• Nie Znaleziono Wyników

Influence of the Kutta condition on 3-d ship seakeeping computations

N/A
N/A
Protected

Academic year: 2021

Share "Influence of the Kutta condition on 3-d ship seakeeping computations"

Copied!
6
0
0

Pełen tekst

(1)

Influence of the K u t t a c o n d i t i o n on 3-d Ship Seakeeping

C o m p u t a t i o n s

Volker Bertram (TU Hamburg-Harburg) Gerhard Thiart (Univ. Stellenbosch)

We present an indirect 3-d Rankine singularity method (RSM) in the frequency domain which captures all forward-speed effects. As both steady and xmsteady flow contributions are captured three-dimensionaliy, the method is called 'fully 3-d'. The method is described in detail in Bertram (1998).

We consider a ship moving with mean speed U in a harmonic wave of small amplitude h. We assume an ideal fluid, using a perturbation formulation for the potential:

= + <^(i) + h.o.t. (1) is the part of the potential which is independent of the wave amplitude h. I t is the

solution of the steady wave-resistance problem. 4>^^'> — Re{4>^^^e^'^"^ is proportional to h. LO^ is the encounter frequency. Quantities with a hat denote a complex amplitude.

A l l motions ui {i ~ 1...6) are assumed to be small of order 0{h) where h is the wave amplitude. The harmonic potential <;6(U is divided into the potential of the incident wave ^A'", the diffraction potential (p^, and 6 radiation potentials, where (j)'^ and ^'^ are divided into symmetric and antisymmetric contributions:

6

i-l

The steady flow contributions, are 'determined in a 'fully nonlinear' wave-resistance code em-ploying higher-order panels. This yields the steady dynamic trim and sinkage, the steady wave elevation and the first and second derivatives of The seakeeping (time-harmonic) problem to determine the ^(^^ is linearized around the steady solution, including fulfilling the boundary conditions on the steady (wavy) surface, using the actually wetted surface ofthe ship with trim and the steady wave profile.

The K u t t a condition requires that at the trailing edge the pressures are equal on both sides. The I'Cutta condition is usually omitted in 3-d methods. I t is unclear if this is due to some physical insight about the negligible effects or oversight. Our formulation for the Kutta condition requires zero complex amphtudes for the antisymmetric pressure:'

- />(ïw,<^^> + V<ï^(°)V^'>) = O (3)

i = 2,4,6 for the antisymmetric radiation modes and i = d for the antisymmetric diffraction

part.

The unknown diffraction and unit motion radiation potentials can be determined independently. Rankine elements are located on the hull and above the free surface (desingularized). Colloca-tion points are located only on starboard. Mirror images of all Rankine elements account for the port side.

For the diffraction problem, all motions Wj are set to zero. For a radiation problem, the relevant motion amplitude is set to 1 and all other motion amplitudes, the diffraction and incident wave potentials to zero. Then the free-surface condition and the hull condition are fulfilled in a collocation scheme. For the antisymmetric problems, also the Kutta condition is fulfilled at

(2)
(3)

the Ulsl column of collocation points at the ship stern. A. corresponding nnml)er of Thiart elements (semi-infinite dipole strips on the plane y = 0), Bertram and Thiart (1998), arc used. The dipole strips start amidships and have the same height as the corresponding last panel on the stern. Radiation and open-boundary condition (waves propagate only downstream and are not reflected at the outer boundary of the computational domain) are enforced by 'staggering' the Rankine sources for the free surface relative to the collocation points by one typical grid spacing downstream. The collocation scheme forms eight systems of linear equations in the unknown element strengths. The four symmetrical (likewise the four antisymmetrical) systems of equations share the same coefficient matrix with only the r.h.s. being different. All four cases are solved simultaneously using Gauss elimination. After solving the systems of equations, only the motions zi; remain to be determined.

The expressions to determine the motions are derived.in principle from 'force = mass • accel-eration'. This yields a system of linear equations for u, (i = 1 , 6 ) which is quickly solved by Gauss elimination. , •

The S-175 containership was computed for the design condition with F„ = 0.275. The hull was discretized by 631 elements, Grids on the free surface had then in each case about 1300 elements.

Figs.l and 2 compare results for oblique waves to experiments for //• = 150° and fi = 120°. Results for heave and pitch agree well with experiments. The Kutta condition has only signif-icant eflfects for yaw and sway at low frequencies and for roll near resonance. Here the K u t t a condition simulates to some extent the effect of viscous damping and reduces drastically (by factors between 2 and 4) the motions. However, additional viscous effects (those that would be apparent also at zero speed) reduce for roll in reality the motions even more. For yaw and sway, no experimental data are available, but we expect that autopilots in experiments will prevent the large predicted motion amplitudes of the computations.

For low angles of encounter, the Kutta condition failed to improve consistently results. Im-provements here are subject to further research.

BERTRAM, V. (1998), Numerical investigation of steady flow effects in 3-d seaheeping

com-putations, 22, Symp. Na.val Hydrodynamics, Washington

BERTRAM, V.; THIART, G. (1998), A Kutta condition fo sliip sealceeping computations wiili

(4)

\uMh 1.0 O — & — 9 O 1.0 -3 '1 wy/Lla 90^ 9 0 -1.0 \Hlh 0.5-^ 90-* % % ° 3 4 O -90-^ O O + + | n 3 | / / i 1.0- 0.5 9 0 0.5 -1 2 3 4 uiJZfa 2.0 1.0 J i l l ;12 kh . 3 • » , 90-^ - 9 0 H O i • 3 4 o-VL/s + 1.0-^ 0.5 H 90-: 9 0 -S9

T

2 3 4 1.0 0.5

'^^'^

Si.r, 90-' -90-3 4 wsjhjg

Fig.l: RAOs for S-175, = 150°, F„ = O RPM witli Kutta condition

(5)

0.6-] 0.4 0.2-1 \Üi\/h " I 2 T 4 w-^L/g 90-1 0 -90

H

O O O O O 1.0 0,5 \Ü3\/h 1 2 3 4 ^J^/t/i 90 O--90 1.0 r" 2 i/ / ï + O + O + O 4> -I- g l-90 O -90 5.0 4.0 3.0 2.0 1.0 90 O -90 2 3 4 w^/L/g « 4 kh h.2 • + 4 wy/L/g O » 0.5 kh O . 0 . O O 90 O 9 0 T 1 1 r -1 2 3 4 OJ^/L/g e <f . • « • . O 0.5 3 4 w^ / Ï T ^ 90-1 O -90 O -6 — ^ — ^ — * J ^I^ ^ ^ +

Fig.2: RAOs for S-175, /t = 120°, F„ = 0.275; • experiment, - f RSM w/o Kutta, o RSM w i t l i Kutta

(6)

Cytaty

Powiązane dokumenty

Do wzrostu zadłużenia zagra- nicznego Polski przyczyniały się także czynniki zewnętrzne związane z człon- kostwem Polski w UE, w tym uwarunkowania dostępu do funduszy unijnych.

Stefana Kardynała Wyszyńskiego Prymasa Tysiąclecia oraz Medalu Stefana Kardynała Wyszyńskiego „Na- uczyciela praw Bożych”, których pomysłodawcą był prof.. Za-

Udomowienie na Słowacji śpiewogry Brylla nastąpiło najwyraźniej pod wpływem zapotrzebowania kultury słowackiej na tego typu utwór, gdyż w danym momencie historycznym (początek

Bibliografia przekładów literatury słowackiej w Polsce w 2013 roku Przekłady Literatur Słowiańskich 5/2,

Drogę rozwoju psychiatrii zawsze wyznaczała koncepcja człowieka wyznawana przez osoby zajmujące się psychiatrią.. Współcześnie badania neurobiologiczne i

The Deployable Space Telescope (DST), being developed at the Delft University of Technology, aims to reduce volume (&gt;4 times) and mass (&lt;100 kg) by using innovative

Obie formy średniowieczne (romance i romant) miały pierwotnie, jak już wiemy, to samo znaczenie (oznaczały wszela­ kie, wierszem czy prozą pisane utwory w języku

То есть Достоевский не столько отказался от учительства Го- голя (основателя «натуральной школы»), сколько создал свой «порождающий миф», который