• Nie Znaleziono Wyników

On Mean Square Error of Synthetic Regression Estimator

N/A
N/A
Protected

Academic year: 2021

Share "On Mean Square Error of Synthetic Regression Estimator"

Copied!
18
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FO LIA O E C O N O M IC A 175, 2004

T o m a s z Ż ą d ł o *

O N M E A N S Q U A R E E R R O R

O F S Y N T H E T IC R E G R E S S IO N E S T IM A T O R

Abstract. The problem o f estim ation o f the total value in a small dom ain is considered. Because o f the small num ber (or the lack) o f elements o f the considered su bpopulation in the sample, inform ation on all drawn elements is used. The synthetic regression estim ator is presented. T he equations o f the bias and the mean square error for any sam ple design are derived. The problem o f the assum ptions on the population and the d om ain ’s structure due to the bias and M SE reduction is considered. The im portance o f the bias influence on the accuracy o f the estim ation is presented. T he possibility o f the increase o f the M SE and bias due to the increase o f the sam ple size is shown. The approxim ate equations o f the bias and mean square error for the sim ple random sampling without replacem ent are derived. The accuracy o f the synthetic regression estim ator (based on approxim ate equations and the simulation study) and the H orw itz-Thom pson direct estimator is compared. T h e com parison is based on agricultural data from D ąbrow a Tarnowska region. The entire pop ulation consist o f 8624 farms and it includes the dom ain o f interest - Bolesław com m une - with 588 farms.

Key words: small area statistics, indirect estim ators, synthetic estim ators.

1. IN T R O D U C T IO N

S ynthetic estim ation is considered b o th in Polish (e.g. B r a c h a 1994), B r a c h a 1996, G e t k a - W i l c z y ń s k a 2000 an d in foreign lite ratu re (e.g. S ä r n d a l , S w e n s s o n , W r e t m a n 1992). In this p ap e r eq u atio n s o f the m ean sq uare e rro r and the bias o f the synthetic regression estim ato r are presented tak in g differences between the p o p u latio n and d o m a in ’s stru ctu re into consideration.

T h e term “sy n th etic” m eans, th a t the estim ato r uses in fo rm atio n bo th on surveyed sm all d o m ain and period o f tim e and also on o th er d o m ain s an d /o r perio ds o f tim e. T h e estim ato r considered in this p aper is d o m ain indirect estim ator. T he idea o f synthetic estim ation is based on the assum ption, th a t som e relatio n sh ip betw een the variable o f in terest and the auxiliary

(2)

variable observed in the en tire p o p u latio n is the sam e in sm all area. Because m o st often the assu m p tio n is no t m et, it m u st be stressed, th a t synthetic estim ato rs are biased.

2. M E A N S Q U A R E ERROR (M SE ) FOR ANY S A M P L IN G D E SIG N

C o n sid eratio n s are conducted for any sam pling design. It is assum ed, th a t the sam ple Sis d raw n from the entire p o p u latio n by sam ple design P ( S ) with first o rd e r inclusion probabilities w here i = l ,

...,

N . F o r any sam ple S with size n d raw n from the p o p u latio n ę w ith th e size N , Sd = s n í} ,,, w here th e d -th d o m a in is d en o ted by ęd. T h e size o f S d equals nd (ran d o m variable) and the size o f ęd equals N d. T h e set o f elem ents o f the p o p u la tio n , which belong to d-th d o m ain ęd, could be w ritten as f t d = Sdu J d, w here S d denotes elem ents o f th e J -th d o m ain , which were n o t d ra w n to the sam ple. E q u atio n s o f th e M S E and the bias for sim ple ra n d o m sam pling w ith out replacem ent will also be derived in this paper.

S ynthetic regression e stim ato r o f to tal value in sm all d o m ain , w hich is m ost often m o re precise th a n synthetic ratio estim ato r, is as follows:

fSYN-regr = N d [ f + J}( xd

- X)] = ^

Ý'*9'

+

N J ( x d ~ x )

(1)

w here

N d - sm all d o m ain size, N - p o p u la tio n size,

л J И

У = Y 1 - H o rw itz -T h o m p so n (H T ) estim ato r o f the m ean value " i e S n i

o f the variable o f in terest in the p o p u latio n , J x •

X = Y 1 - H T estim ato r o f the m ean value o f th e aux iliary variable N u s n i

in the p o p u latio n ,

x d - the m ean value o f th e auxiliary variable in d-th sm all d o m ain , x - the m ean value o f the auxiliary variable in the p o p u latio n ,

Д = — --- --- - - the estim ato r o f regression coefficient in the K x - f ) 2 '

ieS Щ

(3)

Ý re<>r = д г(У + ß ( 5 i _ X ) - regression estim ato r o f the to tal value in the p opulation .

Let the bias o f the regression estim ato r o f th e to tal value in the p o p u latio n be d en o ted by B regr = E (Ý re*r — У). T h e bias B regr fo r sim ple random sam ple w ithout replacem ent is as follows (e.g. W y w i a ł 1992, s. 137):

K . . . = E ( Y ) _ Z T ] { *2l ( x , y ) - + + 0 ( N n ~ 2) (2) where fc3( x ) =

, k2l(x,y)

=

c

2

i(x,y)

s/c2(x)[ct(x) - cj(x)]

ч / с 20 ' ) [ с 4( х ) - c i ( x ) ]

B2(x)

= c 4( x ) c j 2( x ) , С ц (х ,у ) K x .ľ ) = J c 2( x ) c 2(y) CM = i l ( x i - x )r> c r(y) = ~ £ (y, - у )r, c rt(x, y) = I £ (x i - * ) r(tt - У)*-ie (l iv ( е й л i6H

Let us derive the e q u a tio n o f synthetic regression estim ato r o f th e to tal value in sm all d o m ain fo r any sam ple design:

E ( y s ™ - r ..0 — Уd = ~ E (? " * ') + E0)Nj[xd- x ) - Y d- N^ Y + ~ jY =

w N N

= B '" " + E t f ) N J x t - x ) + ( ^ Y - y\ = (3 )

- f ' « ’•" + Е(Д) X - X ,) - ^ У -

Y.

If the m ean value o f the variable o f interest in th e p o p u la tio n equals the m ean value o f the variable o f interest in d-th sm all d o m ain and if the m ean value o f auxiliary variable in the p o p u latio n equals the m ean value

N o f auxiliary variable in d-th sm all d o m ain , then E( Y $rN~ reer) - Y d = — B rear. In this case the bias o f synthetic regression estim ato r o f to tal value in small d o m ain is the fu n ctio n o f the bias o f regression e stim a to r o f the to tal value in the p o p u la tio n and it is the less, th e less is th e value o f

(4)

ra tio o f d o m ain size and p o p u latio n size. It is w orth stressing, th a t for sim ple ran d o m sam ple it is o f o rd e r 0 ( N ■ n ~ 1), so it decreases due to the increase o f sam ple size.

T h e eq u a tio n (3) could also be w ritten as follows:

* [ (

B reer- ( E { J } ) - ß ) J x - Xn a N + ^ y - O - Ä - X ,

[(

L et us n o tic e , th a t th e value o f \ [ ^ Y — yA — ß i ^ X — X d dX - X . do es n o t d ep e n d on sam p le size. L et us c o n s id e r th e ex p ressio n

^ Breer — (Е(Д) — ß) — ß( ^j y X — - ^ У |- T h e ab solute value o f th e bias o f regression e stim a to r o f to ta l value in th e p o p u la tio n d en o ted by the expression B rear reduces d u e to the increase o f sam ple size. T h e sam e property has the bias o f estim ato r o f regression coefficient d en o ted by (ß(ft) — ß)- Because the lim it o f the sum o f sequences eq uals the sum o f

t —d-B reer—(E(ft) — ß) — ß[N Í N

N \ N

decreases d u e to the increase o f sam ple size. T h e absolu te value o f this expression can decrease m o noton ically due to the increase o f sam ple size. It should be m en tio n ed , th a t if values o f b oth considered elem ents, into which the bias o f synthetic regression estim ato r was decom po sed, have opposite signs, then the absolute value o f the bias o f synthetic regression estim ato r can grow due to the increase o f sam ple size. It is also possible, th a t the ab so lu te value o f the bias o f synthetic regression estim ato r does n o t change m o n o to n ic ally due to the increase o f sam ple size.

A nalysing the eq u a tio n (3), it is w o rth stressing, th a t using synthetic regression estim ato rs it should be assum ed, that:

• M ' and (4)

N Y N X K ’

w hat can be w ritten as:

N d = X d = Y d

(5)

C o m p arin g afo rem en tio n ed assum ption (4) w ith assu m p tio n using for

X Y

synthetic ra tio e stim ato r given by expression it should be m

en-Л. Y

tioncd, th a t assu m p tio n for synthetic regression estim ato rs is m o re re­ strictive.

Let us derive e q u a tio n o f the m ean square e rro r o f the estim ato r Ý SYN regr tak in g the assu m p tio n (4) into consideration.

M S E (ý s w - i w ) = E ^ d Ý"»' + N j ( x d- x ) - YdJ = -

E

( j j + NN Y - NN i Y + " Л * . - П - Y dJ -

_ E ( ” ' ( ý"" -

Y )

+

" j Г -

У, -

ß

- E ® +

X - И У =

=

+

Y . J + (0>ф) + Е ‘ф ) ) ф х - х Х +

• E { ( ( Ý ~ " - E ( r e»0) + ( Е ( Г ^ ) - У ))(Д - Е(Д)) + Е(Д))} +

- 2 E 0 ) ( ^ Y - Y ^ X - X ty

= ( ^ ) Ím se < í ’'"> + ( ^ ' у - у‘) ! + № !(й +

X - х Х +

+ 2 w ( w у ~ у ' ) в " " ~ 2 n ( Ty * ~ Х ‘ ) ( с т ( f " " - f t + Е <АВ " " ) + - 2 Е ( й ( ^ У - у , ) ( ^ Х - ^ . (5)

I f the assu m p tio n (4) is m et, then M S E ( f J 1'JV_reer) = ^ ~ ^ M S E ( F 'effr),

/iV V iV

(6)

E q u a tio n (5) could also be w ritten as follows:

D2( f " " ) + D2( Д ) ( ^ X

-M SE(1 +

2

(6)

F irst three elem ents o f above-m entioned sum (6) form the variance o f

ý s Y N - reer estim ato r. It can be w ritten by altern ativ e expression:

T h e fo u rth elem ent o f th e sum (6) is squared bias o f ý*™ -'«»' estim ato r, which is given by the e q u a tio n (3).

T h e value o f D2(ý * rjw_,eír) decreases due to the increase o f sam ple size. T h e value o f sq u a re d bias o f synthetic regression e s tim a to r given by

to the increase o f sam ple size. If th e increase o f value o f sq u ared bias due to the increase o f sam ple size is higher th a n the decrease o f value o f D2( ý J ľN" reer) d u e to th e in crease o f sam p le size, th e n v alu e o f M S E ( F YN~reer) will increase due to the increase o f sam ple size. It is also possible, th a t the value o f the M S E o f synthetic regression e stim a to r does n o t change m o n o to n ic ally d u e to the increase o f sam ple size.

3. M E A N S Q U A R E ERR OR FOR SIM P L E R A N D O M S A M P L IN G W IT H O U T R EPLAC EM EN T

T h e accuracy o f synthetic ra tio estim ato r will be com p ared w ith the accuracy o f H o rw itz -T h o m p so n estim ato r o f to tal value in th e d o m ain , w hich fo r sim ple ra n d o m sam pling w ithout replacem ent is given by e q u ­ ation:

expression

2

(7)

Its variance is as follow s ( S ä r n d a l , S w c n s s o n , W r e t m a n 1992): D H f 1 - J V * — ( S ‘ ; N ~ N ‘ * A u ( r " > - JV N n N ( s ->'‘ + — J T y ‘ } where Ч . а - Т г Ц - i i y i - y * ) 1- , y <i 1 i = i

S ynthetic regression estim ato r given by the e q u a tio n (1) fo r any sam ple design, for sim ple ra n d o m sam pling w ithout replacem ent is as follows:

ý S Y N - r e e r = N where Q = - x s ) 2> &X, = —Ц Е (*1 - * s)(y, - y s), n M eS n l i e s 1 " _ 1 n

*5 = ; E*i. ys = ~ Ett-

n i = l ” / = 1

U sing follow ing expressions: Six = — — E (xf - x ) 2, S.2, = —L - V (y - y ) 2,

« ЧбО N - l ien

N— ^ x ‘ - * ) ( У « - Л . ^ * = г г т Е К - ^ ) 2. = ~— r ECľi - Уж)2>

” i ei l " — 1ł e S n — 1 i 6 S

= 7 3т E (x i ~ *s)(.V( - y s) let us specify ab o v e -m en tio n ed elem en ts o f 1 ieS

e q u a tio n s (5) o f M S E ( f J ł'N_,ee'') fo r sim ple ra n d o m sam p lin g w ith o u t replacem ent.

F irst (see e.g. B r a c h a 1996), , N — n

M SE( Y reer) = N 2——— S L ( l — r2(x, y)) + 0 ( N 2n ~ 2). N n

Second,

(8)

where

M SEO » = M S e ( ^ ) = - У - D \ ? xy) - 2 S ' ;yc ov (S. xy, § } x) + U*y

+ ( ' |г У е>! (Я , f 0 ( п ~ ),

+ 0 ( п - 2) (7) w here (see e.g. W y w i a ł 2 0 0 0)

D2(S?*y) = (c o v .2 2(x, у) - с оv?u (x, у)) + 0 ( N ‘) + 0 (n 2),

D2(S ? J = (co v .4(x) - cov?2(x)) + 0 ( N *) + 0 ( n 2),

and (the eq u a tio n is derived in the P a rt A.3 o f the A pp end ix)

cov(S?xy, S.2,) = (c o v .31(x, y) - c o v .2( x ) c .u (x, y) + 0 ( N x) + 0 (n 2). n

T h ird (the e q u a tio n is derived in the P a rt A .l o f the A ppendix),

+ /утерт Йч = N N ~nfcOV.12(x, y) _ COV.u (x, y)COV.21(x, y) COV?n (x, y)COV.3(x)

C0V ’ n N — 2 y c o v .2(x) cov.22(x) c o vJj(x)

- C0V*11^ ’^ ( NNM "\/cov2(y)[52(x) - \}{kn (x, у) - k3(x)r(x, у)Л + 0 { N - n ' 2) + 0(n~l).

cov.2(x) \ n N - 2 /

F o u rth , B reer for sim ple ra n d o m sam pling w ith o u t replacem ent is given by the e q u a tio n (2).

T h e bias o f synthetic regression estim ato r given for any sam ple design by the eq u a tio n (3) for sim ple ra n d o m sam pling w ith o u t replacem ent using the e q u a tio n (2) is as follows:

N d / N N — n

(9)

COV.u (x, y) 1 1 (

~ ^ x T ■ y) “ У)) +

4. SIM U L A T IO N ST U D Y

T h e co m p ariso n is based o n ag ricultu ral d a ta on 8624 farm s from D ą b ro w a T a rn o w sk a region. A p p roxim ate eq u a tio n s o f the bias and the M SE derived in the Section 3will be used. T h e co m p ariso n will also be supported by sim u latio n study in which 500 sam ples will be d ra w n at random . D a ta includes in fo rm atio n on sow ing area (in 100 sq u are m eters) the variable o f interest, and arab le area (in 1 0 0 sq u are m eters), which is auxiliary variable. T h e value o f the co rrelatio n coefficient betw een these variables equals 0.974. Bolesław com m une is treated as th e d o m ain o f interest. It includes 588 farm s. T w o sam ple sizes are considered - 8 6 and 259 elem ents, w h at equals 1 and 3% o f p o p u latio n size. L et us analyse

N X

the assum ptions given by equation (1). T he value o f d = 0.0682, — = 0 0922

N X

Y

and the value - = 0.0968. T h e difference between first ra tio an d o th e r ratios is significant.

Let us analyse results presented in the T ab . 1. A t the beginning high relative efficiency o f synthetic estim ato r (the ra tio o f the M S E o f syn thetic estim ato r and the variance o f H o rw itz -T h o m so n e stim ato r) m u st be stres­ sed, b u t it also sh o u ld be p o in ted o u t, th a t it d ecreases d u e to th e increase o f sam ple size. T h e reason is th a t the M SE o f sy nthetic ratio estim ato r includes the elem ent, which does n o t depend on sam p le size. T h e value o f the M S E o f synthetic regression estim ato r equals ca. 1% o f the variance o f H o rw itz -T h o m so n estim ato r for sam ple size o f 8 6 elem ents and 3% for sam ple size o f 259 elem ents. Because o f th e possibility o f low efficiency o f estim atio n , synthetic regression estim atio n should be used only for sm all d o m ain estim atio n purposes. T he value o f the bias has strong influence on the accuracy o f estim ation. It does n o t exceed 5% o f real m ean value and it decreases due to the increase o f sam ple size for analysed sam ple sizes. S im ulation study show s th a t fo r sam ple size o f 8 6 elem ents variance equals ca. 12% o f M SE, for sam ple size o f 259 ele­ m ents - only ca. 3 % .

(10)

DC Ю

T a b l e 1

R esults

H orw itz-T h om p son estim ator

Synthetic ratio estim ator sim ulation

Synthetic ratio estim ator - Taylor

sam ple size sam ple size sampl e size

86 259 86 259 86 259

Square root o f M SE 127 462.72 72 700.505 13 545.723 12 954.143 12 194.238 11 308.607

R elative square root o f M SE (in % ) 47.9434 27.3453 5.0950 4.8725 4.5867 4.2536

Standard error 127 462.72 72 700.505 4 709.3590 2 739.6764 3 009.1891 1 808.8175

R elative standard error (in %) 47.9434 27.3453 1.7714 1.0305 1.1319 0.6804

Bias 0 0 - 1 2 700.73 - 1 2 661.12 -1 1 817.12 -1 1 163.01

R elative bias (in %) 0 0 -4 .7 7 7 2 -А Л Ь П -4.4448 -4 .1 9 8 8

R a tio o f variance and M S E 1 1 0.1209 0.0447 0.0609 0.0256

R a tio o f M SE and variance

o f HT estimator 1 1 0.0113 0.0317 0.0091 0.0242 Tom asz Ż ą d ło

(11)

5. C O N C L U SIO N

S um m ing up, in th e p ap e r th e m ean square e rro r o f synthetic regression estim ato r o f to tal value in small d om ain is considered. T h e e rro r was presented in convenient way as the function o f in ter alia th e bias o f ra tio estim ato r o f p o p u la tio n m ean value and th e bias resulted from th e fact, th a t the assu m p tio n (4) is n o t m et. T he accuracy o f the e stim a to r was com pared in sim ulation studies with the accuracy o f direct Ilo rw itz-T h o m p so n estim ato r for sim ple ra n d o m sam pling. T hey confirm ed k n o w n fact, th at synthetic e stim ato r should be recom m ended for sm all sam ples.

A PPE N D IX

A. I . D E R IV A T IO N S

In this p a rt o f the appendix an eq u a tio n o f c o v (Ý regr, ft) for sim ple ran d o m sam pling w ith o u t replacem ent will be derived. F ollo w in g n o tatio n s will be used:

covr(x) = * £ (*I - *)'> cov.f(x) = £ (xu - x ) ', covr(y) =

i

£ ( y t - y ) ' ,

™ f e d ' i e í l M i et l

c o \ . r(y)

= A

Z (Л -

УУ’

covr*(*>

y ) = —

£

(x u - x ) r (y, - y ) k,

~ 1 t e n i et l

c o v .r*(x, y) = — Ц X (x t - x ) r (y, - y ) k,

1 iei)

S i = co v2(x), S2 = c o v 2(y), S xy = c o v n (x, y), Six = c o v ,2(x ), Si y = c o \ . 2(y), S. xy = c o v .u (x, y),

Ś.2, = - Ц X (x, - x s)2, Śiy = 1 ■ XCVi“ Ух)2. Š.xy = - 1 z (х,- - X)(уi -

у)-п ^ i e S П I i eS П l j 6S

F o r sim ple ra n d o m sam p lin g w ith o u t re p lacem en t x = x s = £ х ; ,

(12)

Let us notice that:

с о v ( r e«', [!) = E ((fl - E (ß)) = ( r eer - N y ) ) =

= E [^ (N y s + j)(Nx - N x ,) - Ny ) ] - Е(Д)Вгевг.

T he bias o f the regression estim ato r o f the to tal value in the p o p u latio n d en o ted by B regr = E ( Ý regr - N y ) fo r sim ple ra n d o m sam p lin g w ith o u t replacem ent is given by the eq u atio n (8).

F o r sim ple ra n d o m sam pling w ithou t replacem ent E(ft) is given by the eq uation (7).

T o derive an e q u a tio n o f c o v ( Ý reer,fí) let us notice, th at:

E [$ (N x s + f t ( Nx - N x s ) - Ny ) ] = E

Ś.

§ L xy N y s + : ? ( N x - N x s) - N y J*v = E S ' ľ + A - ( Š : , - S . „ ) - (Š ?, - S h ) X J , x ( Э ' х ) ( N y s - N y ) + I S .,о2 о2 (^*xy S*xy) Ü«, + 0 ( N ■ n~ ) =

- ~2 ™ & x y , ľs) /о2 42C0V(^’*> Уз) - ( o2~\2COVffixy, *s) + \ 2 ' COvffixf Xs) +

X \ ^ 4x)

+ ( S ? )2E ( ^ x S ‘xy)2(* *s) 2 N y E ( Ś . xy — S*xy)($'x ~~ S?x) ( x — X s ) +

+ N ~ &x) 2(x - *s ) + 0 ( N ■ n z). W*x)

U sing results presented in J. W y w i a ł (1992, p. 138-139) it is k n o w n , that:

ч 1 N - n

со v( S. xy, y s) = ~ тг— > c o v .12(x ,y ) , n N — 2

cov(S.xy, x s) = cov (Šix, у ) = 1 ^ c o v .2 1(x, y), n N — 2

/Л 2 _ ч 1 N - n

с о \ ( S i xy, x s) = —— ^_cov.3(x). n N — 2

(13)

A ccording to eq u a tio n s derived in the P a rt A .2 o f the A pp en dix we have: E ( Š . xy- S xy) 2( x s - x ) = 0(rt ~2) +

Because E( S . xy — Sxy)( Śi x — S 2) ( x s — x ) and E (Ślx — S$)(x s — x ) are simplified form s o f E( Š . xy — S xy) 2( x s — x ) , we have:

E ( Ś . xy - S xy)(Śtx - S 2x) ( x s - x ) = 0 ( n - 2) + 0 (n ~ E ( S. x - S x) ( x s - x ) = 0 ( n ~ 2) + 0 ( n ~ 1N ~ i ). Hence,

f a - N N ~ n(cov*»(*.Jfl_ jflcav. ufc у) , cov?n(x,y)cov.3(x)\

4 n N ~ 2 \ cov.j(x) cov*j(x) “ + cov.32(x) ) +

~ (~n W - l . n /c 0 V2( X)[ß2(X) - l ] { fc2l ( x , У) - k 3( x ) r ( x , y ) } ^ ' COV.n(x,y) 1 1 Л . , ч . --- --- - 2~/~ \ ( (cov* 3 i(* > )0 -c o v .2(x )c o v .11(x ,j0 ) + co v .2(x) n c o v r2( x ) \ ' CO v .u (x,y) + c o v .2(x) ( c o v . 4( x ) - c o v ? 2( x ) ) V j + + 0 ( N ■f ») + 0 ( . - ) - N g - - - " ( 'со^ ф ^ _ 2 ^ - n t e r t c o v - ^ t e y ) n N — 2 \ co v .2(x) covr2(x) c?u (x, y )c .3(x )N c?2(x) l + ^ _ 2 \ / c o v2( y ) [ B2( x ) - I ] { / c2i ( x , y ) - /c3( x ) r ( x , y ) } ^ + + ^ ^ ^ \ / c o v 2(y)[B2(x) - l]{k21(x ,y ) - k 3( x ) r ( x , y ) } ^ ■ ^ ( c o v * 3 l ( x » y ) - c o v .2( x ) c o v . u ( x , y ) ) + + ^ C O V .4 ( x ) — COV?2 ( > ; ) ) J ) + 0 ( N - n ~ 2) + 0 ( n ~ 1) .

(14)

Because ' N N - n N _ 2V c o v2(y )[ß2(x) - l]{fc21(x ,y ) - /c3(x)r(x,y)} 1 (c o v .3 1( x , y ) - c o v .2(x )c o v .n (x,}0) + n cov?2(x) CO v . u i x . y ) + cov (c o v .4(x) - cov?2( x ) ) ^ = 0 ( N ■ n 2) finally we have:

fvrror by N N - n (c o \ .n (x,y) ,covM1(*,y)cov.2l(*,y) , coviu (x,y)cov.3(x)\ ,

“ V(y co v ii(x ) + 5 ® j

- cov' “ f c ^ ( — í j a > v 2( y yí B, ( x ) - 1 ] { к ц (х , у ) - k , ( x ) r ( x , y ) ] \ +

c o v .2(x) \ n N — 2 J

+ 0 ( N - n - z ) + 0 ( n ~ l ).

A .2. A D D IT IO N A L D E R IV A T IO N S - PA R T O N E

In this p a rt o f the appendix an eq u a tio n o f E (S. X)1 — S ' Xy) 2( x s — x ) for sim ple ran d o m sam pling w ithout replacem ent will be derived. F ollo w ing d erivations are based on the assum ption , th a t x = у = 0, w hat does n o t have influence on the generality o f results:

-S'.,,) (Xj x) = E(Ś»XyXg 2S.xyŠ.xyx s -f SXyX) = = E(Šixyx s) — 2S.xyE(Š'Xyx s).

T h en, using results presented in J. W y w i a ł (1992), p. 138-139, we receive

(15)

On M ean Square Error o f Synthetic Regression Estimator

Let us notice, th a t

\

( N

Y i

E(ś»XfXs) = ^ _ JJ2 Ei Yj xďlai — n x $ysJ X S = ^ \ (

E w i V f I

x f l i

)+

i = 1

- l ö ^ X H C H +? ( W C W

All o f three elem ents o f above-m entioned sum will be derived separately

л _J \

using fo llo w in g e q u a tio n s : E ( a , ) = - - > E(a, a,) = —-— — —»

N v N ( N - l )

с / ч п ( и - 1 ) ( и - 2 ) n ( n - l ) ( n - 2 ) ( n - 3 )

( a A r k ) - _ j ^ * ( a ta j a ka, ) - Щ ц _ _ 2 ) ( N _ 3 ) ‘ S o m e simple tra n sfo rm a tio n s will be om itted.

F irst, 3 ^ 2 E( E

( E

“ ^ ov*2i(* .y )c o v .u (x, } 0 + 0 ( n ~ 2). n(n Second, „ > - 2 , ) 2 E ( |/ W , ) ( J > a ) - ( I у а) = 0 ( n - »). T h ird ,

Й

^

Е( 1 ,3<А) ’( 1 / Л) г = 0 ( " " >-

A fter sum m ing up the three elem ents derived abo ve we receive:

E(S}xyx s) = ^ - ^ J c o v .2i(x ,y )c o v .u (x ,y ) + 0(n ~ 2).

Using the e q u a tio n (8) finally we received: 2 N — n

E(St Xy S»xy) ix s x ) — Е(Х»ХуХ5) c o v ji(x )c o v «2i(x ,y ) — n iV — z

r2 2 2 t f - n

= ( n ~ N ]cov.2i(x,y)covM1(x,y) covn (x)cov.21(x,y) + 0(n“ 2) = 0(n 2).

(16)

A 3. ADDITIONAL DERIVATIONS - PART I WO

In P a rt A .2 o f the ap pendix an eq uatio n o f c ov (Ś. xy, Śixy) for sim ple ran dom sam pling w ith o u t replacem ent will he derived. F ollow ing d eriv atio ns are based on the assu m p tio n , th a t x = у = 0, w hat does not have influence on the generality o f results.

c o v & x y J K ) = E ( Ś . xy - S.xy)(Śix - Slx) = E ( Ś . xy, Ś . xy) - S. , ySlx (9) Let us notice, that:

( n - 1)

(nZ " i)Ľ ( Z W i - ľ , x f a t - n x ^ J =

-

n(,íx‘a‘X k AX,ím) +H ž xiaN i ml

All o f fo u r elem e n ts o f a b o v e -m e n tio n e d sum will be d eriv e d s e p a ­ rately using follow ing equations: E (a f) = E (a,a; ) = ■ ^ Е ( а ^ а к)

n(n — l)(n — 2) p . . _ n ( n - l ) ( n - 2)(n - 3) N ( N - 1 ) ( N - 2) (a‘aJa*a‘} - ]V(N - 1)(N - 2 ) ( N - 3)" tran sfo rm atio n s will be o m itted :

F irst,

Som e sim ple

(n

E( Z Ц

Z

^

cov.3i(x,y) +

^1

+ ^ c o v .n (x,y)cov.2(x) + Second, - 1 Ф - l) 2“ V r i Third, 1 + 0 ( n - 2) + 0 ( N - 1).

Щ

Z W i Y Z * i a ] = - ^ c o v . u (x ,y ) c o v .2(x) + 0 ( n " 2) + 0(iV L). n \ / n .1 = 1 / \ i = l E Í x f ai) 1 у а ) = соу.и (х,у)соу.2(х) + 0(п_2) + 0(А/ ‘).

(17)

F o u rth ,

A fter sum m ing up the fo u r elem ents derived above we receive:

E (ś. xyś . x) = 1 cov.31(x,y) + ( 1 - '

n \ n

U sing the e q u a tio n (9) finally we received:

co v(Ś.xy, Ś. x) = * (c o v .3ł (x ,y ) - c o v . 2( x ) c o v . n ( x , y ) ) -f 0 ( N _1) -I- 0 ( n ~ 2). n

R EFEREN CES

B r a c h a С. (1994), M etodologiczne a sp e k ty badania m ałych obszarów, “ Studia i M ateriały. Z Prac Zakładu Badań Statystyczno-E konom icznych”, nr 43, G U S , W arszawa.

B r a c h a C. (1996), T eo retyczn e po d sta w y m eto d y reprezentacyjnej, PW N , W arszawa. G e t k a - W i l c z y ń s k a E. (2000), E stym acja zjaw isk rzadkich w populacji skończonej, P hD

thesis, Szkoła G łów na H andlow a, Warszawa.

S ä r n d a l C. E., S w e n s s o n B., W r e t m a n J. (1992), M o d e l A ssiste d S u rvey Sam pling, Springer-Verlag, N ew York.

W y w i a ł J. (1992), S ta ty s ty c z n a m etoda reprezentacyjna tv badaniach ekonom icznych ( op­

tym alizacja badań p r ó b k o w y c h ), A kadem ia Ekonom iczna w K atow icach, K atow ice.

W y w i a ł J. (2000), Ocena param etrów cech populacji z w yko rzysta n iem danych o zm iennych

dodatkow ych, spraw ozdanie z realizacji Grantu K B N 1H02B 008 16.

T o m a s z Ż ą d ło

O B Ł Ę D Z IE ŚR E D N IO K W A D R A T O W Y M S Y N T E T Y C Z N E G O EST Y M A TO R A R E G R E SY JN E G O

W opracowaniu rozw aża się problem estymacji wartości globalnej w m ałym obszarze. Ze względu na m ałą liczbę (lub brak) elem entów populacji z rozważanej dom eny, w próbie wykorzystywane są inform acje o wszystkich elementach populacji. Zaprezentow any zostaje syntetyczny estym ator regresyjny. W yprow adzono też ogólne wzory na błąd średniokw adratowy i obciążenie tego estym atora dla d ow oln ego planu losow ania. O m ów iony zostaje problem założeń dotyczących struktury populacji i dom eny z punktu widzenia redukcji błędu średnio- kw adratowego i obciążenia rozw ażanego estym atora. Zaprezentowane jest znaczenie wpływu

(18)

obciążenia na precyzję estymacji. Pokazana zostaje m ożliw ość wzrostu wartości błędu średnio- kw adratow ego i ob ciążenia w raz ze wzrostem liczebności próby. W yprow ad zon e zostają przybliżone wzory na błąd średniokwadratowy i obciążenie estym atora dla próby prostej losowanej bezzwrotnie. P orów nano również precyzję syntetycznego estym atora regresyjnego (wartości uzyskane na podstaw ie w zorów przybliżonych oraz symulacji) z precyzją bezpośred­ niego estym atora H orw itza T hom p son a. Porów nanie bazuje na danych ze spisu rolnego dla pow iatu D ąbrow a Tarnow ska. Populacja składała się z 8624 gospodarstw rolnych i o b e­ jm owała rozważany mały obszar gm iny Bolesław, na której terenie znajduje się 588 g o s­

Cytaty

Powiązane dokumenty

In this work we consider the stochasticity factor in the travel times of daily trips while advancing beyond the work of [5] in the following key respects: (i) addresses the

Jakie korzyści i utrudnienia (dla rodzącej, dziecka, ojca, opieki medycznej) wiążą się z obecnością ojca rodzącego się dziecka przy porodzie w warunkach szpitalnych. Dla

Cały len ruch odbywa się,jakeśmy to już powiedzieli,drogą praw loiki ludzkiej, którym ulegają w swych działaniach, lak ludzie pojedynczy jako i cała ludzkość ; to

Taki sposób postępowania jest uprawniony jedynie wówczas, gdy założymy, że metoda, którą się posługujemy, poszukując prawdy, sama już jest prawdziwa, sama już

Despite the increasing trend in the number of subordinate clauses at the pre-intermediate level, the only notable difference was seen in the number of

Universidad Complutense de Madrid, 28040 Madrid, Spain (Functional Analysis) Henryk Iwaniec, Rutgers University, New Brunswick, NJ 08903, USA (Number Theory) Tadeusz Iwaniec,

Informacje o Szadku zawieraj równie Materiały do zredagowania dekretów reformacyjnych dla parafii dekanatów szadkowskiego i lutomierskiego, przesłane w roku 1811

Dla każdego dokumentu można ale nie trzeba podawać jego DTD; wte- dy proces zwany parsingiem bez walidacji weryfikuje pewne ogólne reguły budowy dokumentu sprowadzające się do