• Nie Znaleziono Wyników

Polish Soil Classification, 6th edition – principles, classification scheme and correlations

N/A
N/A
Protected

Academic year: 2021

Share "Polish Soil Classification, 6th edition – principles, classification scheme and correlations"

Copied!
27
0
0

Pełen tekst

(1)

DOI: 10.2478/ssa-2019-0009

http://ssa.ptg.sggw.pl/issues/2019/702 * prof. dr hab. Cezary Kaba³a, e-mail: cezary.kabala@upwr.edu.pl

phone No: +48 71 3201943

CEZARY KABA£A1*, PRZEMYS£AW CHARZYÑSKI2, JACEK CHODOROWSKI3,

MAREK DREWNIK4, BART£OMIEJ GLINA5, ANDRZEJ GREINERT6, PIOTR HULISZ2,

MICHA£ JANKOWSKI2, JERZY JONCZAK7, BEATA £ABAZ1, ANDRZEJ £ACHACZ8,

MARIAN MARZEC9, £UKASZ MENDYK5, PRZEMYS£AW MUSIA£10, £UKASZ MUSIELOK4,

BO¯ENA SMRECZAK11, PAWE£ SOWIÑSKI8, MARCIN ŒWITONIAK2, £UKASZ UZAROWICZ7,

JAROS£AW WAROSZEWSKI1

1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection ul. Grunwaldzka 53, 50-375 Wroc³aw, Poland

2 Nicolai Copernicus University in Toruñ, Faculty of Earth Sciences, Department of Soil Science and Landscape Management ul. Lwowska 1, 87-100 Toruñ, Poland

3 Maria Curie-Sk³odowska University in Lublin, Department of Geology and Soil Science, ul. Kraœnicka 2cd, 20-718 Lublin, Poland

4 Jagiellonian University, Institute of Geography and Spatial Management, Department of Pedology and Soil Geography ul. Gronostajowa 7, 30-387 Kraków, Poland

5 Poznañ University of Life Sciences, Department of Soil Science and Land Protection ul. Szyd³owska 50, 60-656 Poznañ, Poland

6 University of Zielona Góra, Institute of Environmental Engineering ul. Szafrana 15, 65-516 Zielona Góra, Poland

7 Warsaw University of Life Sciences – SGGW, Department of Soil Environment Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland

8 University of Warmia and Mazury in Olsztyn, Department of Soil Science and Land Reclamation Plac £ódzki 3, 10-727 Olsztyn, Poland

9 Bureau for Forest Management and Geodesy ul. Piastowska 9, 49-300 Brzeg, Poland

10 Bureau for Forest Management and Geodesy

ul. Leœników 21, Sêkocin Stary, 05-090 Raszyn, Poland 11 Institute of Soil Science and Plant Cultivation

ul. Czartoryskich 8, 24-100 Pu³awy, Poland

Polish Soil Classification, 6th edition – principles, classification

scheme and correlations

Abstract: The sixth edition of the Polish Soil Classification (SGP6) aims to maintain soil classification in Poland as a modern scientific system that reflects current scientific knowledge, understanding of soil functions and the practical requirements of society. SGP6 continues the tradition of previous editions elaborated upon by the Soil Science Society of Poland in consistent application of quantitatively characterized diagnostic horizons, properties and materials; however, clearly referring to soil genesis. The present need to involve and name the soils created or naturally developed under increasing human impact has led to moderni-zation of the soil definition. Thus, in SGP6, soil is defined as the surface part of the lithosphere or the accumulation of mineral and organic materials permanently connected to the lithosphere (through buildings or permanent constructions), coming from weathe-ring or accumulation processes, originated naturally or anthropogenically, subject to transformation under the influence of soil-forming factors, and able to supply living organisms with water and nutrients. SGP6 distinguishes three hierarchical categories: soil order (nine in total), soil type (basic classification unit; 30 in total) and soil subtype (183 units derived from 62 unique definitions; listed hierarchically, separately in each soil type), supplemented by three non-hierarchical categories: soil variety (additional pedogenic or lithogenic features), soil genus (lithology/parent material) and soil species (soil texture). Non-hierarchi-cal units have universal definitions that allow their application in various orders/types, if all defined requirements are met. The paper explains the principles, classification scheme and rules of SGP6, including the key to soil orders and types, explaining the relationships between diagnostic horizons, materials and properties distinguished in SGP6 and in the recent edition of WRB system as well as discussing the correlation of classification units between SGP6, WRB and Soil Taxonomy.

(2)

INTRODUCTION

Transformation of soils, progress in soil science and changing socio-economic conditions are major driving forces for the changes in soil classification, if the classification is to be understood as a modern reflection of current knowledge about soils and their functions in the natural environment and for human life (Arnold 2002). Therefore, every classification of soils, including the Polish Soil Classification, must be regularly verified and improved (Brevik et al. 2016). At the same time, it should not be forgotten that the classification system, and in particular the terminolo-gy used, reflects local scientific traditions, which sho-uld not be abandoned hastily (Krasilnikov et al. 2009). The sixth edition of the Polish Soil Classification (Systematyka gleb Polski 2019, later cited in an abbreviated form as SGP6), developed by the Com-mission for Soil Genesis, Classification and Cartography of the Soil Science Society of Poland, attempts to fulfill the abovementioned mission and expectations of different groups of professional users. SGP6 continues the tradition of previous editions of soil classification, in particular its fifth edition (Systematyka gleb Polski 2011), in the aspect of consistent application of precisely and quantitatively characterized diagnostic horizons, properties and materials. Quantitative clarification and digitization of classification criteria do not mean giving up the traditions of genetically oriented soil science. All classification units in SGP6 were determined in accordance with their genesis; some were even intentionally separated to emphasize the impact of various pathways of soil development (soil-forming processes) on their present morphology, properties and functions, even if it is not explicitly stated in the classification criteria.

The aim of this paper is to explain the principles and classification scheme of the Polish Soil Classifi-cation, 6th edition (Systematyka gleb Polski 2019). The

correlations of diagnostic horizons, materials and properties as well as classification units at various levels with WRB (IUSS Working Group WRB 2015, later cited in an abbreviated form as WRB2015) and Soil Taxonomy (Soil Survey Staff 2014, cited in an abbreviated form as ST2014) is also given and briefly explained to indicate the close relationships between modern Polish soil classification and major international systems.

THE OBJECT OF CLASSIFICATION

The soil definition often depends on the require-ments for which this definition and related

classifica-tion are made (Ibanez and Boixadera 2002). For many experts, the concept of soil was defined through the needs of agricultural and forest productivity (i.e. the usefulness for growing plants). Another perspective comes from an ecological approach, where soil can be a basis for every ecosystem, both naturally developed and human made, including those ecosystems consi-dered unproductive or degraded (Jankowski and Bednarek 2000, Krupski et al. 2017, Musielok et al. 2018). Based on an ecological approach, it is very difficult, if at all possible, to determine the minimum soil contour area (or soil volume), if only cubic centimeters or decimeters of regolith accumulated in a rock crevice may create the basis for unique natural ecosystems (Miechówka and Drewnik 2018; Skiba and Komornicki 1983). In this context, questions are increasingly asked about the soils of ecosystems artificially created by humans or created by natural forces in an environment that has been substantially altered or created by man; for example, soils of road or railway embankments, earth covers on bunkers and other constructions, on green roofs, in niches on buildings and ruins filled with "anthropogenic rego-lith" etc. (Charzyñski et al. 2013a, 2013b, 2015; Uza-rowicz et al. 2017, 2018). In all these ecosystems, there are similar minerals that build natural soils, similar microorganisms enabling the circulation of matter and energy flow typical for soils, as well as enabling plant growth and soil fauna occurrence. Therefore, these are soils that build self-functioning ecosystems and which are relatively stable in time and space. However, not each accumulation of soil material lasts and functions as described above; for example, an earthy material accidentally accumulated on tractor wheels and on agricultural machinery or growing substrate on greenhouse benches (tables) or in pots on the windowsill. Therefore, in the Polish Soil Classification (SGP6), soil is defined as the surface part of the lithosphere or the accumulation of mineral and organic materials permanently connected to the lithosphere by buildings or permanent construc-tions, coming from weathering or accumulation processes, originated naturally or anthropogenically, subject to transformation under the influence of soil-forming factors, and able to supply the living organisms with water and nutrients.

DIAGNOSTIC HORIZONS,

MATERIALS AND PROPERTIES

The Polish Soil Classification, since its fourth edition (1989), is based on soil features, being the combined results of soil-forming factors and processes, defined in terms of diagnostic horizons, diagnostic

(3)

materials and diagnostic properties, all of which to the highest possible extent should be observable and measurable in the field. General concepts and detailed criteria for many diagnostic horizons/mate-rials/properties are taken from WRB2015. However, original Polish concepts, not reflected in an interna-tional soil classification, or local specific features of soil cover have led to adding a number of unique diagnostic horizons/materials and changing detailed criteria in the original definitions of many others. To avoid misunderstanding and incorrect classification (correlation), the names of all diagnostic horizons, ma-terials and properties have changed spelling, mainly by replacing the standard ending "-ic" with "ik". All diagnostic horizons, materials and properties defined in Polish Soil Classification, along with brief explanation of their relationships with WRB2015, are listed in tables 1–3.

The criteria for diagnostic horizons/materials/pro-perties generally are not fully disjunctive; however, horizons that have similar characteristics differ in at least one disjunctive, restrictive or exclusive criterion, which refers to the specific impacts of pedogenic factors or processes, creating a unique theoretical basis for a given diagnostic horizon. A separate key to diagnostic horizons has not been prepared, but the general key to soil orders and soil types (table 4) clearly indicates the order of analysis/elimination of diagnostic horizons, i.e. suggests which criteria should be taken into account first. In a case of humus-rich dark-colo-ured topsoil horizon this means for example, that first to be checked are the criteria for histik/murszik/folik horizons (the order of organic soils is placed first in the key), then for hortik/antrik (anthropogenic soils are placed on the second position in the key) and finally for arenimurszik/mollik/umbrik. Similarly, in

6 P G S RelationtoWRB2015 k i b l a noequivalent;criterialikeforalbicmaterial;referstoFe,Alandhumusdepletion(resultofpodzolization):≥50%of s s e n k c i h t ; s g n i t a o c s u m u h ) -e F ( f o e e r f s n i a r g d n a s ≥1 mc k i r t n a noequivalent;criterialikeforanthricproperties;phosphoruslimitsrefertocitricacidandMehlich3tests(Kaba³aet s s e n k c i h t ; ) 8 1 0 2 .l a ≥30cm k i z s r u m i n e r a noequivalent;criterialikeformollic/umbric(thickness,organiccarboncontent,colour),butsandytextureandweak r e t t a m c i n a g r o f o s e l c i t r a p d n a n o i t c a r f l a r e n i m f o g n i d n i b (≥10%ofsandparticleshasnohumuscoatings;organic ) g n i h g u o l p ( g n i x i m d n a e g a n i a r d y b d e v i r e d n e t f o ; ) e t a t s y r d n i g n i d n i r g l i o s t a s n i a r g d n a s m o r f s e t a r a p e s y l i s a e r e t t a m f o histik/murszikhorizonswithunderlyingsandysubsoil(£abazandKaba³a2016) k i g r a likeargic,excludingcriterion2b(texturedifferentiationwithoutvisibleclaycoatings);required≥20%clay s g n i t a o c / g n i g d i r b k i w u l e noequivalent;criterialikeforalbicmaterial;referstoclaydepletion(resultofeluviation/lessivage):sandparticlesfree ; n o z i r o h g n i y l r e d n u o t d e r a p m o c t n e t n o c y a l c r e w o l , s e t a g r e g g e l a r u t c u r t s n o s g n i t a o c o n , s e g d i r b d n a s g n i t a o c y a l c f o s s e n k c i h t ≥1cm k i l o f likefolic k i t s i h likehistic,butorganicmaterialrequires≥12%oforganiccarbon k i t r o h likehortic,butrequiredthickness≥30cmandrequiredpHw≥5.5(insteadofbasesaturation≥50%);phosphorus ) 8 1 0 2 , .l a t e a ³ a b a K ( s t s e t 3 h c i l h e M d n a n e s l O o t r e f e r s t i m i l k i c l a k likecalcic,excludingcriteria2b(relativedifferenceofCaCO3contentincomparisontounderlyinglayer)and ) c i c l a c o r t e p ( 3 k i b m a k likecambic,butsandytextureclassesareexcluded;largerpresenceofclaybridges/coatingsisallowed ) k i g r a o t y r a t n e m e l p m o c , % 0 2 < ( k i l l o m likemollic,butrequiredthickness≥30cmandrequiredpHw≥5.5(insteadofbasesaturation≥50%) k i z s r u m noequivalent;criterialikeforhistichorizonwithadditionalrequirementslikeformurshicqualifier;referstopeat ) t n e m p o l e v e d e r u t c u r t s d n a n o i t a c i f i m u h g n i d u l c n i ( n o i t a m r o f s n a r t c i n e g o d e p r e h t r u f d n a e g a n i a r d o t e u d n o i t a d a r g e d k i b u r noequivalent;referstoFe(+Mn)subsurfaceprecipitationatthecontactofgroundwatersofdifferentorigin;criteria o t r a l i m i s rubicqualifier,buthueredderthan7.5YR(andredderthanparentmaterial)andchroma ≥5;thickness≥15cm k i r e d i s noequivalent;consideredananaloguetocambichorizon,butdevelopedinsandytextureclasses(criterialikefor c i n u r b qualifier);aMunsellcolours7.5YRor10YR,value4–6andchroma≥3moistarerequired(ifparentmaterial , s r u o l o c d e n o i t n e m e v o b a s a h siderikhasredderhueand/orhigherchromaand/orlowercolourvaluethanparent s s e n k c i h t ; ) l a i r e t a m ≥15cm k i d o p s likespodic k i r b m u likeumbric,butrequiredthickness≥30cmandpHw<5.5(insteadofbasesaturation<50%)(Kaba³aand£abaz2018) k i t r e w likevertic

(4)

6 P G S English n o i t a l s n a r t 5 1 0 2 B R W o t n o i t a l e R n a p i g a r f fragipan likeforfragichorizon,butnothicknessrequirements a n a r b m e m o e g geomembrane noequivalent;syntheticmembranecoveringsoilsurfaceordividingsoillayers,impermeableor s a g d n a r e t a w o t e l b a e m r e p y l d r a h e i k o b ê ³ g e i n a z s e i m y w g n i x i m p e e d noequivalent;deep(≥50cm)mixingofsoils(destructionofsoilhorizonation,fragmentsof , ) g n i h g u o l p ( n o i t a v i t l u c p e e d y r e v ) 1 ( o t e u d , ) . c t e e l i f o r p l i o s n i h t i w d e t a c o l s n a r t s n o z i r o h d e t a v e l e t o n y l l a c i p y t e c a f r u s l i o s ; y r a d n u o b r e w o l p r a h s ; s k r o w n o i t c u r t s n o c ) 2 ( r o e l l e m a l lamellae likeforlamellicqualifier,butthicknesscriteriamovedtosubtyperequirement a ³ a k s a t i l continuous k c o r e k i l continuousrock,butcracksoccupy<5%ofthecrosssection a w t s r a w a t i l a n z c i n e g o n h c e t c i n e g o n h c e t r e y a l d r a h e k i l technichardmaterial æ œ o ³ g ¹ i c e i n a n z c i n e g o t i l c i n e g o h t i l y t i u n i t n o c s i d e k i l lithicdiscontinuity,buttexturaldifferentiationresultingfromalluvialandcolluvial d e d u l c x e s i n o i t a t n e m i d e s n y t z s r o ortstein likeortsteinicqualifier k i c a l p placic likeplacicqualifie a w o i n r a d a d u r bogiron likeforferrichorizon,butFe-Mn-nodulesform>20%ofalayervolumeandcriteria1a(mottles) o t s n o i t a l e r ( 2 d n a plinthic)arenotconsidered i c œ o w i c œ a ³ w e w o j e l g -o w o t n u r g c i y e l g s e i t r e p o r p e k i l gleyicproperties i c œ o w i c œ a ³ w e w o j e l g -o w o d a p o c i n g a t s s e i t r e p o r p e k i l stagnicproperties e i n e l o s a z salinity noequivalent;likeforsalichorizon,butrequiredECe≥4dSm–1,andpH e<8.5,andSARe < 31 % 5 1 < P S E r o e i n e l o s a z ¹ j c a k i f y d o s z h t i w y t i n i l a s n o i t a c i f i d o s r o f e k i l ; t n e l a v i u q e o n salichorizon,butrequiredECe≥4dSm–1,andpH e ≥8.5,andSARe≥ 31 P S E r o ≥15% a j c a k i f y d o s sodification noequivalent;likeforsalichorizon,butrequiredECe<4dSm–1,andpH e<8.5,andSARe ≥ 31 P S E r o ≥15% æ œ o w o k e i c a z a n l a i w u l e l a i v u l e g n i u g n o t e k i l reticproperties(includingalbeluvicglossae) e i n e z s a w k a z e w o n a z c r a i s e t a f l u s n o i t a c i f i d i c a r o f e k i l thionichorizon,butadditionallycoloursofdiscontinuousaccumulationsarespecified a m o r h c d n a w o l l e y e r o m r o Y 5 . 2 e u h ( ≥ )6

TABLE 2. The relationships between diagnostic properties in SGP6 and WRB 2015

6 P G S English n o i t a l s n a r t 5 1 0 2 B R W o t n o i t a l e R ³ a i r e t a m y n z c i n a g r o c i n a g r o l a i r e t a m e k i l organicmaterial,butinmaterialssaturatedwithwaterfor≥30consecutivedaysinmost , d e n i a r d r o , s r a e y ≥12%Corgisrequired,whileinmaterialssaturatedwithwaterfor<30days ≥20%Corgisrequired ³ a i r e t a m y n l a r e n i m l a r e n i m l a i r e t a m e k i l mineralmaterial,butinmaterialssaturatedwithwaterfor≥30consecutivedaysinmost C % 2 1 < s r a e y orgisrequiredand inmaterialssaturatedwithwaterfor<30daysinmostyears d e r i u q e r s i g r o C % 0 2 < ) s t a e p ( y f r o t y w o r b i f f r o t fibricpeat criteriaforrecognizableplanttissuelikeforfibricqualifier,thickness/depthcriteriaspecifiedin s n o i t i n i f e d e p y t b u s y w o m e h f r o t hemicpeat criteriaforrecognizableplanttissuelikeforhemicqualifier,thickness/depthcriteriaspecifiedin n o i t i n i f e d e p y t b u s y w o r p a s f r o t sapricpeat criteriaforrecognizableplanttissuelikeforsapricqualifier,thickness/depthcriteriaspecifiedin s n o i t i n i f e d e p y t b u s ) s l a i r e t a m c i n m i l ( e n z c i n m i l y ³ a i r e t a m a n z c i n a g r o a i t y g organicgyttja noequivalent;meetsthegeneralcriteriaforlimnicmaterials,contains≥12%oforganiccarbon O C a C f o % 0 2 < d n a 3;resilientinamoiststate(abletospringbackintoshapeafterbeing s g a n i a r d r e t f a s e n a l p l a t n o z i r o h g n o l a g n i k c a r c ; ) d e s s e r p m o c

(5)

case of subsurface diagnostic B horizons, the order of analysis/elimination, related to the key to soil orders and types, is as follows: spodik, rubik, siderik, kambik. One of crucial differences between SGP6 and WRB2015 is the required organic carbon content in the organic materials. In soils saturated with water for >30 consecutive days in most years (or drained) ≥12% of organic carbon was established at a suffi-ciently high to enable ecosystem services typical for organic soils (Piaœcik and £achacz 1990). In soils saturated for less than 30 consecutive days per year, the required organic carbon content is ≥20%, similar to that for WRB2015 (table 3). This difference

influ-ences the definition of the histik horizon (table 1) and soil allocation to order and type in the key, in parti-cular the distinction between Histosols and Histic Gleysols (table 4). The other differences in diagnostic horizons are as follows:

– the mollik and umbrik (and also antrik and

areni-murszik) horizons must be ≥30 cm thick

(com-pared to ≥20 cm in WRB2015) that prevents an involvement of many normally ploughed soils into

chernozemic soils,

– the argik horizon requires higher content of clay coatings/bridgings (≥20% instead of ≥5% in WRB2015) that also influences the wider

reco-a w o n a l g ê w a i t y g calcareous a j t t y g r o f a i r e t i r c l a r e n e g e h t s t e e m ; t n e l a v i u q e o n limnicmaterials,contains≥12%oforganiccarbon d n a ≥20%ofCaCO3;weakresilienceinamoiststate;crackingalonghorizontalplanesafter e g a n i a r d y w o k ¹ ³ ñ e i p a w meadow e n o t s e m i l ) l r a m ( r o f a i r e t i r c l a r e n e g e h t s t e e m ; t n e l a v i u q e o n limnicmaterials,contains<12%oforganiccarbon d n a ≥20%ofCaCO3 y n z c y t e n m i l ³ u m lacustrine d u m s e k a l w o l l a h s , s d n o p n i d e t n e m i d e s – ) t a e p y r a t n e m i d e s ( l a i r e t a m c i n m i l o t r a l i m i s ; t n e l a v i u q e o n s n i a t n o c ; . c t e ≥12%oforganiccarbon,meetsthecriteriaofsapricqualifierbutmaycontain r o f l a c i p y t e c n e i l i s e r f o s e c n e d i v e o n , s e u d i s e r t n a l p d e s o p m o c e d n u f o s r e y a l / s e s n e l gyttja y n z c y t a m l e t ³ u m telmaticmud noequivalent;similartolimnicmaterial(sedimentarypeat)–sedimentedinseasonallyfloodedwet f o a i r e t i r c e h t s t e e m , n o b r a c c i n a g r o f o % 5 2 – 2 1 s n i a t n o c ; s y e l l a v sapricqualifierexcludingthe e u l a v r u o l o c , s t n e m g a r f d o o w d n a s t o o r ≥2andchroma≥2moist,typicallycontainseasily l a c i p y t e c n e i l i s e r f o s e c n e d i v e o n , s n o i t c a r f l a r e n i m f o ) . c t e s e s n e l , s r e y a l ( e r u t x i m d a e l b a z i n g o c e r r o f gyttja ) s l a i r e t a m c i n e g o h p o r t n a ( e n z c i n e g o p o r t n a y ³ a i r e t a m y t k a f e t r a artefacts likeartefacts;additionaldistinctionismadebetweennormalartefactsandreactiveartefacts s e t s a w g n i n i m , s g n i l i a t , g n i n r u b l a o c d n a g n i t l e m s l a t e m m o r f g a l s d n a h s a , e m i l n o i t c u r t s n o c ( y r t s u d n i l a c i m e h c , s e t s a w y r t s i m e h c o r t e p , m u s p y g o h p s o h p , r u f l u s e v i t a n d n a s e d i f l u s g n i n i a t n o c ) . c t e s e n o b , s e t s a w ³ a i r e t a m i k o b ê ³ g y n a p y s a n p a e h k c i h t l a i r e t a m l a t e l e k s n i a t n o c y a m ( l a i r e t a m n e h t r a e , e s o o l ; r e i f i l a u q c i t r o p s n a r t o t r a l i m i s t u b , t n e l a v i u q e o n f o % 0 2 < g n i v a h , ) n o i t c a r f artefacts(or<10%ofreactiveartefacts),forminganintentionally r e y a l d e t c u r t s n o c ≥50cmthick(eitheranabove-groundheaporbelow-groundinfilling);the g n i y l r e d n u o t y r a d n u o b t c n i t s i d r o p r a h s : d e r i u q e r s i g n i p a e h l a n o i t n e t n i f o n o i s s e r p x e g n i w o l l o f s m r o f r o , ) e l b b u r n o i t c u r t s n o c r o h s a . g . e ( s t c a f e t r a s n i a t n o c l a i r e t a m g n i y l r e d n u r o ,l a i r e t a m e v i t a n ) . c t e , t n e m k n a b m e ( d n u o m a ≥150cmhigh ) s l a i r e t a m l a r e n i m r e h t o ( e n l a r e n i m y ³ a i r e t a m e n n i ³ a i r e t a m y n l a i w u l e d l a i v u l l o c l a i r e t a m t e e h s ( h s a w e p o l s f o e s r u o c n i d e t a l u m u c c a s t n e m i d e s o t d e t i m i l t u b ,l a i r e t a m c i v u l l o c e k i l l a i v u l f , n a i l o e n a s a l l e w s a ( d e d u l c x e e r a s t n e m e v o m s s a m r e h t o d n a s e d i l s d n a l s a e r e h w , ) n o i s o r e e r a n o i t a l u m u c c a d n a h s a w e p o l s f o s e c n e d i v e g n i w o l l o f e h t ) a ( ; ) n o i t a l u m u c c a c i n e g o p o r h t n a d n a c i n a g r o d e i r u b r o , ) . c t e t e l t u o e n i v a r , p a r t n o i t a l u m u c c a , e p o l s t o o f ( n o i t a c o l e l b a r u o v a f : d e r i u q e r r o , r e y a l s u m u h r o lithogenicdiscontinuityinthecontactwithnativesoil;and(b)oneormoreof t a ( t n e t n o c n o b r a c c i n a g r o n i s e g n a h c l a c i t r e v r a l u g e r r i : d e r i u q e r s i g n i w o l l o f e h t ≥0.2%organic ( n o b r a c c i n a g r o f o t n e t n o c s u o e n e g o m o h r o , ) s r e y a l e h t f o e n o t s a e l t a n i n o b r a c ≥0.2%) r o n o i t a c i f i t a r t s r o , n o z i r o h s u m u h r o c i n a g r o d e i r u b s e i l r e v o t a h t r e y a l e h t t u o h g u o r h t t n e s e r p e r a s e r u t c u r t s n o i t a t n e m i d e s y n l a i w u l f ³ a i r e t a m fluvicmateriallikefluvicmaterial ³ a i r e t a m y w o t e l e i k z s o b u r g c i t e l e k s -e s r a o c l a i r e t a m % 5 3 > s a h d n a ) r e t e m a i d n i m m 2 > ( s t n e m g a r f l a t e l e k s f o ) .l o v ( % 0 6 > s n i a t n o c ; t n e l a v i u q e o n s t n e m g a r f k c o r r e s r a o c r o s e n o t s f o ) .l o v ( ³ a i r e t a m y w o k z c r a i s c i d i f l u s l a i r e t a m c i n a g r o n i e h t d n a , d e r i u q e r s i g n i g g o l r e t a w t n e n a m r e p r o l a n o s a e s t u b ,l a i r e t a m c i d i f l u s r e p y h e k i l r u f l u s l a t o t o t n o b r a c c i n a g r o f o o i t a r a h t i w d e c a l p e r s i t n e t n o c r u f l u s c i d i f l u s ≥ 02 Table 3 continued

(6)

gnition of kambik horizon and enables a transitio-nal form of kambik with more prominent clay illuvia-tion (Bwt horizon),

– the albik and eluwik horizons are distinguished instead of albic materials (WRB2015) to reflect pedogenic depletion of Fe/Al/humus and clay fraction in these horizons, respectively,

– the murszik horizon is (traditionally in Poland) separately distinguished from histik to reflect pedogenic transformation after drainage, including the development of pedogenic structure in organic horizons (Marcinek and Spychalski 1998; Piaœcik and Gotkiewicz 2004; Piaœcik and £achacz 1990; Rz¹sa 1963),

– the arenimurszik horizon is a kind of mineral, sand-textured mollik or umbrik horizons, separately distinguished to reflect very weak binding of organic matter particles to mineral (sand) grains in topsoil layers developed mostly by advanced degradation of murszik horizons (£abaz and Kabala 2016),

– rubik horizon is a kind of subsurface horizon of Fe (and Mn) accumulation at the contact of vario-us kinds of ground waters, featured by red colours (Jankowski 2013),

– siderik is considered the sandy equivalent for the

kambik horizon; it may be easily correlated with

a Brunic qualifier in WRB2015 (Bednarek 1991). Many diagnostic properties distinguished in SGP6 (table 2) have the same or very similar definitions to their equivalents in WRB2015, in particular stagnic and gleyic properties. A number of properties in SGP6 have in WRB2015 close equivalents in diagnostic materials (e.g. lita ska³a/continuous rock, lita

warstwa technogeniczna/technic hard material),

or in diagnostic horizons (e.g. ruda darniowa/ferric (Czerwiñski and Kaczorek 1996), fragipan/fragic (Szymañski et al. 2011), zasolenie/salic,

zakwasze-nie siarczanowe/thionic (Hulisz 2007, Hulisz et al.

2017)), or in qualifiers (lamellic, ortsteinic, placic). SGP6 provides unique definitions for geomembrane and deep mixing (in situ), both applied to classify the techno-genic soils (table 2). Also, numerous specific diagnostic materials, besides the materials similar to those present in WRB2015 (table 4), are distingu-ished in SGP6:

– the terms fibrik, hemik and saprik are applied to peats only as for primary organic materials, – gyttja (£achacz et al. 2009), lacustrine and

telmatic organic muds (Kalisz and £achacz 2008;

Mendyk et al. 2015, Okruszko 1969, Roj-Rojew-ski and Walasek 2013), and meadow limestone/marl (Jarnuszewski and Meller 2018) are distinguished among limnic matterials,

– thick heap material (g³êboki materia³ nasypany) is a soil layer ≥50 cm thick, poor in artefacts, intentionally displaced/transported to create the convex relief form (e.g. dam, road/railway embank-ment etc.), or to fulfil the concave form, or to level the ground surface (Charzyñski et al. 2013b), – artefacts have been distinguished into "normal"

(for example concrete and stones) and "reactive" (e.g. ash, slag, tailings), to reflect their different reactivity and toxicity in soil environments (Charzyñski et al. 2013a, Uzarowicz et al. 2017), – coarse skeletic material reflects the specific composition of many mountain soils, influenced by weathering, denudation and slope processes (Drew-nik 2008, Kacprzak et al. 2006, 2013; Skiba and Komornicki 1983),

– colluvial material (materia³ deluwialny) has a definition related to the results of surface wash (sheet erosion) accelerated mainly by humans (due to removal of native vegetation and ploughing) and not to the landslides, creep and other slope mass movement/wasting (Œwitoniak 2014, 2015).

CLASSIFICATION SCHEME

The SGP6 is a scientific system of soil units' allocation, hierarchical at the higher level of classifi-cation, and non-hierarchical (optional) at a lower level. There are three hierarchical categories in SGP6: soil order, soil type and soil subtype, supplemented by three non-hierarchical categories: soil variety, soil genus and soil species. Hierarchical units have a strict affiliation (allocation) to higher-order units and indi-vidual (unique) definitions, i.e. sets of requirements/ criteria. Non-hierarchical units, on the other hand, are in the majority not assigned to particular higher-order units, but due to their universal definitions, they can be added to any order, type or subtype, if all the criteria listed in their definitions are met. Soil subtypes have an intermediate position, because on one hand they are listed in a hierarchical sequence, exclusive for each soil type, but many subtypes have universal definitions, identical through the classification (that make them similar to the principal qualifiers in WRB 2015, which also are hierarchically listed within each Reference Soil Group, but have universal definitions/ criteria).

Soil type is the basic classification unit of SGP6. It is distinguished based on a specific sequence of genetic horizons, developed from a specific parent material and under specific environmental conditions. Thus, the soil type is featured not only by the presence of certain genetic or diagnostic horizons, but also the presence of associated properties or materials of

(7)

primary importance for the soil origin and the uniqu-eness of its physicochemical and biological properties. For distinguishing soil types, the traditions of Polish pedology have high importance.

The highest classification category is the soil order. It is distinguished based on the presence (or absence) of diagnostic horizons that reflect the action of particular soil-forming processes that transform the original parent material under specific environmental conditions, with a smaller or larger human contribution; taking into account the time perspective, i.e. the duration of pedogenic processes from the exposure, deposition or redeposition of the parent material. Soil orders are sets of soil types (basic classification units) and are distinguished mainly for systematic ordering of soil units and higher clarity of classification, as well as for a comprehensive review of the impact of main soil-forming factors and processes on the soil cover structure in Poland. Technically, the soil orders support rapid allocation of soils under classification to appropriate classification units. The limited number of nine orders makes it easy to remember the structure of classification and to understand the fundamental differences between the major classi-fication units. First of all, however, the soil orders, as a collective and the highest classification categories, indicate the priorities of classification system, particularly useful where more than one diagnostic

horizon or various diagnostic properties and materials are simultaneously present in the soil profile. The Polish Soil Classification (SGP6) distinguishes 30 soil types grouped in nine orders (fig., tables 4–5). The sequence of soil orders is retained after earlier versions of Polish Soil Classfications, i.e. starts with weakly developed soils, followed by better developed mineral soils with diagnostic horizons, then hydro-morphic soils, organic soils, and antrhropogenic soils as the last order (table 6). This sequence reflects the advancement of (mineral) soil development and is regarded the formal construction of SGP6.However, the arrangement of soil orders in the key (table 4) is different, that was technically necessary to highlight the priotrities of diagnostic features and to simplify the classification process.

The soil subtype is distinguished to emphasize the diversity of morphological or physicochemical features within the soil type, having high importance for the interpretation of the soil origin and its expected future evolution, as well as to stress the specific envi-ronmental soil functions. Among the subtypes, the following categories are distinguished:

1. "typical" subtypes – represent the most characte-ristic for the type expression of soil features, including the sequence of genetic horizons or com-binations of diagnostic horizons and properties; in the list of subtypes they are logically always placed as last;

(8)

TABLE 4. Key to soil orders and soil types S R E D R O L I O S SOILTYPES g n i v a h s l i o S organicmaterial, : r e h t i e g n i t r a t s . 1 ≥30cmfromthesoilsurfaceand n i h t i w g n i v a h ≥60cmfromthesoilsurface f o s s e n k c i h t d e n i b m o c ≥30cm;or a g n i v a h d n a e c a f r u s l i o s e h t t a g n i t r a t s . 2 f o s s e n k c i h t ≥10cm,directlyoverlying k c o r s u o n i t n o c orcoarsefragmentsthe l a i r e t a m c i n a g r o h t i w d e l l i f e r a h c i w f o s e c i t s r e t n i f o h t p e d e h t o t ≥30cmfromthesoilsurface E N Z C I N A G R O Y B E L G g n i v a h s l i o s c i n a g r O murszikhorizon ≥30cmthick e w o z s r u m y b e l G , h c i h w s l i o s c i n a g r o r e h t O belowmurszikhorizon<30cmthick(ifpresent),have t a e p thatconstitute>50%oforganicmaterialwithin≥100cmor>50%ofall a i r e t a m c i n a g r o lifitdoesnotreachthedepthof100cm e w o f r o t y b e l G g n i v a h s l i o s c i n a g r o r e h t O limnicmaterial e w o n m i l y b e l G s l i o s c i n a g r o r e h t O e w o k ³ ó i c œ y b e l G : s l i o s r e h t O n a g n i v a h . 1 antrikorhortikhorizon≥50cm r o ; k c i h t g n i v a h . 2 technogenichardlayeror e n a r b m e m o e g ofanythicknessonthesoil n i h t i w g n i t r a t s r o e c a f r u s ≥100cmofsoil r o ; e c a f r u s . 3 deeplymixedorhavingthethickheap l a i r e t a m ,orhavingacombinationofthesetwo h t p e d e h t g n i h c a e r s e r u t a e f ≥50cm r o f s s e n k c i t e h t l l i f t u f t o n o d y e h t y l l a u d i v i d n i f i ( g n i x i m p e e d orthickheapmaterial; : g n i v a h . 4 ) A ( ≥20%(vo.l,weigh.average)ofartefactsin o t r o ( r e y a l l i o s m c 0 0 1 r e p p u e h t continuous r e y a l d r a h c i n e g o n h c e t / k c o r ifshallower),or ) B ( ≥10%(vo.l,weigh.average)ofreactive s t c a f e t r a intheupper100cmsoillayer(orto r e y a l d r a h c i n e g o n h c e t / k c o r s u o u n i t n o c if ) r e w o l l a h s E N Z C I N E G O P O R T N A Y B E L G : h t o b t e e m t a h t s l i o S n a e v a h ) a ( antrikorhortikhorizon≤50cmthick,orfulfillthecriteriafordeep g n i x i m causedbyagricultura,lhorticulturalorforestmanagementandcontain<20% f o ) e g a r e v a . h g i e w , .l o v artefactstothedepthof100cmfromthesoilsurface,and e v a h t o n o d ) b ( geomembraneortechnogenichardlayerstarting≥100cmfromthe e c a f r u s l i o s e n m e i z o r u t l u k y b e l G s l i o s r e h t O n z c i n e g o n h c e t y b e l G e a ) a ( h t o b g n i v a h s l i o s r e h t O wertikhorizon g n i t r a t s ≥100cmfromthesoilsurface,and ) b ( ≥30%clayinallsoillayersfromthesoil e h t o t e c a f r u s wertikhorizon E C ¥ J E I N Z C E P Y B E L G r e d r o l i o s e h t r o f a i r e t i r c e h t t a h t s l i o s l l A e l o s i t r e W a g n i v a h s l i o s r e h t O mollik,umbrikor k i z s r u m i n e r a horizon(≥30cmthick) E N M E I Z O N R A Z C Y B E L G n a g n i v a h s l i o S arenimurszikhorizon e t a w o z s r u m y b e l G g n i v a h d n a s e c a r r e t l a i v u l l a e n e c o l o H e h t n o d e t a c o l s l i o s r e h t O fluvicmaterialstarting ≥150cmfromthesoilsurface e n m e i z o n r a z c y d a M g n i v a h s l i o s r e h t O mollikhorizon,and:(a)haveacontinuous/weatheredcalcareousor g n i t r a t s k c o r m u s p y g ≥40cm,or r e y a l a e v a h , n o z i r o h s u m u h e h t w o l e b y l t c e r i d ) b ( ≥30cmthick(ordownto f i , k c o r s u o u n i t n o c shallower),whichcontainscarbonates(orgypsum)inthefine d n a s h t r a e ≥10%(weigh.average)ofcalcareous/gypsumrockfragmentsinthe . e .i ( n o i t c a r f n o t e l e k s ≥2mmindiameter),or r e y a l a e v a h n o z i r o h s u m u h e h t w o l e b y l t c e r i d ) c ( ≥30cmthickoflimnicmaterial g n i n i a t n o c ≥40%CaCO3 e n m e i z o n r a z c y n i z d ê R f o r e y a l e c a f r u s e h t g n i v a h s l i o s r e h t O colluvialmaterial≥50cmthick,or≥30cm e h t s e i l r e v o l a i r e t a m l a i v u l l o c e h t f i , k c i h t organicmaterial n m e i z o n r a z c e n l a i w u l e d y b e l G e H p d n a n o z i r o h k i l l o m a g n i v a h s l i o s r e h t O w≥5.5prevailingtoadepthof100cm : g n i w o l l o f e h t f o h t o b r o e n o g n i v a h d n a , e c a f r u s l i o s e h t m o r f ) a ( gleyicproperties,or ) b ( stagnicpropertiescovering>80%ofthesoillayercross-sectionandhaving f o s s e n k c i h t ≥25cm,bothstarting 80cmfromthesoilsurface(ordirectlybelowthe ) k c i h t m c 0 8 > f i , n o z i r o h s u m u h e i m e i z e n r a z C

(9)

Table 4 continued S R E D R O L I O S SOILTYPES ) a ( g n i v a h s l i o s r e h t O mollikhorizon,and(b)kalcikhorizonor thelayercontaining g n i t r a t s h t o b s e t a n o b r a c ) c i n e g o d e p ( y r a d n o c e s ≥150cmfromthesoilsurface y m e i z o n r a z C a g n i v a h s l i o s r e h t O mollikorumbrikhorizon e r a z s y b e l G n a g n i v a h s l i o s r e h t O argikhorizonstarting≤100 e c a f r u s l i o s e h t m o r f E N M E I Z O W O £ P Y B E L G r e d r o l i o s e h t r o f a i r e t i r c e h t t e e m t a h t s l i o s l l A e w o ³ p y b e l G a g n i v a h s l i o s r e h t O spodikhorizonstarting ≤100cmfromthesoilsurface,orstarting≤ 57 f i e c a f r u s l i o s e h t m o r f m c coarse-skeletic l a i r e t a m ispresentandstartsfromthesoil e c a f r u s E N M E I Z O C I L E I B Y B E L G r e d r o l i o s e h t r o f a i r e t i r c e h t t e e m t a h t s l i o s l l A w o c i l e i b y b e l G e : r e h t i e , g n i v a h s l i o s r e h t O . 1 gleyicpropertiesstarting≤30cmfromthe r o ; e c a f r u s l i o s g n i r e v o c s e i t r e p o r p c i n g a t s . 2 ≥50%ofthesoil s t r a t s t a h t r e y a l ≤25cmfromthesoilsurfaceand h t i w r e y a l y b n i a l r e d n u y l t c e r i d s i gleyic s e i t r e p o r p ,or . 3 stagnicpropertiescovering≥50%ofthesoil m o r f g n i t r a t s ) n o z i r o h b u s y r e v e n i ( r e y a l ≤25cm s s e n k c i h t g n i v a h d n a ≥50cmor≤25cm,if y b n i a l r e d n u y l t c e r i d continuousrockor r e y a l l i o s ) e l b a e m r e p y l d r a h ( e l b a e m r e p m i E N M E I Z O J E L G Y B E L G h t i w s l i o S gleyicpropertiesstarting ≥30cmfromthesoilsurface w o j e l g -o w o t n u r g y b e l G e s l i o s r e h t O w o j e l g -o w o d a p o y b e l G e a g n i v a h s l i o s r e h t O kambik,siderikorrubik n o z i r o h ,orsoilshavingaBhorizonthatmeets , e r u t x e t f o t p e c x e , n o z i r o h k i b m a k r o f a i r e t i r c e h t n o z i r o h e h t f o t r a p a n i y d n a s e b y a m h c i h w E N M E I Z O N T A N U R B Y B E L G a g n i v a h s l i o S rubikhorizon e w o r h c o y b e l G s e r o h s e k a l / a e s n i a l p r o , s r e d l o p , s e c a r r e t l a i v u l l a e n e c o l o H e h t n o d e t a c o l s l i o s r e h t O g n i v a h fluvicmaterialstarting≤150cmfromthesoilsurface e n t a n u r b y d a M : h c i h w , s l i o s r e h t O g n i t r a t s k c o r m u s p y g r o s u o e r a c l a c d e r e h t a e w / s u o u n i t n o c a e v a h ) a ( ≤40cmfromthe r o , e c a f r u s l i o s o t n w o d r o ( m c 0 6 o t n w o d m c 0 3 m o r f r e y a l e h t n i ) b ( continuousrock,if d n a s h t r a e e n i f e h t n i ) m u s p y g r o ( s e t a n o b r a c s n i a t n o c ) r e w o l l a h s ≥10%(weigh. . e .i ( n o i t c a r f n o t e l e k s e h t n i s t n e m g a r f k c o r m u s p y g / s u o e r a c l a c f o ) e g a r e v a ≥2mmin ) r e t e m a i d e n t a n u r b y n i z d ê R a g n i v a h s l i o s r e h t O kambikhorizon n t a n u r b y b e l G e s l i o s r e h t O e w a z d r y b e l G Othersoils E N A W O T £ A T Z S K U O B A £ S Y B E L G : g n i v a h s l i o S e h t o t s r e y a l l a r e n i m d n a c i n a g r o l l a f o s s e n k c i h t d e n i b m o c ) a ( continuousrock≤ 01 r o , m c ,l a i r e t a m e s o o l a n i ) t n e s e r p f i ( s n o z i r o h C B + B + E + A + O f o s s e n k c i h t d e n i b m o c ) b ( g n i d u l c n i coarse-skeleticmaterial, ≤10cm e n l a j c i n i y b e l G s e r o h s e k a l / a e s n i a l p r o , s r e d l o p , s e c a r r e t l a i v u l l a e n e c o l o H e h t n o d e t a c o l s l i o s r e h t O g n i v a h fluvicmaterialstarting≤50cmfromthesoilsurface e w i c œ a ³ w y d a M

(10)

2. "concurrent" subtypes – substitute the "typical" subtype in soil types, if at least two subtypes have the features equally typical for the soil type (e.g.

fibric, hemic and sapric subtypes in peat soils, or ordinary, leached and acid subtypes in brown soils);

they are listed at the beginning of the list of subtypes; 3. "principal" subtypes – refer to additional features of primary importance for the interpre-tation of soil genesis, land use or environmental functions of the soil; their names are used instead of (replace) the name of soil type, also in combina-tions with other subtypes; however, the priority subtype does not combine with any other priority subtype; unique names of the priority subtypes aims to preserve the traditional soil nomenclature, i.e. soil names that have become established in Polish pedology, and to simplify (shorten) the soil names; the primary subtypes are marked with the symbol * (asterisk) in the hierarchical lists;

4. "transitional" subtypes – refer to the presence of the horizons and properties that are diagnostic for other soil types, but in a given soil type are consi-dered less important (e.g. the kambik horizon in a

chernozemic soil) or are weakly developed (e.g.

have Fe-illuvial horizon that does not meet the criteria for spodik), or occur too deep (e.g. strong gleyic

properties at a depth of 50–70 cm);

5. "supplementary" subtypes – indicate a special expression of pedogenic features or the presence of specific soil properties or materials.

A new, non-hierarchical classification category is the soil variety. Its concept is derived from the Classi-fication of Forest Soils of Poland (Klasyfikacja gleb leœnych Polski 2000) and is close to the concept of supplementary qualifiers of WRB 2015. Soil variety is optionally added to indicate (a) lithogenic or pedo-genic (secondary) features accompanying the main soil-forming process, (b) particularly strong, or adversely, relatively poor expression of features potentially important for soil classification, (c) restric-tions for soil use, including anthropogenic transfor-mation, salinity and soil pollution, (d) soil trophic potential for forest habitats (Bro¿ek et al. 2000), etc. Soil varieties have the same (universal) definitions thro-ughout the classification that allows an identification of a given soil feature regardless of the soil order or type. Moreover, the third and subsequent subtypes, if their diagnostic features were identified in the soil under classification, may be listed as soil variety (taking into account that only two subtypes may be applied in this rank). Also, the subtype not included in the hierarchi-cal list of subtypes within the particular soil type of SGP6 may be indicated as an additional soil variety, if its diagnostic features were identified in a soil profile under consideration (table 6).

The non-hierarchical category of soil genus determines the kind of parent material from which the soil was developed, taking into account its variability (lithological discontinuity) within the profile. And the last, non-hierarchical category of soil species

deter-Table 4 continued : h c i h w ,l i o s r e h t O g n i t r a t s k c o r m u s p y g r o s u o e r a c l a c d e r e h t a e w / s u o u n i t n o c a e v a h ) a ( ≥30cmfromthesoil r o , e c a f r u s o t n w o d r o ( m c 0 6 o t n w o d m c 0 3 m o r f r e y a l e h t n i ) b ( continuousrock,ifshallower)contains d n a s h t r a e e n i f e h t n i ) m u s p y g r o ( s e t a n o b r a c ≥10%(weigh.average)ofcalcareous/gypsumrock . e .i ( n o i t c a r f n o t e l e k s e h t n i s t n e m g a r f ≥2mmindiameter),or r e y a l a e v a h ) c ( ≥30cmthick,starting≥30cmfromthesoilsurface,ofdrainedlimnicmaterial O C a C % 0 4 > g n i n i a t n o c 3 e w i c œ a ³ w y n i z d ê R a g n i v a h s l i o s r e h t O continuousrockstarting≥50cmfromthesoilsurface y r e k n a R l a i r e t a m l a i v u l l o c f o r e y a l e c a f r u s e h t g n i v a h s l i o s r e h t O ≥50cmthick,or≥30cmthickifcolluvial l a i r e t a m c i n a g r o e h t s e i l r e v o l a i r e t a m e w i c œ a ³ w e n l a i w u l e d y b e l G : g n i v a h s l i o s r e h t O h t p e d a o t ) s e s s a l c d n a s y m a o l r o d n a s ( e r u t x e t y d n a s a ) a ( ≥100cmfromthesoilsurfaceand d n a , ) l a t o t n i ( k c i h t m c 0 1 < e r u t x e t r e n i f f o s r e y a l e h t f o h t p e d a o t , t n e m e v a p e n i a r o m / l a i c a l g i r e p d e i r u b e h t g n i d u l c x e , s t n e m g a r f l a t e l e k s f o % 0 4 < ) b ( d n a , e c a f r u s l i o s e h t m o r f m c 0 0 1 g n i n i a t n o c ) s ( r e y a l ) c ( ≥2%CaCO3hasa(total)thickness<10cmtoadepthof50cmor<30 e c a f r u s l i o s e h t m o r f m c 0 0 1 f o h t p e d a o t m c e l o s o n e r A s l i o s r e h t O e l o s o g e R

(11)

mines the soil texture (particle-size distribution) throughout the soil profile, also taking into account possible variability (that may be both of pedogenic or lithogenic origin). The names of texture classes in SGP6 are used after the Soil Texture Classification of Soil Science Society of Poland (2009).

BRIEF DESCRIPTION AND CORRELATION

OF MAJOR SOIL UNITS

The correlation table (table 5) includes the closest English translations for the Polish names of soil orders, types and subtypes (SGP6), as well as their most common and typical equivalents in WRB2015 and ST2014 classifications. The correlation table was developed taking into account previous statements of Kaba³a et al. (2016) and Œwitoniak et al. (2016).

The first order, weakly developed soils (gleby

s³abo ukszta³towane), brings together soils (a) at the

early (initial) stage of development, where the thick-ness of soil profile (regolith) to the continuous rock is ≥10 cm or the combined thickness of all genetic horizons (O+A+E+B, if present) in an unconsolidated material is ≥10 cm, and (b) soils at early stage of development, thicker than initial (raw) soils, but without any diagnostic horizon except for folik. WRB2015 allocates such soils among different RSGs characterized by little or no profile differentiation. The first type of raw mineral soils (table 5) consists of six subtypes of raw siliceous rocky and raw rendzina

rocky soils correlated with (Calcaric) Lithic

Lepto-sols, raw siliceous debris and raw rendzina debris

soils correlated with (Calcaric) Hyperskeletic

Lepto-sols (Lasota et al. 2018), raw alluvial soils (Fluvi-sols) and raw unconsolidated soils (Protic Rego(Fluvi-sols). The other five soil types include weakly developed soils, but thicker than raw (initial) soils. Rankers, siliceous soils with continuous rock at ≥50 cm belong to Leptosols; however, they may have a sequence of clearly developed (but not diagnostic) horizons.

Ordinary rendzinas are in the majority shallow and

skeletal soils rich in primary (lithogenic) carbonates (Calcaric Leptosols), but may have a folik horizon (Miechówka and Drewnik 2018). Ordinary rendzinas do not have diagnostic horizons in terms of SGP6; whereas they may have mollic in line with WRB2015 requirements (if A is ≥20 cm thick). In this case, the

humic ordinary rendzinas are correlated with

Calcaric Leptic Phaeozems (Kaba³a 2018, Kowalska et al. 2019). The type of ordinary alluvial soils involves young soils on Holocene terraces, developed from fluvic material, lacking diagnostic horizons (Fluvisols). Ordinary colluvial soils are featured by evidence of successive accumulation of soil material

(thicker than 50 cm, or 30 cm if settled directly on peat) eroded from the above-located arable hill-slopes (Colluvic Regosols or Colluvic Arenosols). Arenosols in SGP6 are weakly developed sandy soils correlated with Arenosols in WRB2015, but the soil type in SGP6 is much "narrower" than its equivalent in WRB and does not include the initially developed and colluvial arenosols. Also, the Brunic Arenosols (WRB 2015), termed rusty soils in Poland, are moved from

areno-sols to rusty soils due to a thick subsurface Bv

horizon, considered a diagnostic horizon (siderik) in SGP6. And the last soil type, regosols, may be easily correlated with Regosols in WRB2015.

The 2nd order, brown earths (gleby

brunatnoziem-ne), brings together soils that have kambik, rubik or siderik diagnostic horizons (comments regarding

these horizons are summarized in table 1). Therefore, particular types of brown earths of SGP6 can be correlated with different RSGs of WRB2015. Brown

soils (a type) typically refer to Eutric and Dystric

Cambisols; brown rendzinas are correlated with Calcaric/Dolomitic Cambisols (Kowalska et al. 2017, Zagórski 2003) and brown alluvial soils are correlated with Fluvic Cambisols (Ligêza 2016). The main reason to separate the brown rendzinas and brown alluvial soils from "ordinary" brown soils is the different parent material, different landscape position and different ecosystem/habitat functions of these soils. The other two soil types, ochrous and rusty

soils are primarily sandy soils (developed from

glaciofluvial, eolian and older alluvial sands), thus belonging to Arenosols in WRB2015. However, they have well-developed rubik or siderik subsurface diagnostic horizons, not recognized in WRB 2015, but easily correlated with Rubic/Chromic or Brunic qualifiers, respectively (Jankowski 2013).

The 3rd order, podzolic soils (gleby bielicoziemne),

covers the soils with a spodik horizon, merged in one soil type – gleby bielicowe, closely related to Podzols of WRB2015. The soil type includes several subtypes related in the majority to redoximorphic features and various organic horizons developed at the soil surface (Chodorowski 2009, Kaba³a et al. 2012, Waroszew-ski et al. 2013). In Polish tradition, podzolic soils having and lacking topsoil A horizon are distinguished into separate units, a fact which also influences the number of subtypes and their combinations in SGP6. Moreover, only the podzols with clearly preserved eluvial horizon (albik) are considered the "typical", whereas podzolic soils laking albik are classified as

latent podzolic soils ("krypto-podzols"). The

place-ment of podzolic soils after, not before, the chernozemic

soils in the key to soil orders excludes the soils with mollik/umbrik horizons from podzolic soils in SGP6.

(12)

CEZAR Y KABA£A et al. e p y t l i o S Soilsubtype e m a n l a n i g i r O h s i l g n E n o i t a l s n a r t n i s t n e l a v i u q E ; 5 1 0 2 B R W 4 1 0 2 T S e m a n h s i l o P l a n i g i r O Englishtranslation WRB2015;equivalent ST2014equivalent e n a w o t ³ a t z s k u o b a ³ s y b e l G 1 r e d r O Eng.:weaklydevelopedsoilsWRB2015:Leptosols,Regosols,Arenosols,Fluvisols–ST2014:Entisols e n l a j c i n i y b e l G l a r e n i m w a R s l i o s , s l o s o t p e L , s l o s o g e R ; s l o s o n e r A , s t n e h t r O s t n e v u l F * e l o s o t i l 1 rawsiliceousrockysoils ) s l o s o h t i l ( s l o s o t p e L c i h t i l i d u N / c i h t i L LithicUdorthents2 e t s i l a k s e n l a j c i n i y n i z d ê r rawrockyrendzinas CalcaricLithicLeptosols LithicUdorthents e w o z s o m u r e n l a j c i n i y n i z d ê r rawdebrisrendzinas CalcaricHyperskeleticLeptosols TypicUdorthents e n l a j c i n i y d a m rawalluvialsoils GleyicFluvisols(Protic) Typic/AquicUdifluvents e w o z s o m u r e n l a j c i n i y b e l g rawsiliceousdebrissoils HyperskeleticLeptosols TypicUdorthents e n Ÿ u l e n l a j c i n i y b e l g rawunconsolidatedsoils ProticArenosols;ProticRegosols TypicUdipsamments;TypicUdorthents y r e k n a R s r e k n a R ; s l o s o t p e L , s t n e h t r O s t p e d U e w o p y t typicalrankers Dystric/EutricSkeleticLeptosols(Ochric) LithicUdorthents e n z c i n h c ó r p humicrankers Dystric/EutricSkeleticLeptosols(Humic) HumicLithicDystrudepts e ³ a i n t a n u r b z brownrankers Dystric/EutricLeptosols LithicUdorthents e n a w o c i l e i b z podzolicrankers DystricLeptosols(Albic/Protospodic) LithicUdorthents e w o n i w t u b raw-humusrankers DystricFolicLeptosols HumicDystrudepts y n i z d ê R e w i c œ a ³ w y r a n i d r O s a n i z d n e r c i r a c l a C ; s l o s o t p e L , s t n e h t r O s t p e d u r t u E e w o p y t typicalordinaryrendzinas Calcaric/DolomiticLeptosols(Ochric) Typic/LithicUdorthents * e w i c œ a ³ w y n i z d ê r a r a p ordinarypararendzinas SkeleticCalcisols;CalcaricRegosols TypicUdorthents,TypicEutrudepts e w o z s o m u r debrisordinaryrendzinas CalcaricHyperskeleticLeptosols TypicUdorthents e n r o i z e j o p limnicordinaryrendzinas CalcaricFluvisols Typic/MollicFluvaquents e n z c i n h c ó r p humicordinaryrendzinas Calcaric/DolomiticLeptosols(Humic); s m e z o e a h P c i t p e L c i r a c l a C s l l o d n e r l p a H c i t n E / c i p y T e w o n i w t u b raw-humusordinaryrendzinas CalcaricFolicLeptosols HumicLithicEutrudepts y d a M e w i c œ a ³ w y r a n i d r O s l i o s l a i v u l l a ; s l o s i v u l F s t n e v u l F e w o p y t typicalordinaryalluvialsoils Dystric/EutricFluvisols(Ochric) TypicUdifluvents e n z c i n h c ó r p humicordinaryalluvialsoils Dystric/EutricFluvisols(Humic); s m e z o e a h P c i v u l F s t n e v u l f i d U c i l l o M e w o j e l g -o w o t n u r g gleyicoridnaryalluvialsoils GleyicFluvisols AquicUdifluvents e w o j e l g -o w o d a p o stagnogleyicordinaryalluvial s l i o s s l o s i v u l F c i n g a t S OxyaquicUdifluvents

1 Asterisk * indicates a principal soil subtype (its name replaces the soil type name, when used; principal subtype cannot be combined with any other principal subtype).

2 Some raw mineral soils, rankers and rendzinas located in the highest parts of the Carpatian and Sudeten Mountains may have cryic soil temperature regime, thus may belong to the repective subgroups of Cryorthents, Dystrocryepts and Haplocryepts.

(13)

83

Polish Soil Classification, 6

th

edition – principles, classification scheme and correlations

y b e l G e n l a i w u l e d e w i c œ a ³ w y r a n i d r O l a i v u l l o C s l i o s c i v u l l o C s l o s o g e R , s l o s o n e r A ; ) c i v u l l o C ( s t n e h t r O -i z t r a u Q psammemts e w o p y t typicalordinarycolluvialsoil ColluvicRegosols(Ochric);Arenosols , c i v u l l o C ( s l o s o n e r A c i r t u E / t c a r t s i D ) c i r h c O c i p y T ; s t n e h t r o d U c i p y T s t n e m m a s p i z t r a u Q e n z c i n h c ó r p humicordinarycolluvialsoils ColluvicRegosols(Humic);Arenosols s m e z o e a h P c i l p a H ; ) c i m u H , c i v u l l o C ( ) c i v u l l o C ( c i p y T ; s t n e h t r o d U c i p y T ; s t n e m m a s p i z t r a u Q e w o f r o t a n ordinarycolluvialsoilsonpeat NovicHistosols(Colluvic);Colluvic s l o s o n e r A c i r t u E / c i r t s y D r o ( s l o s o g e R s l o s o t s i H r e v o ) c i v u l l o C ( s t s i m e h o l p a H / s t s i r p a s o l p a H c i r r e T e w o j e l g -o w o t n u r g gleyicordinarycolluvialsoils ColluvicGleyicRegosols; ) c i v u l l o C ( s l o s o n e r A c i y e l G c i u q A ; s t n e h t r o d U c i u q A s t n e m m a s p i z t r a u Q e w o j e l g -o w o d a p o stagnogleyicordinarycolluvial s l i o s s l o s o g e R c i n g a t S c i v u l l o C OxyaquicUdorthents e l o s o n e r A s l o s o n e r A ; s l o s o n e r A -i z t r a u Q m m a s p ents e w o p y t typicalarenosols Dystric/EutricArenosols(Ochric) TypicQuartzipsamments e t a w o z s r u m semimurshicarenosols Dystric/EutricArenosols(Humic,Nechic) TypicQuartzipsamments e n z c i n h c ó r p humicarenosols Dystric/EutricArenosols(Humic) TypicQuartzipsamments e w a z d r rustyarenosols Dystric/EutricArenosols TypicQuartzipsamments e n a w o c i l e i b z podzolicarenosols AlbicArenosols(Protospodic) SpodicQuartzipsamments e w o j e l g -o w o t n u r g gleyicarenosols GleyicArenosols AquicQuartzipsamments e l o s o g e R s l o s o g e R ; s l o s o g e R s t n e h t r O e w o p y t typicalregosols Dystric/EutricRegosols(Ochric) TypicUdorthents e w o z s o m u r debrisregosols SkeleticRegosols TypicUdorthents e n z c i n h c ó r p humicregosols Dystric/EutricRegosols(Humic) TypicUdorthents e ³ a i n t a n u r b z brownregosols Dystric/EutricRegosols TypicUdorthents e n a w o c i l e i b z podzolicregosols DystricRegosols(Albic,Protospodic) TypicUdorthents e n m e i z o n t a n u r b y b e l G 2 r e d r O Eng.:brownearths–WRB2015:Cambisols,Arenosols–ST2014:Inceptisols e n t a n u r b y b e l G s l i o s n w o r B ; s l o s i b m a C s t n e h t r O e w i c œ a ³ w ordinarybrownsoils Eutric/EndocalcaricCambisols TypicEutrudepts e n a w o g u ³ y w leachedbrownsoils Eutric/EpidystricCambisols DystricEutrudepts e n a w o c i l e i b z podzolicbrownsoils DystricCambisols(Protospodic) SpodicDystrudepts e n œ a w k acidbrownsoils DystricCambisols TypicDystrudepts e n z c i n h c ó r p humicbrownsoils Eutric/DystricCambisols(Humic); s m e z o e a h P c i b m a C s t p e d u r t s y D / s t p e d u r t u E c i m u H e w o j e l g -o w o t n u r g gleyicbrownsoils GleyicCambisols AquicEutrudepts/Dystrudepts e w o j e l g -o w o d a p o stagnogleyicbrownsoils StagnicCambisols OxyaquicEutrudepts/Dystrudepts e w o z s o m u r debrisbrownsoils SkeleticCambisols TypicEutrudepts/Dystrudepts

Cytaty

Powiązane dokumenty

Badania prasowego wizerunku kobiet w okresie PRL nie są w polskim piśmiennictwie naukowym niczym nowym; tego rodzaju analizy przepro‑ wadzała między innymi Zofia Sokól

Photographies chosen from the exhibition after the contest presented in Galician Town (Są- decki Ethnograpic Park) in May-August 2008], Nowy Sącz: Muzeum Okręgowe w Nowym Sączu.

Zmianę masy próbki względem zmiany temperatury lub czasu: dm/dT lub dm/dt zapisuje układ rejestrujący, dzięki któ- remu otrzymuje się tzw..

W 1963 roku Pan Andrzej Kapitaniak uzyskał na Politechni- ce Łódzkiej stopień doktora nauk technicznych, a 10 lat później – w 1973 roku został powołany na stanowisko docenta

23 Poszczególne sprawozdania obu deputacji („Relacye”) w dalszych przypisach oznaczone są odpowiednio jako RK1 (Relacya z examinu Kommissyi Skarbu Koronnego za lat cztery od dnia

Tym samym Trybunał pozwolił, by wymóg ochrony tożsamości narodowej uczynił z dotychczas absolutnej zasady prymatu zasadę względną, która dopuszcza w pewnych

The Czech Parliament could, however, draw its inspiration from the Austrian Criminal Procedure Code where the cases of the cooperating witnesses can be resolved fully during

Optując za tezą, iż zasadami administracyjnego postępowania egzekucyj- nego sensu stricto są tylko te, które można wyinterpretować z norm ustawy o