• Nie Znaleziono Wyników

A seakeeping test on a container ship AMERICA MARU on the North Pacific Ocean. Part I and III. Part II zie Nagamatsu

N/A
N/A
Protected

Academic year: 2021

Share "A seakeeping test on a container ship AMERICA MARU on the North Pacific Ocean. Part I and III. Part II zie Nagamatsu"

Copied!
70
0
0

Pełen tekst

(1)

tOraftriff3tRigil; MI8A /129. Tt 25

Th

,k

M iJJi]

i4

fiE ,14

/1\)1110T.,*

T.*

i_NXN-)Y-M**

A Seakeeping Test on

a

Container Ship

"America-maru" on the North Pacific Ocean

Acta

-71

By

Akihiro Ogawa, Tatsuji Sato

and Yoshio Kokubo

Summary

Results of a seakeeping test on a container ship "America-maru" of Mitsui 0. S. K. Lines Ltd.

on the North Pacific Ocean are reported.

The test was planned according to the ten-years' plan on the ship tests of the Ship Research

Institute and as a collaborational investigation with the Shipbuilding

Research Association of

Japan.

Pitch, roll, yaw, rudder angle, vertical and lateral accelerations at F. P. and longitudinal

acceleration at the navigation bridge were measured and recorded

on a Magnetic Data Recorder

and on a "Visigraph" recorder.

Weather, atmospheric pressure, visibility, air and

sea water temperatures, humidity, wind

direction and the Beaufort scale, directions and scales of wave and swell, position of the ship,

main engine revolution, super charger revolution, fuel handle notch, governor index and fuel oil consumption are rerecorded from ship's log book.

Compass course, relative wind direction and speed, ship speed, brake horsepower, auto-pilot

adjust, rudder angle and roll angle were read from the indicators

of the ship.

Period, height and encounter angle of swell, height and encounter angle of wave, shipping water, slamming, shock or shudder, propeller racing, changing course and speed, damage of hull and containers and seasickness were recorded based on the visual observations.

The measurements were carried out three times a day, each lasting 20

minutes until 7 : 50, 11 : 50 and 15 : 50. A comparative test upon the action of anti-rolling tank were once carried out.

The results of the measurements are graphically shown in the form of daily variation.

Each once in the outward and homeward voyages, a rough sea state were encountered. The

maximum amplitudes of pitch and roll were 5.0° and 15° respectively, and

that of the vertical

acceleration attained to 0.75 g.

The ship meets mostly following or quartering seas in the outward voyage, and head or

bow seas homeward. In the latter condition, two-nodal vibration were often experienced.

The indication of the ship's clinometer proved to be bigger than the actual one. The real

inclination seems to be 60 to 80 percent of the indicated value.

* fiftfi5Lg6

IfP1-Efu 46

2 A 15 Li

(2)

26

1.

SiaMtMEAFTT

$t36 CO_VA, 10 ligtai

[I13

Lccii#67tt il.-Zic1411- VAtts

-C*-c

vOn 45

-frait.E.0DIRAitlf-gbc-

011,19 icti6-±.$0.iilotX .1s.

40VIFICtffJvf,L0Ak.

x1.660/gL <

MITtAa01.42Vs-c-A-D-D6z.

C). 5 ts.-4AlktMoD6.-131A4iffMtit LL

Lts,24?;, . .01-ViPtelcLictkvc):1-13c1NL-cto61.0

12114ic ttilEtMcV

L-e6L.

-MMaDMAILE, Fi/q

t

-5 72

0:1414*6Z0/tifltiM6-LknY5-to:Wc.tzlA

Witic'IN41-cozo=Y5-tMttttt

4L.AilftL-Cd"MtrilDWA,c04AAM6

ZoGtEAAMoalziArtiViatIeUtAtatifig

VENI-L c

LT

,

MIA&

fre ariE f042JO 5

.1.11_114-tC..

attg1C

f3f V-itts -c*--ct,

H*WarlIf9ttfacv,N-c IT-MoDFartot

Ri 44 tct * 108 Uf5t113

(5 R-108)va

AitititilYil ODR EVI %Mit ic

Mit

ZUM

e

1,-c 3 ,41-X-(-:3witEz.OMc.t

pASINiff ts -7 -co o

0) SR-108

46 Iff-gE1C)CRIVS,AMIUrvirti'ffit

45

.,tta c tt, ict-5-

TfliZr6101M t

WilW9Zt.RWItbi goiW44.*R-4-6:Mft

Pgb

VIM

UMEuL6Zric*-F5rA.MMTifi4b,G2-3

I. A110 9 1- 45 4- 11.

--'461 2

NA--.11A1VOliccatI*0 6 V.0) n

tMm)-Ai L-c

ItaNciiii4STJ4Ptitiftl--/-nts

top-e670 cop,t5t.4: Wocopc,

frrIZ

5WT-.

*got to)

ilfaiMot

-molt

z Lti b31fiA

PY,}iiifo1-Ara10 W,1-0:1-c:14akt 2 4.EZEUM*kit

la0m401-z--cf 6 -7

t&, -ectxmazmott

vc-vt4o319--;t,

tt--c16

*AM%0

tU]iffMcWsbItz:=:/5--.1-AG--c126Z/A ±,32,

op

WM- t

-7 -c s R L

tt,tz top-c6

a4o'coMMAM0AMonNtUgivitsoL

fftigtsgtfitz.: Fr" ts. .31411 ( )

g:Pyre 77_ -r*Vgt., rIftfits5).11T- VXu1S.1..ictsb'

2-

%tafravamg.

2)051-1M0..--L--:M0AGo

tka 6 6

OD* 9725 'e(45.1c1U

IJU t hat

u

Table 1 4C, EA:itsMEE

Fig. 1 iC7Tcre

W3ik-LOS ANGELES OAICLAND *TrOD:IL *AA

a

-e6Zt&,t4c op 5

s

Ai-s5"-; LOS ANGELES

AU OAKLAND litir=i-rulo, m-,t, ts ..., aDELHAT: Fig. 2

Table 1 Principal Dimensions

LENGTH (0. A) 187.00 m I LENGTH (P. P.) 175.00 m BREADTH (MLD) 25.00 m

DEPTH (MLD)_

15.50 m I DRAFT(MLD) 9.50 m DEAD WEIGHT 15, 440 t

_

GROSS TONNAGE 16, 404. 77 t . _.. NET TONNAGE 8, 320. 87 t -NOS. OF CONTAINERS ON DECK 342 IN HOLD 488 TOTAL 830

MAIN ENGINE MITSUBISHI SULZER

"8 RND 105" 1 SET

MR 28, 000 ps >.< 108 r. p. tri.

PROPELLER

' DIAMETER (m) '6. 700

BOSS RATIO 0.200 1

PITCH RATIO (CONST.) 1.158

I EXP. AREA RATIO

I 0.692

MEAN BLADE WIDTH RATIO 0.272

BLADE THICKNESS RATIO

1 0.048

ANGLE OF RAKE 8°

.-

--NUMBER OF BLADES 5

,

(3)

UPP. BRIDGE OK. BRIDGE DR.

r' g 74c11. rxi"

3.

gtgiiilAt i4

3.1. IqM/vt:Igi-XiggfL.t

-;ltimigipt Pitch, Roll, Yaw, re-A, F.P

iCtsd-z±.-Faric thrlitgE, Bridge 4LtccilZgifitiitalt

lilt A.

Jr.

ILW-2;-'161 LONGITUDINAL ACC. INSTRUMENTS' ROOM 'zscsm4,2-14.2;*D-_',4tvz,r' 2 r '

ti

L ".R"H

BOAT DR. CAPTAIN% DR. F'CLE DX. AR."'"'COMPASS OK.

ft

VERILCALAC TRANSV. ACC

Fig. 2 Noon Position of Ship (in Dec. 1970)

[_11.111 71. P:=E7E7 E.3731E_7E3

p

A

. ENG.OPEN. ,{

I N

NO. 5 NO, 4 2 C.H.r; C. C.H. CH. c.H.

Fig. 1:,ZGenera1 Arrangement7ofiShip:andiPostionof:Instruments

VFR T ACC TRAN SV ACC AMERICA NIAELQ 0 71Rifl-C 0) 5S-M-2g0p#M44L .1 0

Yaw, nmtvitc0)7-,-,

0

Rii-INtTitiliZC

tz Bridge

Deck 0VD-

1.'

41.AL-Cit,0,12,,t1f,tUL

L, VJF-1AaiNt..E-11.ti, Fig. 1 UPPER DECK

( 59 )

.1

i

r

p

2

rw-wi

el-. el-.el-.el-.el-.el-.mmiwwel-. 111...

I

mi

El

2

,

-.ollir

a, '..k.

.$

\ 4. N ", 604 ON .

Mo.-.

-'...11141111111111111- --.--. Los 10 Angel 4O'N 0.N ..0041107 nbe25 .,

,

, 30'N 3 . ON 14dE 15

E

1. . E 1 E 18 . :11 12 20N dw

\INSTRUMENT'S' ROOM LONG! ACC

L

20 -.-1.9

-

---- - 17 -- --:

1 1 13

(4)

AC Dry Dolt AC (

60)

CE Potentio Steering

Shaft CER ANGLE

-

-PITCH. ROLL.

4C --I

,-4.41r

Fig. 3 Setting of Instruments

DPM

Fig. 4 Setup of Instruments

IOt 5cfi.fiVpareicgVottd

Fig. 3 1C7T:te

11-91Raiai

-.ay

y

ic

.ZriiiIIIINN.EnalizW-.13-'0113Alt Fig. 4 2;iilapZil.41faitillBtrYtI_V--0)04-3,1A-la -e,

mewl (iakMciiirt;fsofEloA5M411/141

Z)

lw

7 : 30 7 7 50

(8 RMIIIIiftt Z.))

2.

11: 30 11 :50

(12114 /Z.

3., 15: 30^. 15: 5G

(161,

0 1 T3 311_11

64t2: L, 4411Alantstpts.75-- to nu

USII4litital P1*,1--i10i.

5 TZ-e 6

tzt>, irazoptV

Lts.b1-2to

t

TtA4

Gritaill1411-81 Mag 30 3).c.1.1-4--)07bs' '0)341E13-efftstptstA-,

gte: d. 12 0-40Atl

tit

Anti-rolling tank O)7.,

I- t:.-.0) 13: 10 -- 13 : 30 -Co zo t.7.4&tAiEntii

eAbb,-e t

ts.

*I

12 il la31-02;-1.R1

)2o

IIPJonrter Data Recorder (70) (Monitor)

3.2. M0)te47,-1-Ail (ra ,17-",:tZtEa

I:2E0

IlijCJzZi2,0041123C0) t

X1R, MEE

W,wa,

E5E; 0,t1 ;

161,3.1)3 ; Wave 0).115.1, lea ; Swell 03.V3],

a; VIDE% TA-'AtElliktk, it:WAWA% A

Fuel Handle Notch, Governor Index, toAna

3.3. flf,10#PPT11-tN

IM,117,LXI-19a.i1118 ; *MIRA, Stib] ;

Ata, WLi,

r=t 7

0Rt1ot MARV MUM, CP] ;

)IA6 11.154, 19EVAtic-Do-ctt21411.1* [4:103t11/9 ke,'A 1:1

)141,it*Egfitrag

iii4r4 icNbto,-LJUMft_1.166-L 3.4. 134EMIMtz otz z t ta 0JCIA,

LT,;MaopikX,

11-1 ; ,647j<trzgi.,

.:/./

; tr118-V,

. kal*Bax= NtattplaptIpoo 8 9 35

t RzYreacD4A

liagf-rts.,.-2 4..771- 2111I'M A

litillMEYWAN t LI Vit03t Fig. 5 7

1_, to Fig. 5 (a) 7 (a) 12 a fel: (%741: Los,

Angeles), Fig. 5 (b)

(b) II111 (Oakland

*To ogagre z 0

Fig. 5(a), (b)1thOODRIV-1,

tWitoYC,ht}0NA.±"gic ct

d

iiJL Log Book icivia

z 16 fi'03to,PWIRt

z

E!ti 00/10//c ct

VIAL VNE I, to

Fig. 6 4t440-)Vd:§7-fcl- t OD ceiArp opaiztjaki,k

121511:21(14,, 6.7t. ODT Z. Fig. 6 Titisktri-4%

MINAcic<;-:.-eWA0v7.0b&ItiliM/00i11.

ca& F. P. OD Ballast Water

-I'A7,KL,-C1

tzz5-(--2

zo Fig. 7 12C01/141 /.11131a4e=.;

7 op ilaub,

t) op -e, Jammtz*

tit' LA Opik'git

'EC ,kt /2

L,'"C ZbdC1-1 tj3 ,a)

ktsZ01W GoM 12

gas 78 cm, &Albs 96 cm

14JG

op GoM 1/EiCt 5.11-114T

Rolling 0

Iton<aotznoa21175;amllmm,11-tiActuto (e,

otztAgii)

Gom l 5o CM ja-ri(Ctl. ic L.,--coz L073

t.".0

- Table 2 wIttaoliNcoZ1-5-

--

;Xffi L

AC

gill Ca

28 Mc Vert. Gyro YAW Dm. ACC P U. LAT ACC P.U. I ONGI ACC Visigraph ; ; ;

-; 5

(5)

--Sea Margin, $2,1,),0") Slip 11-: 7Ti-ro

'- -)

ti Abstract Log tciiaatzti.tc3FIY:7-,IVOcIdlirA-Z, tM7Krit ."-Att.ct

L,tzto-e6zo Fig. 8 It

OffultAbt,tsvit:, 0.4ntcaglieg 3m,

Itt] 10

Tato -5 ta 0 bsa-.ffl-tbAbt%If 0 co (1600) --c* 1 *Ma M,,t.:11V)17:11--c6

Fig. 9, 10 It L" Y, 7 OSE(RODM-e, Fig. 9 u

aroiqopeits.

LGR-31,-.11. Rolling a ry

Pitching Fig. 10 IIiKifilVD

--c.Ltilvy1/4.n Pitching 75

<, fitz

,n,t

2 firr-6.-Pg1.-r_oZigioDVIJ-72.Z7D. EAL,--CtZ

(#) tintts,

n

to-ctV.soL,

5. 5.1.

Agzatfacco a (Fig. 5, 6)

AIIRJTFAtniog.i.bc<k

1.--ctt 12J IcUW:',

< littltsoco 0-5

folutf12)9 3 n L, 45.1k75N.; op-ic ts. 5 la 0 V.F,td-,

tn5tclAA,

L

thgtt

NODSIP.Rb't; < -17RODY.ORAC

gMIC (tE*.M-C 4t 2 m

TILIEGYMAZ'/IZCP-5 2 -Dop4tsflEtiotz6tc, 4;t1z.

Y),.;tdsZ

bstEt

V:60fl'iiT

L, lashing

tibUctszo-e,

0)Ac' t2L./"D-D, < a!, L

t:

tc,

g.:MOI-t-56A,7°0-s

tc 11)) M tc ts, ti,

tf, IDER0V.1tbli:L, <

f11:14z1=1iRts. -1-ZTICtl]n:riv43,10,zsMtc'ria;t-Lz14.35,A.t

aftV1Wt 0DICX51,3tcW-fltcts -cats (,

Table 2 Average Sea Margin etc.

( 61 )

Lgfkli

,oi 5 la 0

Z)I rAbitt1,tc.

Want 1-114ragto 12)9 15 16 El

ttt,tsmc;aii-

iriAs1,:fats <

1-c-coZM, ,Eatitnt ts < T.Etcts

?Re,

u-c-rhioRc5E.01Mbi

o,r,

5 la IITJ119 8 10 fAlitEOD

OD bb,,--)tzt,

51a tsagn50 041i4itt 5 fa 0

AWL .ZZM

bi-Ntb,

NL-E413c5ZN3mcNtzepu.51a0M.1-c,

1-11b&Vtz: ,51A0D.,-MiRttl:4011ts*-P.,-1;(31-tt- ,,,

<C.Jz5

ts, Isr4gzff-M,

11. z xzzacm*Vit o)

WAtiam ujfl=II I.Eirc7, t-L-C

5.2. ka

(Fig. 6, 7 _.*J1k() T. No. 6

ttllica{Pu-cozoi.1,

-c, iA(DWaflJarYtiVT_',I411;1 F;z g_t:c gb13324)41,7t.

0)7:6 zo

F. P. ictstIZ,_1--__TiialgE

tt 39 12llck 0. 75 g clEti

-cti.

hIMA4iIE2 5.00 -ct

t

1.2%-rRollPi 75i2 4 < abriaLtb3±Tiin5.-Cit 171,X

op).t.,

tc, Yaw it Pitch

FelfiTtICts

z

ttItctria5-"CR0111M0 Yawing

5L-luta#11-LL maktazyn4omd-]

toDLAg_ i;11,,r)0

1--

4 1,, 7 I- 0YROtAXIii

4 Helm

adjust M 3, Weather adjust tt T. No. 17 t

1. 7, T. No. 18 JaWt 1. 0 -C

-.;to

fligi/NA t± 10°

AF*tc tt

tt,--c

7-< f'S tAcg") bi6 -5 PORT DRAFTMEAN (at dep.)DISP HOURS DIST' AVERAGESPEED MARGINSEA SLIP

TOKYO --,L. A. m 8.47

KT

21,100

D H M

9-11.45

4975S M kt 21.84 36. 796 10.896 EXCL.STAND-BY

9-14.00

4987 21.68 41.0 11. 5 INCL.STAND-BY OAK-LAND --KOBE 9.18 23, 380

10 6.30

5182 21.02 58.3 14.7 EXCL. STAND-BY

10 9.30

5208 20.87 72.0 15.4 INCL. STAND-BY b> , ---, I

(6)

30

0

0_

a

10 0 RELATIVE p DIRECTION 30 w

- 20

.7. a w w 10 LU CL CC tn 0 -ENCOUNT.p.:S

(fo,

0, (((k ANGLE I 3 -w 2 "--(.9 1 -Ui 0 0° -ENCOUNT. p, S ANGLE 1

_12-0810

8"-8 0

-TEST No.

SO-DAY (in DEC.) 2 3 4 5 5B 6 7

Fig. 5 (a) Sea State at Outward Voyage

0000

/-q 4co-0

iIII

III

25 29 8 9 10

-. 1 ) . ., 1 I. *-40: . 1 1 °--WIND - -,- -WAVE --- + - -SVvELI_

1111

-III

--+--.-4.

1 1 1 1 , . 4-4--4

1111

o

-WIND

N. -7 p y-°-

ck,),

9--7 `t,'v--7 \7`.7 \7`77,..--70 \, b

WE

.7-hi) cc

-WAVE

7 i y y

v ,o

,..0---y s'b \o*---0 Vb \o 10..zo \tw \o ,!.

E -SWELL

1 \ 7

TI 7 77?), 27-0-0\73 (!lb b11,3`7,,

6 4 2 cc a.

AP-0-0

II

I

III

I I I I

IIII

10 15 20

('62)

< 1 1 1

(7)

W+E

2WIND

"

'0 1

-WAVE / ?-0

ck 1, cto

-5-swELL

\No i ezo_o_cy\

10 5 0 RELATIVE P DIRECTION 30 _v **-- 020 wlz' ELL'10 U) 0 NCOUNT.1,25 ANGLE I cL, Cu, a_ 10

12-

8-

2-

0-0-0-ddc/edeo-c-c.\) \)

lid

46

d dd

1 1 1 1 1 1 1 -TEST No. H- 30 35

Fig. 5 (b) Sea State at Homeward Voyage

III

I I I I IA

45 50 55 58

I I

40

_

DAY (in DEC.) 15 16 17 18 19 20 22 23 24 25

( 63 ) °---WIND

---WAVE - +SWELL . . . . . . . . --+-.4.

/II

U) Lu cc a. Lu In a_ 3 E 2 1 0 - NCOUNT. P S ANGLE 1

/1

\\o \o,\

(8)

32

( 64 )

T. No.S 0 1

Iii

It ,,,Iiiilf lit

120.

cr) w

<U)

ix

2

0 0

U

60-2 5

--;" 20 Li

1 5

100

10

o; ixSO

77 4

22500 6 a_ 21100

i 6

__I o

w

I--D

05

Li-z

GRAND MEAN OF OUTWARD VOYAGE

10 15 20 25 29 0

0 0 0 0

COMPASS COURSE SLIP SPEED R P.M FUEL NOTCH GOVERN INDEX BRAKE H RSE PO W E R T. No. SO 1

5I

0 15 20 25 29 I

l,

I I I , 5e 6 7 8 9 10 0.G SPEED LOG SPEED

15

.10°

2

a:90

0

0 20

z

c.;

8 0

10

--1 'n0 2 2000 Lf) 21,000 D ISPL AC EMEN T E3

ao2Q"

LL 8.5 DRAFT ACTUAL AT ARRIVAL

CC ACTUAL AT DEPARTURE \\ED

0

8.0

DAY(in DEC) 2 3 4 5 5e 6 7 B 9 10

o

Fig. 6 (a) Ship's-Condition at;Outward Voyage

GRAND MEAN OF OUTWARD VOYAGE

DAY(in DEC) 2 4 4

25

5

I

(9)

cc

a

0

T.NO.SH 30 35 40 45 50 55 58 I t

III

1 1 1 1 1 I

II

/ I

iiI

I I I n 290'-t w

a

COX 270'-02-5250 (n22,000-cL w21.000 (/)

1 5- GRAND MEAN OF HOMEWARD VOYAGE

R PM. 001

...

50 6-1 CH 5 T.No. SH - 30

IIIII","",""Il

35 40 45 50 55 58

-I- -I- -1- -T-

I-I

DAY(in DEC) 15 16 17 18 19 20 22 23 24 25

25-a

0 w w - 2 0 a_ -22000 a o_ -21,000 VI cc 20000 95 E SPE D _

-N--.

GRAND MEAN OF HOMEWARD VOYAGE

cc

a

8.5

DAY (in DEC.) 15 16 17 18 19 20 22 23 24

Fig. 6 (b) Ship's Condition at Homeward Voyage \sACTUM.AT DEPARTURE LOG SPEED RAFT FU L NO GOV R 0 IN . SPEED DISPLACEMENT ACTUAL AT ARRIVAL ( 65 ) 100-n_90 cx

80- 2 0-

SLIP . I POWER RPM. 25 .1 X

(10)

34 In 01 0 Er LU 14.1 0 CC T. No. SO-1

0

cc 10

(

66 ), Iii 0 OS Z, "2 0 SEC 0 A.-AS to -0-11 RUDDER by INDICATOR. ROLL P rT CH'

4-

--

4--4 WITH ANTII ROLL! NG TANK,

pOLL

by CLI NZ METER

\

_ 'ArT..ATERAL 20 25 T.No .S0 I 5

"1-DAY (in DEC) 2 3 .4 5 - 59 6 7 8 9

Fig. '7 (a) Measured Oscillations, etc. at OutwArjd Voyage

NL_L_ 1 I II II 10' 15 2.0 25: 1 1 -29 -J 50

0.5

5 I YAW ROLL 15 PITCH RUDDER 29

-

-10 I

(11)

sec 20 15° 1 1 I 1 1 1 1 1 1 1

11

ROLL by

p

,.--c( ROLL 1 1 1 I I I 1 PITCH CLI NOMETER RUDDER by INDICATOR pi-- -a- -0---11

A,

LATERAL

.

i \

.

ca. A- -

A

-L3-..as

-75.---b.n,\-,

--4,

-

0---zi 0 T. N o. SH - 30 35 40 45 50 55 58

L__!___, L_I___, L 1 t i__I___, L___I__I L__I__., ,__I___I L__I__i 1.__I

DAY(in DEC) 15 16 17 18 19 20 22 23 24 25

Fig. 7 (b) Measured Oscillations, etc. at Homeward Voyage

35

( 67 )

T.No. SH- 3 0 35 CO 45 50 55 58 V EJR TICAL NG I IL

(12)

36

(

68 ) _ PpRT a_12V STBD DOWN PITCH Cr BOW UP

4

Fig. 8 Ship in a Head Swell (1600, Hw 3m,

Tw -410 sec) UP PP 10 CANN ROL 0.6g 1-/C16107TA-5:U-Z0--cr'T-Y-IaMta -Ft Z. 1A4111'1.t!J%tS. < tS. 141753R-00)7T, 010 J.

-NiakLRMtLtfdl.b,U-rotsoot5ts81;

1-WAgMt2AUMegitfoUIVio):1,,V1pda

amigivsoLLtit-ANzo Yaw It

Ir-SiCVS.4, 5 "C't

Ncia.*4Citt tr. Navigation bridge {tJ z

alithIlita4:13211

tattopiMg

OD t011fe

0.18g UgEts0D-C-E-tta-)G,

(1t,'

00-)Fito u --c ±.-FliFIAZI: itst Wh,!-IitS Jz 5 PL-YLE1,47);h,t,:.

Mr-147",-D/IoptitiffalgtotliViErA-7:7

.

Fig. 9 A Part of Records at Heavy Rolling and Pitching

Fig. 10 Example Record including Longitudinal Vibration

111 TIME 20 30 40 50 sec T. NO. SR-fl DEC.15:70.15,30-1550 0.2g PP'T LA CC. 0 FP 0.2g STBD 10

11/11/11

1/111111111/11/111.2/11

111 T. No. SO- 7 DEC.4:70.730 -7.50 10 TIME 20 30 40

11/11/1.11

50 sec

1111111/11, r 1,11.1111171/11111., /1111

1111,1i11

, tzbi,

(13)

0j,MITtcl-L Utz ii4a)

2

4t

cDnItb,' 10° C_LLE UK! 0.8 fg, 100 c..CF--eCt 0.6 ft;

ilftb31.M014113f9lcfs 5 --c7

Z.

5.3. ;p1R7kfelz: -Do

aki4 12

5 0 12 Vico 41-01 (T. No. 11) tkIC

Anti-rolling tank 13 fri 10 :5-} 13 *30 )-).

ciplQ 4.1.141-alli (T. No. 12)

ftts,

III

L.JC

t5k

ffiz'

tt, to c

Anti-rolling tank tifit3latti.118 41,

-ctoZts,

1-iticilioMorilg)ict 20 br-C:

4111/VigCt 10° 12° ALE.Tdik

*Vs c. Nit 0) Wire]

ANIMIc

,--ctt rIgtc.

bih:feT.72ts. <fs.ZJ

7itiralgtzr lo 5 J: 5 tsgSE t '&7Ra EP 0

Ela*V.IN3c.ot ZAV;ts.fkMittfilti.tsR /zICt r,

JllC

75,Ccir& Gtt,Z

o)t, 0-76

,

op-eCt ts 075N .FLUAD4-1.t.. ;4;4190)±,9; lcC1 Gmcc 461)16 tc.lriCE:Xnlc t

c

bit

tAlffitibi

ocl-liccCit41-753AlY5 coS c

5.4. tathl:""DL

la7h9V1 b' 30

5 t.i.±13f6,'-cc41

k

ifj15.cr....t 2 fIVIKIIA-La. ti-c co Z. A mnt,s:{3;y1 Fig. 10 ccR, ;11, 111,411.kmommtt o. 87 W-c, 4:`,J 30

40 fAitgl-r Z.

Z)bri Afto#E11161411:LOnd <,

0.1 y 0--r-c6L

Tri,3 M54.136-clEb>cot 35, jitliktagia)91§2

Afnfi;-J-Z.))

< ts 0 , WC Bridge 0

C.otilinAlt/1414?nfatA-c_'.t

CXb, 9 -7:1s < cooptIVORZ-e6Zb&, Mikili6ZoCIN-94M,OiL5 4041 ot -5 4;. t tlitficg 1:: "cliScc.k iFilth2.014c 4 )1/.1 :/

bi 0 , Bridge apkILL-c.5.--03 < UVT14-1,71' ccUgf4--c..°6

*Ctikablltsco5/c1X-4--C.

fibMc.tztrillftJ:tcViclop

L <

LabliZo

5.5.

0 it

VOIVEP

Mk

Syrilcitt

c

to

A'5 1 A114,11-124361_,--cA,-c G-1,Z.4A-M=Z 1175,117 t Via,p 4RiffiA,jaz , IC?

bC

-C.

Q)0I JE.:VallAIL0

5 ic.latt-Lto Nigfo)

0 IC t fj110.0 7°

2,16:a1116,

lc Fia

tLj Z3o)--cutgb,6

410A0),-gsn, 1_,-nt, J-VC-00-CGII)4)1E0

/fa

ts.<, 0):IET-41

4D'Otri L.t 5

I'

ka_E., LA,tsjiyAn.,

-54) ts,c,)07242tca,

5, 6i I- 'JO

1:04A1M0V4i/cWi<0=b41.11Mo.t5

lcE.5,I=MZWL--g-6tsGU,E.t;0Mt-,V

-1,1tsrlM-(766 5

15 c

-E-5o.,,tgokEtMMRKft.W.-ttat-DM

icAtZVAgo4,10DAM4MV*Rt--C. cajgYaiiikACIVD6CciEt ck: SIC, MA-CIA0 cc

>citLtfil. ta)Z: -Dcd-r, 03116)1M5Z.V gij 1E2,0- 71IfilreF:rts tt, ii41,1-4<fto"ix 1- CI

zuffi-0){311J4-E6 Z.,0 ..5-.}011±g/c

je-6.*932st

;Mop

thilK1a-F- 4.11f475&4r-flitipfg cc

TV754: A,X.Cc ttts,

t

1-145tRiiii_l 41(0606/s

tz Lf31:/rl, L.

t -ntODIR

ogn=75, G0606 -s.f1M/

ts tc. 75,-JLAME1 Opt' k .t4,`.136, *131-iiMilE.-"JtfillIfEl IL1 1C5.to) faiitVj

lcfa 5

c Mic

)7114111%,

1 qiifilitiiii±, 2 Tlail-±0*-"Lt k lc CVt

.;11. t3

c

ic <141;Lr4i

1) iii

I15',41N1111)1AFAff,f- cc ts ' 1*-iat&t

---c--, Hurl 44 Lvy,I, AGIARiqf,tiTrWir.120.-A-MN4f1U, 1969.

( 69 )

37 ®

--c, L

(14)

tomamomN*14 M915 5f

±Cit,)d)

0

Z JLA*NiAttidEAR

/1\ JII IP4 ./\*

T**

A Seakeeping Test on a Container Ship

America-maru "

on the North Pacific Ocean (Part 3)

by

Akihiro Ogawa and Kohei Ohtsu

Summary

This is the last report in series ones on the seakeeping test in the 25th voyage of a container ship " America-maru " of Mitsui-O.S.K. Lines Ltd. on the North Pacific Ocean. As we mentioned in the former reports,,,, on this voyage, roll, pitch, yaw, lateral and vertical accelerations at F.P., longitudinal acceleration at the navigation bridge and rudder angle were measured and recorded on a magnetic analogue data recorder.

After these data were converted into digital ones by an A-D converter, firstly we examined the analysis what we called " statistical analysis ", namely the fitting to the Rayleigh distribution of amplitude frequencies and mean periods in their time variant records. Secondly we analyzed

them applying ordinary "power spectra" method. Finally we tried to apply the well known "multiple input analysis" introduced by L.J. Tick5), H. Akaike6), Y. Yamanouchin and others.

In this analysis, we mainly took aim at the yaw and the lateral acceleration at F.P. as the output of the system.

These data processing and various calculations were executed almost automatically on a digital computer.

We can summarize the analyzed results as follows.

(I )

In order to avoid a heavy roll in a rough sea, it is very effective to reduce speed or to alternate course to some moderate value.

( 2 ) An anti-rolling tank (A.R.T.) is effective, but users must use it with due regard to the

ship's encountering period with waves.

( 3 ) The radius of gyration of roll is estimated to be (0.67-0.70)B/2. Where B denotes the breadth of this ship.

( 4 ) The frequency distribution of full amplitudes of the vertical acceleration at F.P. may be approximated to the Rayleigh distribution. And also, we can obtain natural period of pitch from its distribution.

( 5 ) The londitudinal acceleration at the navigation bridge in a head sea condition becomes

about 0.3 times as much as the vertical one at F.P..

( 6 ) In the so-called statistical analysis, we can estimate the natural period of pitch, but not

* rAffai*,.=f,1 flUll 47 5 Ti 1 H

** *AACV-4": (ti(Ti-ii 46 4 Ti 4- 3 Ti,knoTaigyitiLli)

(15)

of' roll.

( 7 ) The record of pitch represents the encountering state better than the other modes of' motions=,

8 ) On navigation using an auto-pilot, frequent full amplitude of rudder angle 'is nearTy about

10 degrees in a rough sea and 2-3 degrees in a moderate sea,, but even in the former case, the

maximum full amplitude does not exceed 20 degrees.

( 9 ) Generally, the setting value of auto-pilot has indirect influence to the yaw angle.

The relation between the standard deviation of power spectrum and the mean lull

amplitude H may correspond approximately to that of the Rayleigh distribution.

In order to represent the mean period of zero crossing, Toas, which is obtained from

the second order moment of spectrum, is suitable, though This, from ,the first order moment, does not make so much difference.

According to the multiple Input analysis with regard to the lateral acceleration at F.P. and yaw as the outputs,, the assumed linear relations between inputs and outputs are very strong

at the neighbour of the peaks of power spectra.

The roll contributes; 'strongly to the lateral acceleration, whether the anti-rolling tank. acts on or not..

If We gut the effect of the. feedback loop between rudder angle and yaw out of

cOnsideration it can be' said that the rudder angle contributes most strongly to the yaw..

...-"--2&

aiR:art UfiTtfWr-fRIt 6: .$3

2. flliffi.optiO 29 4.. AD-g fititlark.1.-31 r..)z Yaw 61,. )3 A

3'. filAi7lCAMOD A .. ... 29

FAMJ?

-34

3.1fiTtftiVA

4 J.

1,)01 AF

3.2

ViltArf tfi VrA 4-2 MT K 4.1110,

3.3 fif ffiliff

if

.11.* 30'

4.3 IIMOgi'A

. .... ...

34.Itilit*O'tt* Lao)

30, 4.3,1 AIM M-tit.G.tftb'kt-03 4-fs

3,5 Pitch, Roll t-3 , rfkATabalitft 30

4.3.2 Yaw

wit,o)

13.:6 Yaw Lk-LA 31

4.3.3 t

3.6.1 Yaw LrEffi

otv.a.

31 5. trli'

A

3.6.2 A- A -I 1= .7 09'4M- 31

3.6.3

4-11341ILVC-"D1.,`C -32 38

3,7 ARM izs ta-kt 61i1TWJIlit 32

561345 4-12 Ti

T) 46'4-1 Jlct,PSW

h 25?)

6 - ADIT-1-0.1.1ic-D1,,.-c 1 CD 1.5.1 Z.SZ

2 *R2) ir_ oiT.4203-N'tffa tHRIMT )1'ili'VATtif

";40

fir411 46 If-MC EI*1.41MARt1;41,Z10.

< '41 125 Tilf013. (SR-125).

k

11 (174,) 37 38 38 lz.1 45f,e.E4z.'1% 108t1 F-1 CM in

I-60-6 I-60-6 t

/-ln OD,

9 ftjaillalf,

OfiTtif 5 17-1 ii, Mc7)1E".7341.,t.:e Zf. -C"it Pitch, Roll, Malt40affilitaEtNATtfib;

, itA.: Id 46l'PTAtilliz-_52--c71.32.lto [: i-u.-Clo 6.

6 A,

tiA04-04-PfAffileilf,lta4-L#N-AIR L'-c-A,6 0,Jf.)9519 b41,114%0).-Y:

±1EN*0

.. , ... 1 1. ( 1. , 3.8 29 29 34 35 36 38 1 2

(16)

IrWr-fr-c,6)-e..,.

zl-cuRI,N,fi"-frintfifitfi

SR-125 Ont*Vr:02-f

ft Vital

6

0.ftlitir.Wl!..0123.-2 tz: Yaw 7ciiv3iitinitgE

orKigdz-1,fi?AA kris

4,. )1fiTtfil5aAntn-M)=111,,-cl%i-t L,

2-

11-74MAiN

rrt

utz:01d,

Acr,V4 25 WYC (45 {T. 12 /El) Oka-C*6. lqirlf Ltopal.LARAVAtc.44-16,--eiZtiTt2MIRI

Sil..`Cli` 6 tob.

<<

6.

- .lift/A04.A6Dlt, 12 fl 2 U

T. No. 1

613

Uf)

Yaw 03f,f,p_...

flfticR00) t op a 12 )=i 15, 16 ea) T. No. 30

35 (1)

L WA iltAhrfAl

LT J3l1 gr.

.3,10z Pitch

opmfqdr.--)10-c ,fi4)

I.

ARK iz4-EIIIII0).0,1St3)-Yff0) Rayleigh )-1fi-,..a)

Li:

Ut.fE ± f&

23i L-c

ANC.

ft,ittlf*6kai.::..Dko'rl,t, Pitch, Roll, grEA

Yaw 4 .203L L

Mil LI-6**

-c, 0))1,{11301f-T(:

kA.,

t

1-203RK-0VA-0140On tfr

Af10W .AITA, 1 tFtli K.-4'43in

s, 6

6

rii-utmoitirmaxumic-- 1..,-cid, mat

1 *47-Ifilliia) 4)0 Fig. 2.1(a), (b) Oz Fig.

2.2 (a), (b)

-r*

AD' O'

IORgvct A'A-7" t Co* Mig -CAL

Sampling time a 1.0 fl),

tr(

Id T. No 1 (800), T. No. 2 (743)

896 .,)3271,32,a0-**f-At R V-^:/1,,,L -c-f-r- 71, 17, -"t b -<`C 90 L, Window W2

0-33-R%,k-*6?) tz el) ofii3)-NAVARITit7, Jo.6 AleoVTA-c, I- 4.2)I.V- 6P-ft

01)31175ta

io E < FM Et (Ds ,

fbni:AIRL,

bi)

,t 5lCUi

29

MitirflPifo,VAVt, ilto SR-125i

citLL.-cm:141-tv...ko

Nei 1 --Atm

P

At

cM,,Ivfi-horto

*Elf, 031:,01J0i-Ifil- -e,, F-1141,A

=0

[1-4 , L'OD 'ITildj).-E-1.1A0AJ4L Rayleigh .5)Iiiinfl

fftcoi-2a- priA (fitMriy-i

7) op.TArcimtoz Peak to Peak c0-T.*

RITA

%Qyo

1,707 AM -71.0`C((MR:* 4 .11-tranAt

Cf*Aft 0')7

7-<7 F

L.AMCIA Iii00140-7'4 V5/ /1-72rib' Fili41

Pitch, Roll, Yaw, NEA, F.P.

ict--30-6_1iTjjo;4:106--

F .24-ArRiti

A) 1.6'1 rfEM1I

Fig. 3.1 (a),

(b)Fig. 3.6 (a), (b)

F A0111{471. (72, it,. fii11-E0fil:33-gdeft

coL

u-c,

s2 = 2 r S(co)c/ ce, (,3.1)

14t. ..,'"Cil-UL"C"1.,60 La) a s of-A uzysi33-cm;

t1:141.7-77:1-tc.

as21(1,A9i.C.Z1.<,

Eo=2a82 "C"Jb 6. ailikak) Gr. coLa-0, (OH= 00 4: iMr- fr))1-34011Ttii- ogi*-efti

3.2 etuiPhifiAz. iqtrmoDA.,

1-owtavapopit5}4t-ilim OD mr-T

Fig. 3.7-3.12

girk. )-Iff a., giffitriA

10

-LC,

t.vo0D-C6.

H Rayleigh . 1ffopjrAr..:Pi-Dflf,, p(H)= H exp(_ 8Ha2a ) 4a2 ;'t 0 4t#15-11,1710-11t -c .J5 19,, HI Grs 0*e-14-CA2 a

<

6Ilt-F0)21)0T'*6,.

..3 #R-1110;0)**ffi. H,A Hrms pt Rayleigh

Ti= A/22r a (3.3)

Hrms=2 Arr (3.4)

L716. Fig. 3.7-3.12

ODtKIIIM-7). .,-Rti,

tr.fttlpfga a

)1-HC. (3..2) A-C1,1-V,-1 Lt.: Rayleigh

11102.2nri-A-l- to (3.2) AoR7fiha H2(7 OTq

(175)

2

3. 3.1

(17)

ftil (3,.4) A01-RfAt

11. ,k 144v, -cli-ra 1.,1z--tfAX*. Jr 2ft',

1

Hrras (3.5)

ofih t'NE11:144z_-;r:L,tz.

--zu-A H1/3, 1/10 RATA1A H1110 4It e=0 .0)

Rayleigh H113= 1.598Ff Hrms--= 1.12917 Hi110=2.032H (3.6) a...0.399H

oR1f.,7357

Fig. 3.13,-Fig. 3.184awatao-72

eitifiono

o ICA

O'C'k 6.

tct Lgratf41.itb Ammo: as

p Cto. aff61111W.l't0D-7'- ft4z.".X -05V16§1, 5,1ft731 100-300 onlE-ck 6 tWf, < liniax.*2.571 (3.7)

mom]

716

t

1, to

33

IF 7 Allq*{§ el-I-N*001M

APIT'W-C1-1 P 0.T*TRItli4t, Toes=27e1/ rno (3.8) nt2 "C*b.3 4171TA

oNtitt.

Tuts = 27c MO, (3,9) rni Peak to Peak -jf-m[ Mkt, T9ns= 27r (3.10) Yn 4 T'AiD

i'1,6

Zr_ mn(n=0,. 1,, 2,, 4) OD w=-0 n

Fig. 3.19Fig. 3.24 vt_LE0**Nttil

,

3r b. R#Oti.,itfifffi7 p

411 To, rf Peak to. Peak (1)-*JMITII I'm IR:Cfl'<tr_4.)0Y-eko

Fig. 3.25FliRoff:1114

crsorr01'11101N%

Fig. 3.26

- 6s

Cr ora

v

)4

-=es,

AliTtfi-ca. m22 Es-=*.

11

(3.11) moni4 --CPb . t"t675;, VEMTK'rld

tt

opMftb, ,

( 170

e r =411-- +76'12 -C2'.5 60 3.4

t}flfj

e

Fig. 3.1Fig. 3.12 iL041.,

1110ittet,t4V5Zorqrp.t.., t;ria4TARri4J4z.ltAdt:!21).

0-ek6. nov4oilakd (mot Fig. 2.1, 2.2k

zM 1 $R1>.4,A3,), T. No. 6-11 tI4Mc...smirit.-..4k

j 5-6 m, AltigAn 3m,

20-30 kt,

t

IIZ1Vib'i 6) 4) "C.

*IL" T. No. 6 Tar,j 8 Ist

iraiT , -T-1131§,MV-111 -) V' 6.

T. No. 2-3, 12-13 73I4IM-C'-'-fb

h 034,0U

T. No. 1 E 17

0.111/4.2.-7).;t ;IA !re k

*IC 20 - -CND

aletg

`C

t 'SAT t

1.-colReitaJ5.1

t-otzbbKillthlatzt0)-Ck6o

lfiliT;i4"Z:, Fig. 3.7-3.12 ,opfEiligjofj115)-15-ic ±.-32.0ffd* < Pip L, 1,,

,t 5 ick

A- 6. L- 0)..iVorEflt,-:itaflft-a5M-eS, 6°

YawP.:4) 4VAtIgliDivc" 1 f Z: Yaw Pitch, Roll!

rf)Jr6tIt

R gfliiir:. 4- Z.:

ikVkitl:b1.01t. VZ:71 hit' to ?,'D ir_jct =72' I

1

bb aTv--111-c2b 1-% 1111t/j 3LIi

Oft.Ntillat:i10-C,,

atIM

to

3.5 Pitch, Roll 46 v4W8A-hpigg

g:4) OM Roll ODA.' I- .5

btv,--Fttt

sec-1 ( TRL-719 sec) oiifir.:*

"C, i:1761A7414ibt,k t3.11A `C'

6. f±lvto GoM IttWIti* 78 cm "C*-, tz75.°

,

K,

TED= 27rK/ IFG-011-71 (3-131

01 5 rr,-LAiD- $/,, 60

T. NO. 11

T. NO. 12 itiwz7joe (ART.

Pl.2) 00A

4)0 "C~, W.*itn 1.5 *Ig

tlit 4) 0

tt,

- 615 714XN:C*-;t:7), as 7)."

3/4 4LiA.-, C1.1

v, 5 t.:ER:r.R11\

*6 50

ART,

T. No. 12,13 Tit

(3.12)

,

K/14--0.67

F

(18)

-io 731', Pitch

b'

iL 1

W4iAttit

f9CI we*o.23 sec-1 (Te*27 sec) fgr-cjb 6 t. A.R.T. "C- Roll

7ATt>

al5 LfAIMAtti-i-ci,, L- fs-..6 Fig. 3.8

T. No. 12 -ea T. No. 11 4: < ci,Zt 10°

1l I1J

l,

fcto 6731', Vddr-Nolti-Lii

-cotv.o.

01-LK.tl'ENIEDVDN)

4, t,4-1T511-e Jf,

opit110-ffi

1.-c 1,, 6 15 vck2,bil, . Oil*O9 Ob.; T. No. 6op."1:frRE'rC6 6.

*Via 2i-ot4014-e, Milan 8kt I1) L,

1,

oV,W. Fig. 3.1 (a), 3.2 (a),

tr.), Fig. 3.7, 3.8 -ek

, Pitch al-tAIIIIIVDIN:

et1112,295

ori-c'N--1- 6

.±.T/Jalta Pitch

. .3-,toz Heave ic

6

WITMAJILPgrg.Mr-LtigAIVCA

at.:2,25b..1-1KM 0.,,AM-Y-5-1dP11*4Crl < 9, Rayleigh , Y-Yfi."(Dg*ti)ff-topa.T-MLR'`C31,1: 6.EZL'a

-Ca

it-*iL 3.8 tri-C.A-4-1.

3.6 Yaw

3.6.1 Yaw

At 014131

AE*-4

,

nE1VrEfril.c,-co6. LaDtc2ii)

WA-4:::kg.j4110 Yawing -c1,0

a,

<

2:-e660 i/Vrii=1,-cli,cafthiceop)j

Pitch, Ro1140-

Pf2VDM

6.

F ./..0)if -cAL L., Fig. 3.3, 3.4 Wc i.1,61

In52.icitt.',-c b>o)

4,1-60

Yaw EiP1 1". 4 PIV 1 --c feed back

ANKt6

fthoig

ftL 013M

oT,

Utz.

Rt. 2 -DOICtliOilERittt-b`CO6t)Z-7-1,t,

v

A bb,60 Pitch, Roll sTopgRA:

a, L0)15

Yaw LrEfflot4nittlge ill 5,

Imo feed back 0,1- L

Yaw iNfrEAVIT

a, Pitch, Roll

l.1r1,7)41 t

tigit--ckot.cvs-ck65

Fig. 3.9, 3.10

.R6LcopcLaikr,-J-ti-i,-ci.0

L .1 5 -c , ,--,-JRIGOD$A14,P3)-Yfi-69 Rayleigh

-

4 P

flaM3, XR-MA 1.7 -c&567)I, T. No. 7, 8 -Ca

ci-Lbj-tic

-ek -2 to tzItzt T. No. 6 Ofl$:Id

NA, TEllirE-1-.L .1 5 t.c;10t-ca5,

-t

E

Vol 7),0)1=1 riig-e

1 47-1/hit-b, T. No. 7,

8 011117c0t4r.

i1;-CL'7',-..Lift i-1-6c,

(t.Lc-rxtgmttlii, <tstz:e7)Immezi,

tu 6 tl.)

,10114ofttffio-#5111i7,001ttI,

0,161g7 Pl-,:Ltzeibic, a LA, ER-410'a* L. K.

T. No. 6-11

IRP1740

1-fL,W<t-_.4,optI Fig. 3.27

ff-OLI 6 L, T. No. 6 Ta#R3faL Uc0-C°

Li-L4tRf.1LUC, T. No. 7, 8 OrEA-C4tfthL <

f.CMZ/b,..Q t.,tt, (a)

To ad,Tm

(h) oL

ad,

-7,E411.,ir_N-1,-c Roll Idgig,`C!):).- <

6.

OZ._ L75. _hilEaDigrit b;

Rat-M.E.t6(Diclri,nct,tc.L711114cc

L. 1.±.iigglLUtltrU7j Pitch ow A-Am aft

OilaMtattopazit L ILK L--c4MiLfv,.

-cto 6 T. No. 6 TaliTzt

6 L-Ls. finfloTiVjo,41105,,Iri

; Isifa LIMMA <t U

L' 6

feTL4)51-<, Yaw 04* t PIRO C..

7 ffij*) < U,ViicAtiliWi 4, 10° a 71 6

b4A4RA

c.ORIfti-c

/I Pitch ic [RA

t. I., Fig. 3.10 °DAVI

lt- -t-ba Ea,

9 1.-tslo.

FeL.;

6* a

< Roll ;1;,E,AilAl-tz:1,,E1,,5 10° fiMoliltA (WITI) (1))A3.

<,

5t*'

F. P. 4,-L- 1.30- 6iJiliMit_E-F-Iiral -CA

l*d 20-30

-0,,60 Fig. 3.

.h.opii< 9016.

A it Roll

MiNsafka, <

10

T. No. 7, 8

t,-14tATRigit> 100 l4CM-i

4 oDa"-ZtI

_ETttiFk.a. Pitch 0.-LL11t-V,,,, LOL L

MiltinillOa Roll .Gz..* ct 610=If9 t[M -c

3.6.2 t Fg-f rl

h ONAIMZ.".-70-"C

A8M01-30%-eit.-,

0

01-EM/gAIMA0af)*b400

it,

(19)

'( 178 )

32

(0) Afl-Mic X

.(d). Vt/.1

6

, T.- No. 7, .S "C.* 41./INtailir6

--CTR.J1VA0tgr:-. 9 , T. No. 9 1-')A-C1,5 n't

inR14410)1filLit;-)Job -,t.:3j(5v._-tl2 -co 6 L-;4-01 1- AAftfiCL

Lts1,,01/t,

u-ctitt.,-cv,

tz oVilafirEAid

±10

L-1-LtIbt-

0 L-i-bitiCrutr-eitiftL0), 670)30),16-fitIt

<,

Oit 4)-6 6A., firtfl

e

ONtIfb.--,

4)113111MT:it

TA-0D-e65.

pr., OWEAPM.

*I's 6 Al

f91.19141)TiV's <, Yaw rate 1-51JaptIy. 61 5 iz:7' -Co 60 Z.: (1) L a Yaw PL:fej 0

j-EIC6

IN Fig. 9

,1111),

Yaw P-_-71,N-c_11,6 T. No. 7, 8 -Cid 17 t11*., 1" 0

rz I- 01-Ath11 X -CILOM 11111.111.f11-t.:4-A,

`C Yaw -*Nat hp I., tzl

4-4.-_51*-. To bl- <?-x.-2-cl,,6opvi bt:toijA

eT)10/sraf,

6

4-c_tbii.6.

lam 4) 'A.".tc.1 5 in, Yaw fliguti*iiirWiL-NZ

u-ro

**.-c, A-- I,fP.yozt50-.

nfirEfq,:d 4) ArklIN.-1- 6 b1, Yaw GI1-15;6'...91-47-1 Lr.,*-..7. 0

1-6.3

*f_ hIgOral,=-DOZ

t

---)Rn*())k 6

b-1014'41.--,c)t-0.kTNJT,N,

off?, (Fig. 3.3(a), 3.4 (a))

Yaw t htgi

ItagNaafi7);Efi=dr!ehv: < ,

1-ffliar(ToD.Mthilbt. fx1),.

vot, < 33thtt-c r), Fig. 3..24, 3.27 TRY-CANE.

filo To tilkiiDeb"ct

-C Yaw 0 To

21)111

iCt<71,-,.-cv,60

ArEA0

id38-1Eot

-e, Yaw o) Cr, I1t-r''t

=11f f:)) 01g -a111:1(1.11:131WALNICI1A0 j&ntstilt1E7);fftbi-V-C.6 ,

Rig

Fig. 3.10 7), b 6 X 5 '4'.:kr-31047 11111EA0Tnvj.1,,o)it, L.- .0 ct 5ilEifi)01,2,E$A>klakRi.,7::::mz..-t-caeyr,

L.V.:16Ltbil.60

1- A frIT ffiCt, AIM - <

-a-CVN67)t, LiIiI:...-. 1/,`Cit'&6DX 5 t Lt.1 **_

-Fktfq `c -§J) 044 0#VALA

rie,a) t/*I'llbtab 6 OT, gINKTA.5)- t-A1t-c-cM

0t,T191'r.k

6.

'rk 4Z: Yaw it-a4),Titv

Mlf

<

71.9'C' S , 3.5 31E.,<t:_. 5 t.cicatM 1:

6

31t Vt1-0ZA7);331.bil/tto 6. Z:0 X 5 >15T-i:

To)

1..`"ClaRTAttmaitr.9mv:

NKtitio.T.At&11175It

Lgakt 9U.<

1.'ARtfi-fift (wL>0)

ma IV-0tAAi-Dtt

3.7 WiAlr: (I' 611114/1111IfSM

iRt11144z1.1trillelk*1.3.-C Pitch < f<c

M.1ToprillfC-FolI75, L. I/ L, 5 1f...

716)T, MAT())

illifkiNARI-

szat..t..., Fig. 3.28-3.34 dfgaw)

ktx-roDERic-70T, ft-AtivfLrafoAp

liTt3<trAlthfiTtfifTil

tz OT 6.

[1:0)i-frait Fig. 2.1 (b), 2.2 (b)

5 vL-fn 2 la 11111XX4V.R.7)111.bt 011T1 T. No. 31

34 11eidt4rliV

< , 'Kt 9 ..6?0g1:1- irgi/ Nt 9

6. 10,

4;:illi t'Vfe.it 6 Z._

6o)

t.j1GMb.<

j, Ron Vti.>/:t1,b

Fitch Id. L <

60

Fig. 3.29,.3.33 0P-6_E-F)75tr,f.L

G':'"C_EL6 #11',4C1<-1.AL-Clis60

0*0 *a I) 6DZiti1111)A4t,

Wr'A-JMilktkldrs) 0.3 1111A-C h 6 7).1, ,.f"._tivt Pitch 0 111AJ-M Yr- 4)1211.00 T, iect E.717'XV4.1L 'Clo 6

L73Ii.j7)60 jzt-a,, Heave 03-SS

Liu

Wi'ld-f051M3111 1kbI,

±.Ttnal0è y64

1,, c.

Ut,Pitch bl*

b. -2 izci111tz:Vi Heave

1dt

< 717), 60 7i,a" Surge 0We ST

6&11,hiaq e-AtfA

1 -CU Pitch, Heave

< v.<1-C4r1111',:iS V, L5*.

<t k:-..4,07.)1 Fig. 31

35 CO"6

:EIN0) 2 A-T*t:te-1,7t15Migiil.Or

(Longi.)*0.3 Cr (Vert.) (3.14)

orAfro#16 ", flYtfi tr;

fAA as Tldse- b." '2 *blt

,,

dtkilit0 btT t"

ir.:.,L.,751t faaDd 1.N

1

--jy,

-5 , To < , ar, , , , < `C

(20)

111

geffiTaMLIERiffirkoWnt E 4> DY,

-C101-tWl<t/64),0)A. i-1,60 as (Vert.) tt 0.1 g

19,±2 (3 .14) A'0>IRIg.,b>k 6 4,, E

1...-CAVs"Ck6 5.

Mtit- 0 fils*VAfttlin-U_E-Ftrritito 1/3 4)

LIP 5 Z1

--.00iNg-c-,

g ovititt4b

11- ini`t/J110194;:f 6 _ETD] ait

** Og 0>

61111-MJIIiiNtak-Og. 73IICIMCV.

Vbt-c41-,Zcffiftit

,c; L''CL, 6. 14VCM 1 §-e

K't.tj 5, AoR0 L-

x

t4-kbzo*cz: 2tii

VigiNze- 6tra 11)10M.V11;t0 4))31.1b 6 OD -c'711.3 YRVIbtrub.lot,-..N5Roajr-giC9r <.,

Kft.,-cfapaftt,INLN. Fig. 3.30 07.,

I- 5

a.sRiL Plar_tatii=M1>M2) 6

V4/01V) G,P10=98 cln KA'

-t0,70 tva

3.8 fiMikr.lorkmk.=tVIMI(ZrAl-Z

Fig. 3.13-3.18 oVA-frnilik.E.6 L, Yaw LK'

0A.T. fa Hrms ..:hozrAfft

0T-Afig. [4,7_i_li1 615.1%4 t .LLK11431A < e=0 oTCtiin

141%L*--) co'O 6

Him Kt 6

< 67)1',

MK tAtInnoVEilo$01i7). A-fiR*-e 26 6 thb

6. aim

rEig t Pitch, Roll, _ETV

i'llk-NtkLKIYAZ <

6. -.

-0D{R:Oevi> C..0)

5 truPi33q-ii-reitat 3-3.5 oNA,Lv*.-..cal,N

I

RE1447-_vtt tc ARM.% as 167'R

6.

z: tic:

a as t 13.aylgigh

aprira-f:

6

Yaw LiIITAV.:00-Ca 3.6 tiii-C3I''<1z:2: 5 taot t'4EL,

&TN, 6 5

Hmar 4bl'i'llreti X 2< 1C-4?-o3>k, 6

Citt.Ift Fig. 3.12 O)7. I-

4,} 6 ct 5l,

tWilgotiffoffirtb-K-1.0ize1Yc;a15 6. Roll oA

.4

(Fig. 3.8) Ka

EvutffiltobIN.

,

toe/

61nUttn,t 'Mtn

5VIVA t.'"F 6 tz MK 3,5

'0-"C A

9 I- 72\o)W1 Roll

LfrilaftLtIfirct,,F6,

Ll'z4iiirlLfzbI,

kt:

A-PiTtfii7 01-4ittt;

33

331biVt'L, Z.

1..gzilig0)Uip0.0> Rayleigh 51-1ff."--.0)35`Cite)

*te`C' a-71 sto*Jifir:t.1--6fzitg

a

tc7j, Fig. 3

3 12, Fig. 3.32-3.34 _%0>fe,T

LF16 52: 1) 4). Sr

<716

5 ir_Zbtt 6.

Fig. 1.19-3.24 aMMODATIMArel0Draft-C6 6.

tf

v:A1:61- 6 Afqqtrria t., .\b. 71200)731. 7.0.14 19 4) 45- --t 1 blia< , Ilk

Roll gkno T078f90)

iLt

`C. Yaw,

frEfit

t; Pitch

ODEEIA7VgliCf-PT7540fgbIib k- 5 to vt5640,ufas,.

ttUC Roll

TVLS

tIlAWMPAr-trif- L,'"CLN6X5TZ 6. lATUlit,

ItAbIltM-14 -z753./A-T4111JJ>k, 3.10)**4'Ca2iC.

71615

NOM-\baRgp/iN 47: 1 .9 dZif L 'COI 5 it:.

t

t

/,-...izi oDTMItA

73IIEV L..-CliN6**Ka-t 5 lo 5 131%bIk "c 5

bIttarlo Roll fykkgyv) Pitch 0)1114tMg,

f"-E-rbnitto):1411:JIift 2, 3 ODAV31,,-c#

TiLA- 1..,`C-3 O., -V'rz Peak to Peak

a[AmOofr-c-,

t Pitch op Peak to Peak 0)

w 1RsbilN

1,,t4le)-c-35-_1,,,, Li 1

6

RiLch oliMiCtMtfttti* 6.6-7 t),Mfarf.j-: 7'

ftt.

6.

1j,...E0A1-1.0 4> '5

ogflo-

Hg. 3.25>, 3.-26

as ar, es er

6. sit se

(3.12),

MC-s.

riliFS

t-DCI10iet3LtUC CrEØl

'co 0-ek

(3-12)

Dm=to Ltriotz:L

4:71

L-1.0 s=0

1-ti-Dt, Rayleigh-lff,l,.:1L,*E il;t1-0 6 LI

iCt 6.

Fig. 3.25 "C., Yaw

Os-5r

as= ar

ilk' 6

_Ea> X 5 tfAVfMcf_TELttfqf

tff -c"t)

E4

MffaLavi< Sr

1,9 A

b>)- 60in I*

1111E0

ti-Dt, as) alAiTTV.03)-40=:tx 6 zz 734-p

Lcotg*es,

o -c4tvN .,Vt 4.)

Lfillbmi4ifigt*kt,

4 .z>, e 7

55

o1 e=0 05)-yozt 6 L'

Iffit6 4)0Y-Cittl.o0 Z''..tt '0)TrTElal4C1

k .5

H

7,

, ,

(21)

34

5-.L0 Fig. 3.13-3.18 0 a

I? 0[3lifq,7)I Rayleigh 5450-)Mir- ,'"CA6Z."..Lb>rgATtl,6i.DO-Tjb

Yaw LfrEA0 < , ar

i)J.1, 1.,,tRiprbt1.1,soit, 1- A

Pitch .-ca;E-0DMItUt1M,b, ,

4,3

EIA OWL Pitch

,Yl,6fftltF0b6

e

C CA-Miirii1gt-ct-Y Yaw

Dt14- g,AX'=7-Ag*

-c4-RoD'AR-enZi-LtiglitoTAHOrl=r"C's, Yaw

tov-muktir, (Lateral Acceleration at F.P.)

)ktt6fitog-40);MN-0)K9IMW, iMi*a030)

4V451.1t4iL-1,N-c3t.--.6

4.1

-2/17-

-31-,,Vtfi

<

1.8flicrA-J-61,2,./JA,P'

NW 0A-*-.)15,

g

rc,Fuovvi,

Tick", ally)

J./JAY

03-1a1-20A,

itTAEV_"1.o.-C1141111icA,'61E.2,3L.17,.J7114 710 ..4,7.1A-3-63.rit 0 7 1, Apir- -fp, < }DA-J. 1

0%

1, tz:75 hltfii-Y(t)

ZMitfl-ek

k x t(t)

y(t)o,

S IC y(t)=

yi(t)=hi(r)xi(tr)dr

(4.1) 1=1 1=1

ttviDt,

k ( 180) x (t)=[x i(t) x2(t), xk(t)] (4.2)

x(t)

vi(t) iLA-1- JERI&

H(w)=[Hi(w), 112(w), , Hk(w)] (4.3) ,

(4.5) A, (4.6) Ab,

- -i-1,-7c'et,NRE.clZi.,,VAtc *

abbL,

11/(w) I a = SIN(w)/ Sx.(w) (4.7) H(w)= Syx(o))1Sx.x(co) (4.8) b> 4z:, (4.7) -.%1Z2s5t. H(w) , (4.8) b,

èj H(w)

W.t.o.o. 1-tht-,, (1)

(2)J,t 751 Gauss it h4 Gauss 3Efl _EUr

(4MIN'ts-fr,c)P1,7)-

Mt,G,

l.1...`CL, WA*, R-Z-7NZCP6

co,4t

Itt.,<"C Gauss j, 7c0ffiPiL1E,

Sclqilidn/fee,

-C7)1). W.%-b, -:-07,1z1MRfArc.-4,-Mtito) t f<zi-D t, Coherency NA tt 72(w) Sys(w) 2 / Syi,(w) Coherency; 72(w)=

S(w)

/

(4.9) szx(0)) a 1 V,:f16.

±.0)15i141/

IsAttIob`Citt,ViirErCt

A.))

A-),)-3 id Gauss Ag,

k

`c, 1:EV37MoDRIvii-e).)-J LIIIkMM (1- ti'D 0

E[x(t r) n(t)]= 0 (4.10)

, Wi3 y(t) riopi:ht yo(t) n(t)

t)Afi-ek6glqRafit)31,t-c-ev,6tcebotViD

eA-ek6

!qv=

fitffio

Loiciti:1,,tob;1,<, 53/*L1..,'-ritt

r'7 A5-;(54L3E-51,,`CL,

Lb;fi6.

--ctimo 2',5 6 4'1C-n±."-F-ha < #74:41,1,,.(E14.41At±*

7070P'PrAA.

Sxz(w)=

21-6

111)301-kfticr411-. Sal(w), Ski(w) S19(w), S22(04, Sx2(w) Su(w), S25(w), S55(w) rxIIR,-At, (4.4)

Olittilt: T. No. 27 1t4r47r-41f2t.c;Itlig0

0Tk.

6

, Wd7 0 sinx,o)

6). Liiitts MililAir_

L 0) P A Sw.(w)

-e, Fitch 0,A7li ofiggy3IOS

Syv(w)= H(w) S..(w)- H*'(w) (4.5)

6 Z._ L7Y,Litb,

, 5b,t,6

Pitch x(w)= Szz(w) H' (w) (4.6)

Roll -cqvci2,,,,,Attilog610,5;<A.,,-ct.3i), Pb1 Z.: L bI`C'

Lid.b,A4Lbb,67). t:te

60 A F A , (3)T6t4M-C

9,

-Cu' v< n(t)

(22)

y(t)=yo(t)+n(t) (4.11) Svv(w)=S,07,0(w)-F S..(w)= H2(co)Ssz(co)-1- S(w) (4.12) Sy.(0))=S5o.(e,)=FA.) (4.13)

-c, Coherency a,

S(w)

1

E/ S,(w) (4.14)

r2(.) 1

si,, ((o)

, Coherency it, 1 1 h Hic.40

A .7],

e 6

V:L,'..taCoherency

t,

--f--s-i-tntf-c.gb 6. 4.2.)J0)%fit, Coherency it

Multiple Coherency 72,(w) 2 U-C, Multiple Coherency; f7,8x (w) siy1(w) H(co)4(co) (4.15)

L&-J-tta,

7. 1zi..-2L, icrE.AcfifiRl-La-R--tuD 6. ±.63IVET ,z1, Yr_

.5).1-11b3W-eN,'-o'

ts to IA

b't.'<"C

3Lffir_, Jb6Ngt, T-,04rW3F.P.t Ofilft 4, Multiple Coherencyb. 6 Z..- 75.

6.

Z: OD 1.5 AM ffi-bI4Ws.trf

Gauss

agiA.NvIri'iNlitop/A*-cs,

11Z-*Vx/i

apt.(fprAow,,,,, 5 Multiple Coherency

t4riL

-c-, 201 L 'g_tt '-4-7I/±,

t,LitiLTA

31110620-./73>gb6,5'E r3,,

tEt6b,E 5 t.ilEoAblflA

6.

Tick'

ofilot.:*{-tM.A

7 1- 0-)1&&11i 5 7c-olA o7,./37), 011-6:1R-4,A5

LI,,5*1 -eok6=1*Z0).),

x(t)a,Vii-Afg

Y(t) j- Partial Coherency I SW.12...1...k(W)12 Uoi (4.16)

itU S

7 ...k(w)

Tick" 4Willotz0H-1-A

7 1, 2,-c2I5 Z:

/3P7,f1T]ii,

LARErV4M 11.1(co)

S

j((.0-=- Hy .12. (4.17)

.,11.12-1' -40))

LtI-C 6. n1.16) z:-_o

5 I,: I.-club

'Ma)) 0)##ZU i(w) fgfilTIYM:teb'cii, L.

iluti48) n,

x(t) omiiimttolii6ratr.

oiftlijo `C, g1g. (Skewness, s) (Peakedness,

b'flEfil-3,1/4)regbP)rjffi

x(t)

omon,

O) 3(' l' 0):1'

Afti ps

..opfAINX.--S (0.2)3/2 (4.18) P i] < 4 oTAfff

P=

(0)2 (4.19)

AntIt*, A1EN-ek6WdIfta o,

.z)Z11E-a 3 <

6.

1...1.1 to) Gauss

6Pilitt.eb

4-2 nifiO>VIIN -P7-111011,1';tit:_fliJapxRPipWd-J L -C. Yaw,

ItaM1,1" .60-61fihriiI1A2 5.2, 4.1 -e7"-fLjr-I- -144Pfixkfill-, Zlil, 69**0)),11-1

)3R]ipj, Fig. 4.1 2 -DORM

`CJITC ifft:-Mta,- -7111y311.1'ZI-t-_xn1=17)N *1.`c,

2 -0)Mill.)J4Z---A-i- 011W11

td-J1 I.-, Yaw IP,)7

ut/g-tr, rEfilyoJL

-ca'111

iLatt

h-. W.1- 6.

2l7

7 4 A-*

LWRS--ea, 7 4

tc4.1 ct J.)7

LtaNnif

ofze,mIt

t P 1,1 ms

nio 0,5MiL

-7'cr11,1Rivrv,67°I.

A c-M,

RI < Mthic W2

MIjE U C 25 za-totte,ogEnz 6

4.3 14-34hoffill

I.

Aitgt>e,561::ez3K"..-31141,.1.,1Tr,,

ord-zrzA0),17), ,

Lopiazimzu--cv,6 EsiD

P)

P4

7

67Y',

(23)

-36

( 182 )

Table 4.1 Skewness and Peakedness

ICJAtkfcM`c 1 47-1N e,

gftfl-it-c

N6?)-c4v < , .f*L L-TV11.7)I.RvN

2,-)7

t.-;tt-_,4--Doarib.,bonm*4a

6.

(3) tcte.L., Table 4.1

6

L T. No. 10 0*-A-0

fl-ktivocomri.z,4.).Vt'.T. No. 3 ,R11.,-...`r Gauss AR

0{ftt.

.-J(5121Iti-c-c1/46.. 7c.a) '41T.6-J- Multiple.

Coherency t,t 7 -

F -5 A 7Y; tx ICA

ractit-co 1 et

fth,002:

b't-

li

1V4-a5)-±0,

2.$tIltiolVili317131)Aiz:16P-A-',

'4!,

k

,

filTA0 7

-tE0

4, ?11/`"-C- 6 50

(4)

?kir_ Fig. 4.3 (e)-(h)

c Partial Coherency gjjpi*JtEO Multiple Coherency OM< 'IC 6TRA

6

Mbnitikk34---j-6ny-44) b>)%zi,

311.00_1tvi Roll"e'S', 9 1...b.)VL.N6 (Fig. 4.

3(h)0 Pitch i,t3R < , (Fig. 4.3 (g))o

Yaw 11)6MT-q.)kitOlist> Roll ir-R-

6 L4'6 60

tz:

Rudder Angle a,

IN 0 ig Mift

zz

fc 4.411/116'ir_ -c 1,,6 kl a Roll -CI' 6.e Its

6.

A-R T. 'CiP113.Lt.:**r_ 76, M.I1.%:410,6)a

ICIAWM-RibotRIIMIt

fetArtl--6 ,

aman<, ANDBM-1,

tt

1,21:Pit

L, 201

Roll A, Yaw Ail

,E65113/k011 l-t_-tc.Y,TJf, 6. 1-ilb'6)Jaaq031M

ataVAZ-1:Altvt, hnAlko

26.faft0jciA

1 SKEWNESS PEAKEDNESS T. No. , I P. , R. Y. R.A. L. Acc. I P. ' i R. Y. R. A. L. Acc. 1 0.12 0.05

-0.02

0.16 0.02 2.91 2.80 2.71 2.70 2.55 Il

-0.02

-0.10

-0.40

-0.07

I '0.03 2.99 2.64 2.62 2.10 2-91 10 0.01 0.41 0.05

-0.15

1.51 2.90 I 3.31 2.83 3.02 5.32

Note; P.; Pitch, R.,; Roll, Y.; Yaw, R.A.; Rudder Angle, L. Acc.; Lateral Acceleration at F.P.

M191-

fill-o

Z.:02i'dfil.

-g 0If,t(Skewness), (Peakedness) Id,

Table 4.1 lfOHO

52-aDVTIO,111,,o-clfiZ-c71krst, ,

Lopfa0VR

6 L., tiT)kticf-TP110300EiliJm. -1,110041,,

1-61

5t-caitAblr-t1.-c-le, 60

Wr-V,P;tre,iic,

11011aft, Yaw 0011 e7

it-Avs*

b> , LC)

7'31-ftiCH:07.LL

072.-->ony mogAt

4.3.1 hia-VCJIIA.1/3ditODVALO;

lid]na.T.,t (Lat. Acc.)1-11-1)JiL, Yaw, Roll, Pitch

frEfi (Rudder Angle)

grf,

A

-CI T. No. 3i-j,

Oi;tiCild"

T. No. 1.54; 3 T. No.

LH 1.;t0),Tb6., T.

No. 10 Q Multiple Coherency Fig. 4.2 T. No. 3 0 Multiple Coherency t. Fig. 4.3 (a)

irJ,J-1- 6 ,

ruzvkir

0,7114117.

(Amplitude Gain)

Fig. 4.3 (b), (c) l.,OW-11144

It (Phase Shift) Fig. 4.3 (d)

7ett,0,203 Partial Coherency

Fig. 4.3 (e)-(h)

4L-4-c1-0

t.

-1j321-

1 5

(1)

Table 4.1

apiO30)6a;:(Skewness), 1.

FX

(Peakedness) Ofat'S2, )1e7 A

AR

6.

< 0)*40SfilitIfv,,0

optIRY.0XvtI

v,b./Jidt>ietarur-c4

io 1.-1

Ao

T; No. 8 (Fig. 4..3 (a)) Wit L.

'.*...t:-'1VJA4_1fta)..

7 -

F A (Fig. 3.6 (a)

t> 2

ilhaAa0Mft

l'At1 (1) Tail":17,:k4-e1illoVA-_-tiZ,<--c- Gauss ig D., I_ b. 4). Multiple Coherency 5

t,

T,

-"t 4.2). , 0) ,

(24)

roZSIArac: w4/g2

Ltb,,"CgRefAlloMMRag<W6TUratt,S,

6.

441i:I Roll 51,k-owsgov,,FAR

ttclY177:i-ut

OttV-eot4vc.. Roll orc:ISTAfikoffMaat>71 I) tit

LA,LZ:iy:MiTCARI-Nt 4) 5

,J21.111</ii-ctatoo-car'sk,,t.Lt*.`,*_

140t3GZ'AllItto&t114Plia, p4a0)

Vili,lnalk4-1)11. RolltI)Jni:Mck L

411 71' 1800 3fik-c,.ts

-c4, 6. Ub,Liair-7,'-`c,

#1*ItottZ-Aavig<, 91.1k

A.R.T,1134.19)

tRiftL 0)11:1367.: 4,0A-FAI0) spi

fttl141±7Y' 360° Orlitt-C9R-55NIVE0r6N

Li-1,

0Dit,mfaiiiiavapthoid Roll

Yaw

,'0

4.3.2 Yaw

Yaw Roll, Pitch, ht-A:k- ,703

*It:*

f-tAr(V190

1,-C, T. No. 3, T.

No. 6 '3,ti,-,-C14i.111- 6. .A.A.01 5 lL 7 4

FA% j5 6C-A Yaw ),I=EM L

1,20311.011-fr- 71 5 a) a ,0

u

ifir

-civx

-caz:

L'cvs6,, T. No. 3 a

amt.,,,kfovp, T. No. 6It--4--VAe'lliiiltr-Col56. T. No.

3, T. No. 6 0 Multiple Coherency

Fig. 4.4

(T. No. 3) is- Or, Fig.

4.5 (T. No. 6) 0 (a) IC,

r-y,.)-j 0 Partial Coherency Fig. 4.4 Fig.

4.5 0 (b)(d)

Amplitude Gain

< (e)

(g) Phase Shift (h)

off

Table 4.1

?kat

L73;fi 6.

(1) Table 4.1 2,.)1 L `C4-A.t.-.. 3 0)3.8f2

t"'7 AttoNaM16

,,:oftitto

Atir_l_i-v-fira-bE 5b,ltiliVI-TX-Cittir:co.

Lb'1_, 4.3.1 T.

No. `CItt, iLl0MT:et

I-it11/41Ithlr..)f,7A114;_-1_, T. No. 6 cAtii0Oil

Aita

(2)z.."

2 -DV-PRO Yaw 0,17

FitflifEitiOD T. No. 3 iLlit 3 licceirv<iz.

< 0.2-0.3 (1/sec) IlId-OAAgifIll ofthiL,

X MFMnfill1Vr..t , 34'-V-1.-,17

(Fig. 3.3 (a) T. No. 3)

ts: -011.5NYE 41

T. No. 6 cz:a, gormiroAv:

37

`>.b6

(Fig. 3.3 (a) T. No. 6).

Multiple Coherency ..jz

L, witgart-* CD Yaw 0),,'

7--7

A-* 15'./-02--,0-769266FatE0-112-cit,

1 icaic3d-<,

*It: 3 -Doilifbt.

,

Yaw .0)4311.4aa-F-

R-_1,,,':

1.A>6 -T-FON,,firErla 0 T. No. 6 -ca, Multiple Coherency id, gTCAopii)f-c 1

V:-_TV--C,i)k 6. L

lt)03

L,c 3 0;1113.1-).3141.11:15-1-6

foii,

..izttbial-k,soph',

60ltihiV'Ogiiti-C45

Ct,1-#-RbarE4L.k

0 1

Partial Coherency

Yaw 0,t 1)M

to-stift- -ea,.

L, 3Lf T. No. 3

PA

7cti,t4rgiL 1

L

b;iin

6. )j Pitch,

Roll 0 Partial Coherency Id,

L.' Olgatdik-CA-.1-,

0.6 Lgt<,

0)2 <

4, Multiple Coherency tI 01,j-ld---C4 4LIA

Yaw GDWJI/'

-r...)ttu-corEAcDPV-Ir-ri4fta,

et>mtl,6. (Fig. 4.4 (b)(d))0

t'L

ef, IL 3.-"-`7--11 Yaw 0 r1,9 Id, 7

4cw/17,,,

&ir_ T. No. 6 0 Partial Coherency Yaw

0.,t 7 0-alikokLIgNiAik-ek

RA b,iLfrEfq

4:-.1tvat*T 4.), Yaw idg/MiVaii-CTE110

atiffAn

..'SZ-0---Clf,

Lt.

(Fig. 4.5 (b)

(d))

(5)kdi&r(Ftr:4114fAttiti-L

T. No. 3 0*

gMA0fiff-C

03<a),

la Roll Pitch

0g;',g-RIEctITA-1,No Pitch Roll 0.KtAik011-1)3

I-Lki-- Z1.51,t Pitch 3

tz5l, Yaw 0,t 70)*

igirmit,fm

offol

Pitch 0

coufl

LidEIL-Co

L. Lb4<, Pitch 0..

511--i.L Yaw 03.,7 00.0.0ffit1ktE-1-6VA, Partial

Coherency tl Roll

, IMMPATII

60-cab

5. ,..0{0ild,

ATtfi4i0)1,

<0Ü

tt,./z.,,

Pitch a,

6p11.0 0

01-tT11 L`Clo 6

3 fagiLitbt.,

7C- OD

5 vA-

Lab.

Yaw opfaktAg; (di% E

(183) , A

f,

1- A ,

-*,

(25)

(6)Mr,-is- Nb>, A.R.T.

foj L,

CT:

ct 6 It iL a

ti411---fsv,0 tztl

Roll omoicizsTima, Pitch

U.ftE.-c.16<

Roll IAA-Am 7Y A.R.T. 4L

"C Pitch

yCb 6

4.3.3

a

16

2 ROW-10-43PirCAPt

-rk-.-AL-ko),,PAitillrf 6 L' L

6.

Yaw, fAhraftbIlfi

cr)PA31,.. 41V1-01 , ofiLio)),.17 .Jb' al/sot

5O

ULifrdT.cLx

Multiple Coherency

a, lak5i-e5'iv,,,WLI,

120-615-"eki9,

7C 0 AO

ffflhilt> vx-e 7,

5. MT: Yaw 0)44, giLlitti,

L c,:3111- 6.

Yaw

1,itLf9J,)3a-c

1,, t1, ())/±dJIRliffaca, 811 b.4:1* Feed back

loop b,&5 ,

lJftUClcip%t*L

1.1c1*7

-',Mop ttotAgot-_.eAr_Fr

a1.5, JO] t; ))" v'7 AtioDAV, oDb.E Nditicc.IVA-LitTIPZ-C" iz".3Vci-G9;f4

ta75,00-C?b o

5.

1=)hohTtfiir_.t &69e,MC4.7',-_.

XX-*cr.hir

ARt

L..

a Roll 6)

IChAiLK26-cvorek 6.

Natit

2i, 6 bt, Wrf'--,141111L 0)50%cr.

-cfSt141t 6..2,,V75>h 60

Roll OD1V1*ffht (0.67-0.70) B/2

ilt1-61:ThifeA1t Rayleigh 534D-i.cogiL.51 <

cr-1311% < 1- 6.

JZ-C Pitch

fli6.

(8)

liJll, F.P. 0)

_E.T1juagta)g" 0.3 imaicitt 6.

(6) WitfiTK -cid Pitch offIVC.thja.5)- b> Roll 0 WiVai]htiDb, I)

(7) Fitch opiiernifg.10)aniL < L .'-kLNO)t17- 1i74 4) <

( 184 )

Yaw idfiP/10 iY9cr_ -c,E,Rj-5111j1fit '50)1ff 19 IR v, cr-i-Igt 6 P..,0§4, 6.

71-._ CEHL,'-C-V,6**, htfl 0

fkkicid,

.-;1; *a 100 11M, hiliMa, 20-30 Ohl

t';1.1,,s7y>, yg.x*-c 20°

a6L Laa 1,N o

OA ORZfitit> Yaw

utoo43-cz 6.

(ii)

1,0ttiffril a s

1Rilgo)31.V.4firi

.1-7L ofilgfat s =0 c

Rayleighi,-)-I5oDr'R.1iz.."i1-t-6.

F -LAMO et° tIr P A TSAWIL a, To2s §1;61.-e&56b1,

Tols -cttkiv,N.

hpi-61.Abil;Igt, Yaw op E L '-c=4*-.

gbift-_int

oprAlct#Tcr_.3M,,.

kaVIA)1011/.01r-A. Lfc 21) UPIIITglag)§1.0311;b Roll -.3b , Yaw, Vfi5btZfAUz.-.--, 0M.%

a A.R.T. ofipitcp-c.MLL,7"11,.0

L. Yaw ab

7 -

,

Yaw

mattow.,,attaffLityrjf,6° Pitch, Roll

f4311MiToctkt <

tat!

o'DM

31.Itttlid, Yaw (1).- 7

ir_

61CArcfd-d-ca Pitch

1,70j

1". fiPTIT:

Jrgtvg-A-iL/636f14,b>

h i't-i-c-cvs6A-109.414),J56.

6-

k fr)

U IL

offt,n- iT:fflli,t-_0)

AM#141A+tni

FACOM 270-20 fiT#1-MiTtfio 7° 1'1

A a,

`c VA Z.

141:15VA (VittinaiVi5)

Wfl,q.,--topic=02.taba,ttzto),R3i-MW0

ci

SR-125 CJ-4 lI

< 'WAD 'I:: 4) 0D-CS, AD VAEldilttPE-1.15 AIDAC 100-8 ,k ffikot,:f1t, FACOM 270-20 ..NtlEhl Lt. )3 vs t-: to 1::

H2oLlirtillIUMT-CLISIAiok, At 6.

4 3t

1) /IN1111WIL.,

.lZCilaa

40593,".-)416

%Tf3tTORS-, 8 t/5 2 =3-, 1971* 3 A 3) 4 (4) (2). <

0

(5) 112) id, A1

(26)

39

Inc., 1963

Akaike, H., "On the statistical estimation of the frequency response function of a system having multiple input ", Ann. Inst. Stat. Math., vol. 17,

1965 alrlig-SC,"4, 11

-znfITM0DAR01:61-IFI*10,4.-recZaZ 125

M*0 44 4- 6

al*,

05S1'40JPOPIlt ?.XTc P' -I

'

cDFLFfl", 19 AKitgi*- - Ati-VtM 131 Cfn 47 6 11

***,

" =:/

e, 9 :It,t7.31tfetAttliEVAR (7, 2 M)",

hAitfigA0VgAi*, 40 8

4 1971 7

kzi6- 43- Zit& iv= MI- 60

3t**-73", EI*4.009n4, 03-tff3RZ 125

S.', 1971 4. 3 Tl

*inoprr4ltitic [At 43f3t*S-Tr"

Fi*MAMi9tte,-, ijf5E**1-gf, 157 1972 4- 3

Tick, L. J., " Conditional spectra, linear systems and coherency", Time Series Analysis edited by M. Rosenblatt, (Chapter 13) John Wiley & Sons,

" 4)

(27)

(186 ) t-o 10 0 0° RELATIVE p5 DIRECTION T 30-. NCOUNT. PIS ANGLE f _12 0 (=IL 10

8-0 I I I TEST

No.50-DAY (in DEC.) 2

o'cr'o."0,0,ci ck ass 0

0-.0- 0- A...0,0, C C-0.-0 )0,0 ,0,0 ,o ,0 ,0 /0 /0

Fig. 2.1 (a) Sea State at Outward Voyage

0

-A

7WIND

--6- -WAVE ---+SWELL _ -4-,.----1--4-.-4,

-

, . . .

-\ ..ft;',..,,,,,, s-4--W 44-4, ... 1

Ii

11/11/11 1111

4-1111

.)5,

1/1

-ENCOUNT. ANGLE 0 0 p1:5 w ,..., 3-s--

-CD LU LU 0 0 z-WIND

?-°-

V))

,---777*--7 No\

\ \...0-7b***7

W cc -WAVE 7 7 7-7 cv /c, b \ -o No

"6--SWELL 7

7 III? p,7

/0-0-00\ \O f/t \0 A \CI D

5 10 3 4

1111

I I I I

11/11/11

111

15 20 25 29 _J 5 5B 6 7 8 9 10 207 1 0

cr-o-000

(28)

LL," u_ 0 111: -J LU 0 RELATIVE PS DIRECTION 30 uJ cr LU -J o ,w 20 a 10 10 8 0 ENCOUNT.PCP ?°,,/ ' ANGLE 00 ENCOUNT. P 0/ c21, ANGLE o TEST No. SH- 30

-L_

35 DAY Oh DEC) 15 116 -17 40 45 18 19 20

Fig. 2. 1 (b) Sea State.gat Homeward Voyage

SO

--L-

55 5a

22 -23 :24 25

(187)

-WIND

r_o\

V I\' `\\P

":-"

E .fr -WAVE -SWELL 1

icicov\

cl`k

\P

7\Nob--.

I

,F4L

d t

cf. ce.lcr 0 2 ED 3 I I I I I I I I I I

\o`..\\

(29)

( 188 ) T. No.50- 1 120.-cn Ln9 cL

2

0 °

60' 2

i 6

-_1 0

WI-05 5

LL z

6 22000 121000 o_ 10 15 20 25 29

1_1_1 1,111,1

T. No. SO- 1 5 DAY(in DEC) 25 -fl

-LL1 20 c:L C0111=?AoSS,_0_01. .)..) SPEED FUEL NOTCH 2 3 4 15 -00-1

2

a 90 20 8 0-_71 _22,001 a: 21 21000 DAY( n DEC) 2 3 4 5 5a 6 7 8 9 10 ED

Fig. 2. 2 (a) Ship's Condition at Outward Voyage

10 15 20 25 29

I ,

GRAND MEAN OF OUTWARD VOYAGE

GOVERNOR INDEX

BRAKE H RSE POW E

5s 6 7 8

O.G.SPEED LOG SPEED

SLIP

GRAND MEAN OF OUTWARD VOYAGE

9 10

oDRAF

T ACTUAL AT ARRIVAL

ACT UAL AT PE PART U RE 9

0

4

(30)

cc T.No. SH - 30 35 40 45 50 55 58

LI!

290'-(nLLI <10 0-Ct 276-M

os

(025-350 ELI 0-15-Ln 10

-100- v)22,000-5-121.000 25-,

o

0. PEE UJ 2 0 a cc) 1 5-100 a:90 8 2 0-LOG SPEED

GRAND MEAN OF HOMEWARD VOYAGE

9\

ACTUAL AT DEPARTURE COMPASS COURSE o 0 SPED RPM FU L NO CH o o

GOVERNOp °I NoJ D,EX0

0 0 T.No. SH- 30 35 40 45 50 55 58 I t I I I I 1 1 I

II

1

II It

I t t I 1 i t 1 1

1,1

-1-

I i

-1- T T -1- -1-

I

-I

DAY( in DEC) 15 16 17 18 19 20 22 23 24 25 HCMEWARD VOYAGE SLIP DISPLACEMENT

DAY (in DEC) 15 16 17 18 19 20 22 23 24 25

Fig. 2. 2 (b) Ship's Condition at Homeward Voyage

-

-0 43 (189) IL cp Z E, Q

Z

(.0

a

0

Z 8 50 6 1 I 5 7

<

o o.: 10 -0 GRAND MEAN OF -22,000 -21,000 20000 ACTUAL. AT ARRIVAL 41) RAFT

(31)

>-44 0.4 0.2 -o 0 N "0)

(190)

0 0.2 2 3 PITCH T. No. 1 07, = 0.511° T. No. 2 = 0.445° 0.5 0.5

u) (sec-'

Co (sec') 10 30 60 90 L 1.o 1.5

Fig. 3. 1 (a) Spectra and Correlograms of Pitch co, 30 60 90 Lag No. 5 0 60 90 Lag No. -1 0 4-0.5 1.0 1.5 0 0 T. No.8 O=1.0 83C 0.5 1.0 1,5

(32)

2 1 3 2 1

,

?Ao T. No.10 tSs = 0.963° 0.5 0.5 W (sec-1)

Fig. 3. 1 (b) Spectra and Correlograms of Pitch

W ( sec-') 1.0 1.5 (191) T. No.11 Gs =0.1795° 1 0 0.5 2 T. No. 12 0.738° 1 0.5 1.0 1.5 T. No. 11 1 - 0.368° 0 33 60 90 L39 No. 0.5 1.0 1.5 3 - PITCH 30 80 90 1.0 1.5 30 60 90 1.0 1.5 T.No.13 = 0.813° 60 90 ,

(33)

10 10 10 ( 192 ) 10 BO BO 60 40 20 co,^ T. No. 1 cr, 1.4 21° 0.5 0.5 CO, T. No. 2 0-s 2.150° 0.5 _T,.No. 3_ (5-,s =11329° 0.5 T. No.6 = 2.4 51° T. No. 4.403° 0.5 ROLL co (sec-1) 1.0 1.0 30 GO 90 I 1.0 1.5 30 60 1.5

Fig. 3. 2 (a) Spectra and Correlograms of Roll

Lag No. 30

A

a.60

A

90

v

v

0.5 1.0 1.5 U.) (sec') 60 40 20 (7, 0 100 1.0 1.0 1.5 30 GO 90 1.5 T. No.8 4.541'

(34)

BO 60 40 20 0 0 ) 30--o 40 20 20 10 40 30 20 10

no

20 --o 10

50-0r.

T. No.9 Gi=4.128° ROLL

T. No.12 (WITH ART.)

Gs= 3.067°

I

0.5 1.0

T. No.13 (WITH A.R.T.) 3.146° 0.5 T. No.17 Cri=1.601°

Ill

0.5 CO (sec.') 1.0 1.0

Fig. 3.2 (b) Spectra and Correlograms of Roll

I 30 60 90 1.5 30 60 90 1.5 30 60 90 Lag No. I 1.5 47 0.5 1.0 1.5 ( see-1) T. No JD. 30 60 90 =2.890° o.s 1.0 1.5 T. No.11 1 (5:,- 4.000° 0 30 60 90 -1 20 10 0 80 BO 0.5 1.0 1.5 If 30 Lag 30 60 90 0

(35)

( 194 ) 0 0 1 1 T. No.1 Ts-0.455° 0.5 (sec-') T. No.2 0s 0.682° Y A W 1.0 1.0

Fig. 3. 3 (a) Spectra and Correlograms of Yaw

30 60 90 T.No.3 0.671° o 0

I,

60 90 in aT o 0 0.5 1.0 30

T. No.6 (MANUAL STEER.)

60 =0.785° 0 1 30 6C 90 20 0 0.5 1.0 0.5 CO (sec) 1.0 2 =

(36)

2 3

0 0.5

YAW

1.0

Fig. 3.3 (b) Spectra and Correlograms of Yaw

30 60 90 Lag No. 49 0 0.5 10

W (sec')

0 0.5 1.0 0 0.5 1.0 0.5

sec')

1.0

(37)

196 ) u -D 20 RUDDER ANGLE 10 T. No. 1 0-i-1.280°

T. No. 6 (MANUAL STEER.) 01; =1.311°

0.5

0.5

co (sec')

1.0

Fig. 3. 4 (a) Spectra and Correlograms of Rudder Angle

05 1.0 CO (sec') T. No.2 10 0= 2.521° oo I 0.5 1.0 0.5 1.0 10 T. No. '7 Gs =1.350' 0.5 1.0 ( No. 8 90 0

(38)

40 RUDDER ANGLE 20 40 20 20 20 T. No. 9 Ors = 3.009° 0.5 W (sec-1) ° T. No.10 20 2.918 0.5 T. No.12 0-s=3 079° 0.5 0.5 1.0 1.0 1.0 1.0 Lag No. 30 60 90 30 60 90 Lag No. 1.0 0.5 CO (sec')

Fig. 3. 4 (b) Spectra and Correlograms of Rudder Angle

0.5 1.0 20 0 0 No.11 = 3 .3 T.No. 13 37,-2.940° No.1'1_ 9Q

(39)

0.008 0.004 0.004 ( 198 ) 0 COL T. No.8 0-s- 0.0809 0.5 1.0 CO ( sec-'

Fig. 3. 5 (a) Spectra and Correlograms of Vertical Acceleration at F.P. 1.5 1.5 30 60 90 Lag No. VERTICAL ACCELERAT I ON 0.002 T. No.1 cr5= 0.039 g 0.001 COL 0 0.5 1.0 cr) 60 ( seCi T. No.9 0.1.5- 0.0'16 g 0.008 0.5 1.0 1.5 0.025 -,0.015 iNo.7 0.12219 0.5

(40)

cv,66

0008-0.iO4 0.1004 0.00 0.10201-.. 0.015 0010 005. 7. No.10 Gis = 0.072g T. No. 11 = 10.072 gi T.No.12 Ts- 0.067g T. No. 17 CTs = 0.090g VERTICAL ACCELERATION ( 0 5 1.5 0.5 1.0

sec),,

Fik., 3 (b) mSPectra and CorfelOgrams of Veribal, Acceleration at F.P.

30 60 90 Lag No,. -15 90 30 60 90 Lag, No. ,53 0.008 0.004 1.5

(41)

0.004 0.002 0.015 0.010 0.005 ( 200 ) 0.02 0.01 0.03 0.02 0.01 LATERAL ACCELERATION 0.5 T. No.2 0-s- 0.05'79 0.5 0.5 1.0 0 30 60 90 1.5 0.5 1.0 1.5 30 60 90 Lag No. 1.0 1.5 ( sec-1)

Fig. 3. 6 (a) Spectra and Correlograms of Lateral Acceleration at F.P.

a), 30 60 I ag No. 90 sec-') 1.0 1.5 30 60 90 0.004 T. No.1 0.044g 0.00 2 WI "c5) 0.03 T. No.r7 0 0.010 0.005 1 T. No.8 0 30 60 90 -1 0.03 -T No.9 0.02 0.01 0.5 T. No.3 0.039g 0.5 1.0 .0 115 1.5 90

(42)

ty GY cq 0,008 00O4 0.,025 0,020, 0.005 0.006 aoo4 LATERAL ACCELERATION 'T. No. 10 = 0.0689 0.5 0".s 0.1091g (sect>

T. 'No. 12 With .A.R.T.1 Crs = 0.056g

T. No. 1l3 (With A.,R.T,.1

01:5 = 0.059g T. No. 1'1 0.041g W (sec-11, to (4)

Fig. 3..6 (b) Spectra and Correlograms of Lateral Acceleration at F.P.

co,4 30, 60 90 Lag No. 1.0 30 60 90 to 5 0 0.004 30 60 90 Lag No $.5 1.0. 1.51 05 11.0 1.5 0.015 0.010 0.008 0.004 0.5 0.5 = 1.5 30 60 90

(43)

20 20 20 70 20 20 ( 202 ) ^ 0 4 T. No.6

n

PITCH

20 20 20 10°

Fig. 3. 7 Histograms and Rayleigh Distributions of Pitch Double Amplitudes

T. No.8

T. No.9

(44)

20 20 20 20 20 20 10° 20° T. No. 7 T. No. 8 20" 30° 30° 20° ROLL 30° 20 20 20

I

aim

20 T. No.12 (With A .R .T .) TO° T. No.11 10 T. No.13 (With ART.) 20° 10°

Fig. 3. 8 Histograms and Rayleigh Distributions of Roll Double Amplitudes T. No. 27 20° 10° 20° 0° 20", 1 0 ° 10' 20° 1 20° T. No.10

(45)

20 20 20 ( 204 ) YAW 20 5° 10° 10°

-1 I

1--5. 7 No.12 I 5° 10°

Fig. 3. 9 Histograms and Rayleigh Distributions of Yaw Double Amplitudes '1 No. 20 T. No .1 20 T. No. 6 20 15"-r T. No. 13 T. No.9 20 5° 20 T. No 8 20 . No .9. . 20

(46)

-40 20 0 20 20 20 20 20 10° 10° RUDDER ANGLE T. No.1 20 T. No. 6 2'0° 20° 20 20 20 20 . No.8 20 20 20° 10° 20' 10° 20° 0 10° 20°

Fig. 3. 10 Histograms and Rayleigh Distributions of Rudder Angle Double Amplitudes

59 10° 20° 10° 20° 1 0° 20° 10° 20° 10° 20 10 20° T.No.9

(47)

20 20 20 10 20-r 10 5 g 0.59 T. No. 8 0.59 T. No.9 VERTICAL ACCELERATION OF 0.5 g T. No. 12 0.5 g T. No. 13 0 5 g

Fig. .3..11 Histograms and Rayleigh Distributions of Vertical Acceleration at F.P..

( 206 ) 0.5 9 2 0 oo + + - 10.5 g -2 0 T. No.1 0.5g 0.5 g 20 20 20 20 20 T.No.10 0.5 0.59 9

(48)

20 20 20 20 20 20 20 2 Cr 0.5 g 0.5 g LATERAL ACCELERATION T. No. '1 20 20 20 20 0.5g T. No. 12 (With A.R.T.) 0.5 J. No.13 (With A.R.T.) 9 I 1.5g

Fig. 3. 12 Histograms and Rayleigh Distributions of Lateral Acceleration at F.P.

0.4 g 61 T. No. 8 26r 0.5 T. No.9 1.09 0.5 1.0 o 0.59 0.5 g 0.5 1.0

Cytaty

Powiązane dokumenty

Otóż są luki, głównie w rozdziałach początkowych, gdzie właśnie wobec braku obfi­ tszej literatury tem skrupulatniej chyba z tem co jest, liczyć się

[r]

Porównując uzyskane na ten temat wypowiedzi, można zauważyć, że badane osoby inaczej oceniały postać i zachowanie bohatera kazusu, gdy był nim ślusarz (a

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

Twierdzono, że Istota Najwyższa nie interweniuje w bieżące sprawy ludzkie (deizm). Nie od niej pochodzi władza polityczna, która jest rezultatem &#34;umowy

Before the onset of sliding, these images demonstrated symmetric and asymmetric contact area reduction under tensile and compressive loading, respectively.. After the onset of

(dzielnica żydowska) Plaża Sobótka i molo Wzgórze Tumskie Ulica Tumska (deptak) Miejski Ogród Zoologiczny Park Wodny przy Orlen Arenie Park 27 Dębów Park Miejski Podolszyce

w siedzibie Towa- rzystwa Naukowego Płockiego odbyło trzechsetne posiedzenie naukowe seminarium doktoranckiego TNP.. rocznica