• Nie Znaleziono Wyników

On some integral inequalities for (h, m)-convex functions

N/A
N/A
Protected

Academic year: 2021

Share "On some integral inequalities for (h, m)-convex functions"

Copied!
16
0
0

Pełen tekst

(1)

No. 9(16) 2013

Marian Matłoka

Department of Applied Mathematics, Poznań University of Economics, Al. Niepodległości 10, 61-875 Poznań, Poland.

E-mail: marian.matloka@ue.poznan.pl

ON SOME INTEGRAL INEQUALITIES

FOR (h, m)-CONVEX FUNCTIONS

Marian Matłoka

Abstract. In this paper we establish several Hadamard type inequalities for (h, m) convex

functions.

Keywords: Hadamard’s inequality, convex function. JEL Classification: C02.

DOI: 10.15611/me.2013.9.05.

1. Introduction

A function f I: R, IR is an interval, said to be a convex func-tion on I if

1

  

1

( )

f tx t ytf x  t f y (1.1) holds for all x y, I and t[0,1 ]. If the reversed inequality in (1.1) holds, then f is concave.

Many important inequalities have been established for the class of con-vex functions, but the most famous is Hermite-Hadamard’s inequality. This double inequality is stated as:

1 ( ) ( ) ( ) 2 2 b a a b f a f b f f x dx b a         

(1.2)

where f : [ , ]a bR, is a convex function. The above inequalities are in reversed order if f is a concave function.

(2)

In 1978, Breckner introduced the s-convex function as a generalization of the convex function (Breckner 1978). Such a function is defined in the following way: a function f : [0, ] R is said to be s-convex in the second sense if

1

s ( )

1

s ( )

f tx t yt f x  t f y (1.3) holds for all , x y [0, ], t[0,1 ] and for fixed s[0,1 ].

In (Dragomir, Fitzpatrick 1999) Dragomir and Fitzpatrick proved the following variant of Hermite-Hadamard’s inequality which holds for s-convex functions in the second sense.

1 1 ( ) ( ) 2 ( ) 2 1 b s a a b f a f b f f x dx b a s          

. (1.4)

In the paper (Varošanec 2007) a large class of non-negative functions, the so-called h-convex functions, is considered. This class contains several well-known classes of functions such as non-negative convex functions and s-convex in the second sense. This class is defined in the following way: a non-negative function f I: R, IR is an interval, called h-convex if

(1 )

( ) ( ) (1 ) ( )

f tx t yh t f xht f y (1.5) holds for all x y, I , t(0,1 ), where h J: R is a non-negative function,

0

h and J is an interval, (0,1 )J.

In (Sarikaya, Saglam, Yildirim 2008) the authors proved that for h-convex function the following variant of Hadamard inequality is fulfilled

1 0 1 1 ( ) ( ) ( ) ( ) 1 2 2 2 b a a b f f x dx f a f b h t dt b a h              

(1.6)

In 1988, Weir and Mond (1998) introduced the preinvex function. Such a function is defined in the following way: a function f on the invex set X is said to be preinvex with respect to , if

( , )

(1 ) ( ) ( )

f utv u  t f utf v (1.7) for each u v, X and t[0,1 ], where : X X R.

(3)

Noor in (Noor 2009) proved the Hermite-Hadamard inequality for the preinvex functions:

 

 

 

 

 

, 1 1 ( , ) . 2 , 2 a b a a f a f b f a b a f x dx b a        

(1.8)

Matłoka introduced in (Matłoka 2013) the h-preinvex function in the following way: The non-negative function f on the invex set X is said to be h-preinvex with respect to , if

 

,

(1 ) ( ) ( ) ( )

f u t  v uht f uh t f v (1.9) for each u v, X and t[0,1 ].

In the same paper Matłoka proved the Hermite-Hadamard inequality for the h-preinvex functions:

 

( , ) 1 2 1 0 1 2 1 1 ( , ) ( ) 2 ( , ) ( ) ( ) ( ) . a b a a f a b a f x dx h b a f a f b h t dt        

(1.10)

Toader (1985) defined m-convexity in the following way: the function : [0, ]

f bR, b0, is said to be m-convex, where m

 

0,1 , if

1

( )

1

( )

f txmt ytf xmt f y (1.11) for all , x y[0, ]b and t[0,1 ].

In (Dragomir, Toader 1993) the authors proved the following Hadamard type inequality for m-convex functions:

 

 

( ) ( ) 1 ( ) min , 2 2 b a b a m m f a m f f b m f f x dx b a       

. (1.12)

In this paper we introduce the concept of the (h, m)-convex function. The main purpose of this paper is to establish new inequalities of the class of (h, m)-convex functions.

(4)

2. Inequalities for (h, m)-convex functions

Definition 2.1. Let h: [0,1 ]R be a nonnegative function, h0. The non-negative function f : 0,

 

bR, b0, is said to be (h, m)-convex, where m

 

0,1 , if we have

1

( )

 

1

(

f txmt yh t f xmht f y) for all , x y[0, ]b and t[0,1 ].

If the above inequality is reversed, then f is said to be (h, m)-preconcave. Note that if h(t) = t then the f above definition reduces to the definition of m-convex function.

Definition 2.2. The function f : 0,

 

bR, b0, is said to be (h, m)- -logarithmic convex, where m

 

0,1 , if

 

 

log (f txm 1t y)h t logf xmh 1t log ( )f y for all , x y[0, ]b , t[0,1 ], where ( )f  0.

If the above inequality is reversed, then f is said to be (h, m)-logarithmic concave.

From now on we suppose that all the integrals of function h considered below exist.

Theorem 2.1. Let f : [0, ] R be a (h, m)-convex function with (0,1 ] m . If 0 a mb  and fL1

[ ,a mb]

, hL1

[0,1]

then

 

 

 

1

 

0 1 . mb a f x dx f a mf b h t dt mba

  

(2.1)

Proof. From the (h, m)-convexity of f we have

1

( )

 

1

(

f tamt bh t f amht f b). Thus by integrating over [0,1 ] we obtain

 

1 1 1 0 0 0 1 ( ) ( ) 1 . f tamt b dtf a h t dtmf b ht dt

(5)

Since,

 

1 0 1 1 mb a f ta m t b dt f x dx mb a    

then

 

 

 

1

 

0 1 mb a f x dx f a mf b h t dt mb a

  

which completes the proof.

Remark 2.1.

if m = 1 and h(t) = t then inequality (2.1) reduces to the right hand of the Hermite-Hadamard inequality for convex function.

if m = 1 and h(t) = ts, s  [0, 1] then we obtain the right hand of a variant of the Hadamard inequality (1.4) for s-convex function in the second sense.

if m = 1 then inequality (2.1) reduces to the right hand of the Hadamard inequality (1.6) for h-convex function (see Sarikaya et. al. 2008).

In an analogous way we can prove the following inequality for (h, m)-logarithmic convex function

 

 

 

1

 

0

1

log log log .

mb

a

f x dx f a m f b h t dt

mb a

  

(2.2)

Theorem 2.2. Let f be a (h1, m)-convex and g a (h2, m)-convex

func-tions such that f g L1

[ , ]a b

and h h1 2 L1

[0,1]

. Then the following

inequality holds:

1 2 1 2 0 1 1 2 0 ( ) ( 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) 1 . mb a t t f x g x dx f a g a m f b g b h h dt mb a m f a g b f b g a h t h t dt        

(2.3)

Proof. Using the fact that f and g are (h1, m)-convex and (h2, m)-convex

(6)

1( ) 1 2 2 1 ( ) 1 ( ) ( ) ( ) 1 ( ) f g ta m t b h t f a mh t f b h t g a mh t g b            

 

2 1 2 1 2 h( )t h (t)f a g a( ) ( )m h 1t h 1t f b g( ) (b)

1 2 1 2 mh( )t h 1t f a g b( ) ( )mh 1t h ( )t f b g a( ) ( ). Thus, by integrating with respect to t over [0,1] , we obtain

1 1 2 1 2 0 0 1 ( ) ( ) ( ) ( ) ( ) ( ) f gtamt b dtf a g am f b g b h t h t dt

1 1 2

0 ( ) ( ) ( ) ( ) ( ) 1 . m f a g b f b g a h t h t dt  

 Since

1 0 1 1 ( ) ( ) mb a f g ta m t b dt f x g x dx mb a     

then we obtain the inequality (2.3).

Theorem 2.3. Let f be a (h1, m1)-convex and g a (h2, m2)-convex

functions such that f g L1

[ ,a mb]

and h h1 2 L1

[0,1]

. Then the following inequality holds:

1 1 1 1 2 2 1 2 3 0 0 1 1 1 2 4 1 2 0 0 ( ) ( ) ( ) 1 ( ) ( ) min 1 ( ) ( ) ( ) 1 , mb a f x g x dx mb a M h h dt M h h t dtM h h dt M h h t dt t t t t t t            

(2.4) where 1 1 2 1 2 ( ) ( ) b b M f a g a m m f g m m            ,

(7)

2 2 1 2 1 ( ) b b ( ) M m f a g m f g a m m          ,

 

3 1 2 1 2 ( ) a a M m m f g f b g b m m             ,

 

 

4 1 2 1 2 a a M m f g b m f b g m m         .

Proof. Using the fact that f i g are (h1, m1)-convex and (h2, m2)-convex

respectively we have

1 1 1 1 (1 ) b f ta t b g ta t b f ta m t m            

   

2 1 1 1 2 1 (1 ) b 1 b g ta m t h t f a m h t f m m                

   

2 2 2 2 1 b h t g a m h t g m          

 

1 2 1 2 1 2 1 2 ( ) ( ) ( ) ( ) 1 1 b b h f a h g a m m h t h t f g m t t m              

2 1 2 1 1 2 2 1 ( ) 1 1 ( ). ( ) b b ( ) m h f a h t g m h t f h g a m m t     t        

Integrating both sides of the above inequality over [0,1] we obtain

1 0 1 1 1 ( ) ( ) b a f ta t b g ta t b dt f x g x dx b a      

1 1 2 1 2 1 2 0 ( ) ( ( ) ( ) b b ) f a g a m m f g h t h t dt m m              

 

1

  

2 1 1 2 2 1 0 ( ) 1 . b b m f a g m f g a h t h t dt m m              

(8)

Analogously we obtain 1 1 2 1 2 1 2 0 ( ) ( 1 ( ) ( ) ( ) ( ) ) b a a a f x g x m m f g f b g b h h dt b a m m t t         

 

1 1 2 1 2 1 2 0 ( ) ( ) ( ) 1 a a m f g b m f b g h h t dt m m t             

which completes the proof.

Let us note that from the inequality (2.2) it follows the following ine-quality for (h1, m)-log-convex function f and (h2, m)-log-convex function g:

1 1 0 1 log ( ) ( ) log ( ) log ( ) ( ) mb a f x g x dx mb a f a m f b h t dt    

1 2 0 log ( )g a mlog g b( ) h( )t td.  

Moreover, if f is (h1, m)-log-convex and g is (h2, m)-log-concave then

from the some inequality it follows that

1 1

0

1 ( )

log log ( ) log ( )

( ) ( ) mb a f x dx f a m f b h dt x t mb a

g   

1 2 0 log ( ) g amlog ( )g b

h( ) .t dt

Using the technique and ideas of Bakula, Özdemir and Pećarić (2008, Theorem 2.1), one can prove the following theorem.

Theorem 2.4. Let I be an open real interval such that [0, ] I. Let :

f IR be a differentiable function on I such that fL1

 

a b,

, where

0   a b . If fq is (h, m)-convex on

 

a b for some fixed m ,  (0, 1] and q 

 

1, , then

(9)

( ) ( ) 1 ( ) 2 b a f a f b f x dx b a



1 1 1 1 1 2 2 1 1 1 2 1 ( ) 2 1 2 min ( ) , . q q q q q q q b a h t t dt h t t dt b a b f a m f m f f m m m                                              

Proof. First let us note that for a differentiable mapping f such that

 

1

,

fL a b the following equation holds

1 0 ( ) ( ) 1 ( ) 1 2 1 . 2 2 b a f a f b b a f x dx t f ta t b dt b a        

First let us suppose that q = 1. Then from the above equation we have

1 0 ( ) ( ) 1 ( ) 1 2 1 . 2 2 b a f a f b b a f x dx t f ta t b dt b a         

Since f is (h, m)-convex on

 

a b we know that ,

1

1

b ( ) ( )

1

b , f ta t b f ta m t h t f a mh t f m m                      hence ( ) ( ) 1 ( ) 2 b a f a f b f x dx b a

1 0 1 2 ( ) ( ) 1 2 b a b t h t f a mh t f dt m                 

(10)

1 2 0 1 2 ( ) ( ) (1 ) 2 b a b t h t f a mh t f dt m                   

1 1 2 2t 1 h t f a( ) ( ) mh 1 t f b dt m                 



1 1 1 1 2 2 ( ) 1 2 1 ( ) 2 1 , 2 b a b f a m f h t t dt h t t dt m                        

where we have used the fact that

 

1 1 2 1 0 2 1 2

t h 1t dt

h t( ) 2t1 dt and



1 1 2 1 0 2 1 2

t h t dt( ) 

h 1t 2t1 dt. Analogously we obtain ( ) ( ) 1 ( ) 2 b a f a f b f x dx b a   



1 1 1 1 2 2 ( ) 1 2 1 ( ) 2 1 , 2 b a a m f f b h t t dt h t t dt m                         

which completes the proof for q1.

Suppose now that q1. Since fq is (h, m)-convex on

 

a b ,

1

( ) ( ) (1 ) q q q b f ta t b h t f b mh t f m              

(11)

hence using the well-known Hőlder inequality we obtain ( ) ( ) 1 ( ) 2 b a f a f b f x dx b a   

1 1 1 1 0 0 1 2 1 2 1 2 q q q q b a b t dt t f ta m t dt m                 



1 1 1 1 1 2 2 1 2 1 ( ) 2 1 ( ) 2 q q q b a b h t t dt h t t dt f a m f m                              

and analogously ( ) ( ) 1 ( ) 2 b a f a f b f x dx b a   



1 1 1 1 1 1 2 2 1 2 1 ( ) 2 1 ( ) 2 q q q q b a a h t t dt h t t dt m f f b m                           

which completes the proof. Using the identity

 

1 1 ( ) ( ) , 2 b b a a a b f f x dx S x f x dx b a b a       

where , , 2 ( ) , , 2 a b x a x a S x a b x b x b                  

(12)

Theorem 2.5. Let I be an open real interval such that [0, ] I. Let :

f IR be a differentiable function on I such that fL1

 

a b,

, where

0   a b . If f is (h, m)-convex on

 

a b for some fixed , m

 

0,1 , then

 

1 2 b a a b f f x dx b a        

1 1 2 2 0 0 ( ) 1 min ( ) b ; a ( ) . b a th t dt th t dt f a m f m f f b m m                            

Proof.

 

1 2 b a a b f f x dx b a        

2 2 1 ( ) ( ) a b b a b a x a f x dx b x f x dx b a               

1 1 2 1 0 2 1 (1 ) 1 b a t f ta t b dt t f ta t b dt                

 

1 2 0 ( ) (1 ) b b a t h t f a mh t f dt m                

1 1 2 1 t h t f a( ) ( ) mh(1 t f) b dt m                 

1 1 2 2 0 0 ( ) b ( ) 1 b a f a m f th t dt th t dt m                  

(13)

and analogously

 

1 2 b a a b f f x dx b a        

 

1 1 2 2 ' 0 0 ( ) 1 a b a m f m f b th t dt th t dt m                

which completes the proof.

Now, let us note that it can be easy to prove the following two lemmas. Lemma 2.1. Let f : IR, IR, be a differentiable mapping on I, and a b, I, m[0,1 ] and amb. If fL1

a mb,

, then

1 0 ( ) ( ) 1 ( ) 1 2 1 . 2 2 mb a f a f mb mb a f x dx t f ta m t b dt mb a        

Lemma 2.2. Let f : IR, IR, be a differentiable mapping on I, and a b, I, m[0,1 ] and amb. If f'L a mb1( ,

), then

1 ( ) 2 mb a a mb f x dx f mb a       

 

1 1 2 1 0 2 1 1 1 . mb a tf ta m t b dt t f ta m t b dt                

Theorem 2.6. Let f : IR, be a differentiable function on I that

1

,

fL a mb , where a b, I, m[0,1 ] and amb. If f is (h, m)- -convex function, then we have

( ) ( ) 1 ( ) 2 mb a f a f mb f x dx mb a



1 1 1 1 2 2 ( ) ( ) 1 2 1 ( ) 2 1 . 2 mb a f a m f b h t t dt h t t dt                  

(14)

Proof. Using Lemma 2.1 and the (h, m)-convexity of f we have ( ) ( ) 1 ( ) 2 mb a f a f mb f x dx mb a

1 0 1 2 ( ) ( ) (1 ) ( ) 2 mb a t h t f a mh t f b dt

  

1 2 0 1 2 ( ) ( ) (1 ) ( ) 2 mb a t h t f a mh t f b dt       

1 1 2 2t 1 h t f a( ) ( ) mh(1 t f b) ( ) dt         

 

1 1 2 2 0 0 ( ) 1 2 ( ) ( ) 1 2 1 2 mb a f a t h t dt m f b t h t dt           

 

1 1 1 1 2 2 ( ) 2 1 ( ) ( ) 2 1 1 f a t h t dt m f b t h t dt          



1 1 1 1 2 2 ( ) 1 2 1 ( ) ( ) 2 1 2 mb a f a h t t dt m f b h t t dt           

   

1

 

1

' ' 1 1 2 2 f a h t 2t 1 dt m f b h(1 t) 2t 1 dt        



1 1 1 1 2 2 ( ) ( ) 1 2 1 ( ) 2 1 , 2 mb a f a m f b h t t dt h t t dt                

(15)

Theorem 2.7. Let f : IR, be a differentiable function on I, with

,

a bI, m[0,1 ] and amb. If f is (h, m)-convex, then we have 1 ( ) 2 mb a a mb f x dx f mb a       

 

1 1 2 2 0 0 ( ) ( ) ( ) 1 . mb a f a m f b th t dt th t dt                  

Proof. Using Lemma 2.2 and the (h, m)-convexity of f, it follows that 1 ( ) 2 mb a a mb f x dx f mb a       

1 1 2 1 0 2 1 1 1 mb a t f ta m t b dt t f ta m t b dt             

.

 

1 2 0 ( ) (1 ) ( ) mb a t h t f a mh t f b dt       

1 1 2 1 ( ) ( ) (1 ) ( ) t h t f a mh t f b dt         

1 1 2 2 0 0 ( ) ( ) ( ) 1 mb a f a t h t dt m f b t h t dt         

1 1 2 2 0 0 ( ) 1 ( ) ( ) f a t h t dt m f b t h t dt        

1 1 2 2 0 0 ( ) ( ) ( ) 1 mb a f a m f b th t dt th t dt                  

(16)

References

Bakula M.K., Özdemir M.E., Pećarić J. (2008). Hadamard type inequalities for m-convex

and (, m)-convex functions. Journal of Inequalities in Pure and Applied Mathematics 9. Breckner W.W. (1978). Stetigkeitsanssagen für eine Klasse verallgemeinerter Konvexer

Funktionen in topologischen linearen Räumen, Publications de I’lnstitut Mathématique.

23 (37). Pp. 13-20.

Dragomir S.S., Fitzpatrick S. (1999). The Hadamard’s inequality for s – convex functions in the second sense. Demonstration Mathematics 32 (4). Pp. 687-696.

Dragomir S.S., Toader G. (1993). Some inequalities for m – convex functions. Studia Universitas Babeş-Bolyai Mathematica 38. Pp. 21-28.

Kirmaci U. S., Bakula M. K., Özdemir M. E., Pećarić J. (2007). Hadamard-type

inequali-ties for s-convex functions. Applied Mathematics and Computation 193. Pp. 26-35.

Matłoka M. (2013). On some Hadamard-type inequalities for (h1, h2)-preinvex functions on

the co-ordinates. Journal of Inequalities and Applications. doi:

10.1186/1029-242X-2013-227.

Noor M.S. (2009). Hadamard integral inequalities for product of two preinvex functions. Nonlinear Analysis Forum 14. Pp. 167-173.

Pearce C.E.M., Pećarić J. (2000). Inequalities for differentiable mappings with application

to special means and quadrature formulae. Applied Mathematical Letter 13. Pp. 51-55.

Sarikaya M.Z., Saglam A., Yildirim H. (2008). On some Hadamard-type inequalities for

h-convex functions. Journal of Mathematical Inequalities 2. Pp. 335-341.

Toader G. (1985). Some generalizations of the convexity. Proceedings of the Colloquium on Approximation and Optimization. University Cluj-Napoca. Pp. 329-338.

Weir T., Mond B. (1988). Preinvex functions in multiobjective optimization. Journal of Mathematical Analysis and Application 136. Pp. 29-38.

Varošanec S. (2007). On h-convexity. Journal of Mathematical Analysis and Application 326. Pp. 303-311.

Cytaty

Powiązane dokumenty

Keywords and Phrases: Polynomial, Inequality, Maximum modulus, Polar Deriva- tive, Restricted Zeros.. 1 Introduction and statement

Pewne nierówności całkowe dla funkcji całkowitych typu wykładniczego Некоторые интегральные неравенства для целых функций экспоненциального

Several results which are valid for real convex functions are extended on operator convex functions.. Świętochowski [17] proved the

All the above results for Wright-convex functions, as well as the Szego inequality (see [6]), can be obtained from corresponding results for convex functions as consequences of

"schlicht" functions S C S.. TToJiyneHHaji $opMyjia npencTanJia®n;aH a^if) b anne pam>nnx KoerJyJiinneHTOB n HeKOTOporo nHTerpaza,. KOTOpa« MOKST CJlyzMTb

We apply this idea to ob- tain results in various classes T M,g from corresponding results in the class T(M).. However, in the class T M,g it

We also obtain refinements and a reverse of L¨ owner–Heinz celebrated inequality that holds in the case of power function.. Consider a complex Hilbert space (H,

Some inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral of differentiable functions whose derivatives in absolute value are h-convex are