these units are repeated several times in deflnite combinations in the succession.

SUBDIVISION OF THE MAIN ANHYDRITE IN THE PILA IG 1 BOREHOLE

The authors investigated the possibility of subdividing the Main Anhydrite throughout the basin on the basis of KosmatJ's subdivision. During these investigations they discovered that in the Main Anhydrite (Leine Series; Zechstein 3) too, characteristic parts of the sequence are recognizable over extensive areas; in spite of considerable variations in thickness, these indicate the presence of similar facies and therefore permit correlation to be carried out. Detailed records of drill cores and descrip-tions of quarry exposures in Schleswig-Holstein, Lower Saxony, Hesse, and NW Poland were taken into con-sideration for the investigations. The aim was to set up a subdivision that does not require extensive laboratory investigations but uses visible lithological characteristics that can easily be recognized in exposures and drill cores (5).

The Pila IG 1 borehole in Poland, which provided long continuous section of the Main Anhydrite as 100 mm core from depths between 3553 and 3580 m (see Fig. 1), is described below as an example. This borehole was interpreted using descriptions of the core material in combination with a photographic comparison of charac-teristic parts of the succession. The lithologicallog of this borehole is compared with the normal sequence of the

«

.. __

~

.

... __

~409km . Fig,. I. Position of standard succession of the Main Anhydrite for the Hannover area (NW Germany) and Pi/a IG I borehole (NW Poland) in the Zechstein basin o/Central Europe during Zechstein

3 times

Ryc. I. Poloienie standardu anhydrytu glownego (obszar hano-werski. Niemcy NW) oraz otworU wiertniczego Pila IG I w

zbior-niku cechsztyriskim w trakcie depozycji trzeciego cyklu

204

Main Anhydrite in the Hannover area (see Fig. 2). This standard section compares closely with the subdivision of W. Kosmahl (2, 3).

As has already been mentiond, Kosmahl subdivided the Main Anhydrite into 13 units (IX = HA1 toro = HA13) of different thickness. The criteria used for this subdivision are characteristic rock structures and textures predomi-nantly reflecting small amounts ofvarious impurities such as carbonate, quite often magnesite bearing, and less commonly, clay. Both the aggregate shape and the texture of these impurities are considered, as well as rhythmic repetitions in the lithology and structure (compare with 1).

The individual units can be correlated over a distance of more than 500 km, although the top and bottom of the Pila IG 1 borehole are not documented in the core and considerable deviations in the profile thickness exist (normal Hannover proftle about 64 m; Pila boreho-le> about 27 m): The basal member of the Main Anhyd-rite was not cored in the Fila IG 1 borehole; this section therefore starts with the Flaky and Flaser Anhydrite ("Flocken-, Flaseranhydrit") (HA2). Dark irregular struc-tures consisting of clay and carbonate impurities are characteristic for this section and mm-thin, wavy, finely bedded magnesite layers are typical of the Lamellar Anhydrite 2 (HA3), which overlies HA2 in the Hannover area; in the southern part of Lower Saxony, in Hesse, and apparently in Fila too, the last mentioned beds are substituted by dark, clayey beds. This prominent horizon and the very similar Lamellar Anhydrite 3 (HA 7) are prominent members of the Main Anhydrite sequence. The Flaser Anhydrite (HA4), which is mostly thin bedded and shows irregularly shaped carbonate aggregates several cm to dm across, is also very similar. Even the upper parts of the borehole section show features which are typical of the Hannover area. The following units are clearly recog-nizable: Layered Anhydrite f'Lagenanhydrit", HA6), the Lamellar Anhydrite 3 (HA 7) mentioned above, ("Biindelanhydrit"; HAS), and particularly the prominent Spotted or Porphyroblastic Anhydrite f'Maser. hzw. Porphyroblastenanhydrit", HAlO). The Banded Anhyd-rite (HAll) forms the highest cored unit in the borehole section; it passes into the overlying beds which were not cored.

CONCLUSION

The interpretation of the Fila IG 1 borehole demonst-rates that sections in the Main Anhydrite can be cor-related throughout the basin.

In the. entire Germanic Zechstein basin the Main Anhydrite of Zechstein 3 can be subdivided into up to 13 characteristic lithostratigraphic units.

In spite of considerable differences in the thicknesses of the various units, the Main Anhydrite section from the Fila IG 1 borehole (NW Poland) shows almost the same lithostratigraphic sequence as the reference section for the Hannover area (NW Germany): individual beds can be identifled with certainty and can consequently be cor-related; the lithostratigraphic subdivisions recognized in this sulphate sequence in the Hannover area can also be

used in the eastern part of the Zechstein basin.

Similar facies development over much of the basin suggests that relatively uniform sedimentation conditions pertained throughout; this does not exclude facies chan-ges on highs and at the margins of the basin.

(3)

c

Ii

Hannover

Er--CUeD Eo. 0,""" ID m 65-r---~~~---60

ss

Maser- bzw.

SO

Porphyroblastenanhydrit

k

Spotted or Pophyroblostic Anhydrite 45 Flaser-, B L Flaser or 40 Ii 5

o

Fig. 2. Standard succession of tM Main Anhydrite for tM

Hannover area (NW Germany) correlated with the Main Anhyd-rite in Pi/a IG 1 borehole (NW Poland)

• - thin black shale, •• - laminated anhydrite, ••• - flaky or flaser anhydrite

Borehole

Pi'ya I G 1

m 25 HA 11 20

Ryc. 2. Standardollla sukcesja anhydrytu glownego.na obszarze

hanowerskim (Niemcy NW) skorelowana z anhydrytem glownym

III otworze wiertniczym Pila IG 1

• - cietI!-ne warstwy ilaste (lupkowe), •• - anhydryt laminowa-ny, ••• - anhydryt ldaczkowaty lub smuZysty

(4)

REFERENCES

1. B 0 r n e m ann O. - Kemtechnik. 1987 vol. 50 s. 138-142.

2. K 0 s m a h 1 W. - Geol. Jb., 1967 vo1. 84 s. 367-406.

3. K 0 s m a h 1 W. - Beih. Geo1. Jb., 1969 vol. 71 s. 1-129.

4.L a n g b e i n R. - Chem. Erde, 1961 vo1. 21 s. 249-264.

5. R i c h t e r M., Rei m ann M. - Die lithost-ratigraphische Untergliederung des Hauptanhydrits (Z3, a) in Zechsteinbecken Mitteleuropas (in prep.). 6. R i c h t e r - B ern bur g G. - 0001. Jb., 1985

vot. A85 s. 3 - 82.

7. S c h rei b e r

B.c. -

[W:] H. Reading (ed.), Sedi-mentary Environments and Facies. Blackwell, 1986 s. 189-228.

8.

S

e i del G. -

Z

Ang. 0001., 1960 vol. 6 s. 383 - 385.

CECHSZTYNSKI ANHYDRYT

GLOWNY

(AJ) W OTWORZE WIERTNICZYM PILA IG 1,

POROWNANIE

Z SEKWENCJt\ NA OBSZARZE HANOWERSKIM

Zaliczenie danej sekwencji siarczanowej do poszcze-golnego cyklu, ewaporatowego, w przypadku braku warstw przewodnich, powoduje maczne trudnosci. Taka sytuacja ma miejsce zwlaszcza wtedy, gdy wyst~pujl! monotonne sekwencje siarczanowe. Co wi~j; poniewaZ niekiedy nast~pujl! znaczne lateralne zmiany litofacji, wynikiem SI! dui:e trudnoSci w korelacji poszczegolnych warstw w obr~bie sukcesji skal siarczanowych.

G. Richter-Bemburg (6) zajmowal si~ tym zagad-nieniem w latach pi~esil!tych i po policzeniu warstw izochronicznych skorelowal rome skaly anhydrytowe stassfurtu; okazalo si~ to taki:e moZliwe dla anhydrytu werry w p6lnocnych Niemczech (6). Ten typ korelacji zastosowano w Ameryce P6lnocnej dla permskiej for-macji Castile basenu Delaware (7), natomiast nie ma on zastosowania dla cechsztynskiego anhydrytu glownego (A3). R. Langbein (4) podzielil anhydryt glowny w polu-dniowej ~sci Gor Harzu na podstawie badati petro-graficznych, stosujllc podzial zaproponowany wczesniej (8). Pierwszym badaczem, ktory dokonal szczeg61owego podzialu anhydrytu gl6wnego na obszarze hanowerskim, byl W. Kosmahl (2, 3). Na podstawie cech strukturalnych i teksturalnych wyroZnil on 13 jednostek oraz stwierdzil, i:e jednostki te powtarzajll si~ kilka razy w okreSlonych zespolach.

Autorzy postanowili przebadae moZliwose zastoso-wania podzialu zaproponowanego przez W. Kosmahla (2, 3) na obszarze calego zbiomika. Podczas badati stwier-dzono, i:e w wielu jego ~Sciach moma stwierdzie' obecnosc charakterystycznych ~sci sekwencji. Mimo znacznych zmian millZBzosci, te charakterystyczne.~sci wskazujll na podobnll facj~ i dlatego umoZliwiajll doko-nanie koreIacji. W ceIu ustanowienia podzialu, wykorzys-tuj~go widoczne cechy litologiczne i nie wymagaj~go badati laboratoryjnych, a w zwiliZku z tym latwo stosowa-nego podczas badan odkrywek i rdzeni wiertniczych, przeprowadzono szczegolowe badania rdzeni wiertni-czych i odsloni~ w Szlezwiku-HoIsztynie, Dolnej Sak-sonii, Hesji i pOlnocno-zachodniej Polsce (5).

Jako dobry przyklad moZliwoSci zastosowania takie-go podzialu niech posluZy otwor wiertniczy Pila IG 1 (ryc. 1), ktory dostarczyl cillglego rdzenia anhydrytu glownego o srednicy 100 mm z gl~bokoSci 3553-3578,6 m. Na podstawie opisu materialu rdzeniowego w polllC2'.eniu z por6wnaniem fotograficznym charakterystycznych ~­ Sci sukcesji zinterpretowano profillitologiczny tego wier-cenia, a nast~pnie porownano go z normalnll sekwencj!! anhydrytu glownego obszaru hanowerskiego (ryc. 2).

Jak jui: wczesniej wspomniano, W. Kosmahl (2, 3) podzielil anhydryt glowny na 13 jednostek (od IX = HAt do Q) = HA13) 0 romej millZBzosci. Kryteria tego

po-206

dzialu to charakterystyczne struktury i tekstury, glownie odzwierciedlajllce mal!! ilose r6i:nych zanieczyszczeti, takich jak w~glany, dose cz~sto zawierajllce magnezyt, oraz - rzadziej - material ilasty. Pod uwag~ jest brany ksztait oraz fekstura tych zanieczyszczeti, jak r6wniei: rytmiczne powtorzenia litologii i struktury (por. 1).

Po~zczegoln~ jednostki mog!! bye korelowane na odcinku przeszlo 500 km, mimo braku - w otworze Pila IG 1 - rdzenia z najnii:szej i najwy.zszej ~Sci anhydrytu glownego oraz znacznych roi:nic millZBzosci (w rejonie Hanoweru - zazwyczaj 64

rn,

w otworze Pila IG 1 -26,5 m, w tym rdzeniowano 25,6 m).

Najnii:sza cz~se anhydrytu glownego w otworze Pila IG 1 nie byla rdzeniowana i profil rozpoczyna si~ anhyd-rytem klaczkowatym i smui:ystym (Flocken-,

Flaseran-hydrit) (HA2). Dla tego odcinka charakterystyczne SIl ciemne, nieregulame struktury skiadaj!!ce si~ z materialu ilastego i w~glanowego, natomiast faliste, milimetrowej gruboSci, cienko warstwowane warstwy magnezytowe Sll typowe dla anhydrytu laminowanego 2 (HA3), przy-krywaj!!cego - na obszarze hanowerskim - HA2. W poludniowej ~ Dolnej Saksonii, Hesji i najwidocz-niej w Pile SIl one zaslllpipne przez ciemne warstwy ilaste. Ten wyrainy poziom i bardzo do niego podobny anhyd-ryt laminowany 3 (HA 7) Sll wyroi:niajllcymi si~ czlonami sekwencji anhydrytu glownego, podobnie jak anhydryt smui:ysty (HA4), glownie cienko warstwowany i zawiera-j!!cy skupienia w~glanowe nieregulamego ksztaltu 0 sred-nicy kilku centymetrow do decymetrow. Rowniei: g6ma cz~se profllu wiercenia wykazuje cechy typowe dla rejonu hanowerskiego. Stwierdzono bowiem obecnose nas~pu­ jllcych jednostek: anhydrytu warstwowego (Lagenanhyd-Tit, HA6), anhydrytu laminowanego 3 (HA 7); anhydrytu gniazdowego (Buendelanhydrit, HAlO), a zwlaszcza cha-mkterystycznego anhydrytu plamistego lub porfiroblas-towego (MaseT- wzgl~dnie POTphyroblastenanhydTit,

HAlO). Anhydryt wst~gowany (HAll) tworzy najwyi:sZll

jednostk~ rdzeniowan!! w profilu wiercenia.

Tym samym w otworze Pila IG 1 stwierdzono takll sam~ sekwencj~ litostratygrafiCZJl1l, jak we wzorcowym proftlu 'z obsZfru hanowerskiego; poszczeg6lne warstwy mogll bye zidentyftkowane i skorelowane. Wynika z tego, i:e podzial litostratygraficzny ustanowiony dla obszaru hanowerskiego moi:e bye taki:e stosowany we wschodniej ~ zbiornika cechsztytiskiego. Podobne wyksztalcenie facjalne wi~kszej ~ zbiomika wskazuje, i:e istnial mniej lub bardziej ograniczony, prawie jednolity obszar sedymentacji, charakteryzujllCY si~ minimaln!}; lateralnll zmiennoSciIl facjalnll: nie wyklucza to wszaki:e zmian facjalnych na wyniesieniach oraz w brzemej ~ zbior-nika.

Cytaty

Powiązane dokumenty

In Section 2 we describe some classical results concerning uniqueness, including the famous Salem–Zygmund characterization of perfect symmetric sets of constant ratio which are sets

If φ is a universal formula for sentences ϕ, then the formulation of the sentence ϕ corresponds to the sentence “It is snowing” and the formulation of the sentence φ(ϕ)

In contrast to the English Upper Albian borehole successions investigated by Morter and Wood (1983) in East Anglia, in which the briacensis Subzone is not rep- resented, and the

part of the ba sin (sul phate fa cies), whilst nod u lar anhydrite was col lected from crys tals of ha lite, ob tained af ter salt dis so lu tion in dis tilled wa ter.. Nod

3A – small clus ters and streaks of blue col our within ha lite crys tal ac com pa nied by car nal lite and polyhalite (min ing level 600 m, cham ber KS1d); B – larger, ir reg u lar

As pre vi ously men tioned, gyp sum dom ing and diapirism be - gan rel a tively early: in the case of A1, be fore the over ly ing car - bon ates were com pletely lithified, and

Anhydrite is wide spread in the Prypiaæ Trough in the form of beds and nod ules in the Subsaliferous Terrigenous and Car bon - ate for ma tions (Eifelian and Frasnian), the Lower

Conodont biostratigraphic correlations indicate that three physical events recognizable on the Late Devonian carbonate shelf in southern Poland have their equivalents