• Nie Znaleziono Wyników

Birefringence and dichroism in Zn₃P₂

N/A
N/A
Protected

Academic year: 2021

Share "Birefringence and dichroism in Zn₃P₂"

Copied!
8
0
0

Pełen tekst

(1)

Optica Applicata, Vol. XII, No. 3-4, 1982

Birefringence and dichroism in Zn3P2

Z

bigniew

G

umienny

, M

anfred

K

iwus

, J

an

M

isiewicz

Institute of PhyBics, Technical University of Wrocław, Wybraeie Wyspiańskiego 27, 50-370 Wrocław, Poland·

Birefringence and dichroism measurements in Z113P2 at 10, 00 and 300 K are described. A simple theoretical model is used to explain the obtained results·

1. Introduction

Zn^Pg k&8 lately received growing attention due to its interesting pho- toeleetrie properties [13· Its fundamental band structure parameters are not exaotly known yet· Zn^Pg orystallises in the tetragonal sys­ tems with spaoe symmetry· The ratio of lattice parameters approx­ imately equals to i/2~ . The existenoe of a notioeable optical aniso­ tropy of this compound is obvious and was first observed in paper t2J!·

In this work the birefringenoe and dichroism investigations are pre­ sented more preoisely

2. Birefringence and dichroism

In tetragonal crystals we observe the difference between refraotire ln- dioes for the light polarised parallel and perpendioular to the optlo axis o. This is a natural birefringence»

6 n m nj — n^· (1)

The birefringenoe is oonneoted with the dichroism, l.e·, the dif­ ference between absorption coefficients for the light polarised paral­ lel and perpendioular to the axis os

(2)

420

Z. GUMIENNY, U. KIWUS, J. UISIEWICZ

The measurement of birefringence is equivalent to determining the difference between real part of dielectric constants whioh are con­ nected with the difference of imaginary parts and further with di- ohrolaa· The oonneotlon is made by Kronig-Kramers relations [3]· We oan write

00

6n(E) . -&2- Jif, (3)

* o t - E *

where E - photon energy·

By measuring the birefringence we can obtain information about the dlohrolsm plot in the photon energyj range not attainable in transmis­ sion measurement· It makes possible the analysis of optioal transi­ tions whioh occur in this energy range·

Two simple models are used to deserlbe dlohrolsm plot t - Delta function type model

* „ - * 1 - A 6 < * - K0 ), (4) where A - constant* B Q - characteristic energy·

- Step model

' A a; I > Bpf

*11 " ai * (5)

. o* S < B p .

Using formula (3·) We oan fit experimental results of birefringence to the above models and interpret the types of the dominant optical transitions·

3. Measurements

The most useful and ekaot method of determining the blrefrlngenoe as a funotion of wavelength is based on the measurements of interference fringes in polarised light. This method was applied by WARDZYiSKI C43 · It is the following ideas The plane parallel plate of crystal with the axis e lying in the plane of the sample is placed between the cross­ ed polarizers so that the angle between the axis o - and direction of the electric rector be 45° (Fig. 1). Both polarized, parallel and per­ pendicular to the axis c parts of the light entering into the orystal are at identical phase and of the same amplitude. If the refractive

(3)

421 Birefringence and dichroism in Zn^P^

Indices for these polarisations were different, the ohange of phase would he equal to

* - '2 * a i n , (6)

K

where X - ware length ef light, d - thickness of crystal, and 6 n - hi·’ refringenoe.

Pig. t* S c h e w of optical equipaent used for birefringenoe measurements! e - source of light, ch - chopper, M - ■onochroaator, P , , P~ - polarizers, K - crystal, D - detector, L · Lock-in nanovol taster, B - recorder

Polarisation of the light oonlng out froa the crystal depends on the value. For

<p » 2k*

transmission of the light passing by polarlser Pg equal to soro.

When the ralue d * 6 n is appropriately large In we will obtain measurable Interference fringes with dltlon for minimum transmission

2 * d

2k* « --- 6 n, (8)

\

m

where k - Integral number.

Figure 2 presents an example of these fringes for the Zn^Pg san,pl®· When 6 n does not depend on X (this Is fulfilled for a sufficiently great wavelength) we get the linear relation

(7)

is theoretically comparison with X the following

(4)

don-422

1

Z. GUUIENNY, U. KIWUS, J. UISIEWICZ

- 1 — k. (9)

rig· 2. Sxample of interference fringes for Zn^Pg

Figure 3 presents these relations for one sample. The long-wave part of this plot marks the beginning of the k-number. From this we obtain the value of birefringence n for successive \ ffl, using the formula

(9)· Analogical procedure mar be performed for the maxima of spectro­ gram (it has been made to verify the correctness of determining k-val- ues).

The sign of the birefringenoe may be determined by using for exam­ ple an oriented quart* crystal. Both crystals with parallel optics axes are placed in the system presented in Fig. 1. Interference fringes are condensed, which means that the signs of both crystals are positive.

(5)

Birefringence and dichroism in 423

Fig. 3 a,b. Depend­ ence 1/X on the number of minimum trana mi 88ion

Our measurements were oarried out on several well oriented Zn^Pg samples prepared by a gas transport method [51· We present results ob­ tained on P-21 (thickness 1150 pm) and P-33 (thiokness 2220 pm)·

Spectral investigations are performed using special equipment with a GDM-1000 monochromator, described in detail in [61 on the 0,85-1.3 pi waverange and typioal set-up with SPM-2 monochromator [7] on the

1.2-2.5 pm waverange·

4. Results and discussion

Speotral plots of birefringence obtained by the method described above are presented in Fig. 4· Not measurable difference between results ob­ tained at 80 and 10 K is observed· Both plots have the sane character They tend to a constant value for decreasing energy and show a strong dispersion when approaohlng the absorption edge· A notloeabls decrease

of 6 n when the temperature decreases from 300 to 80 K is an interest­

ing phenomenon.

We made soma attempts to fit numerical experimental results to both theoretloal models· Using relation (3) into {4) and (5) we obtain

6 n(E) m --- --- , (10) Eo

-for delta function type model of dlohrolsm, and ^ . E + E

6n(E) a -^2--- In — E— ---- , for step diohroism model· (11) 2n E Bp - E

(6)

424 Z. GUMIENNY, M. KIWUS, J. MISIEWICZ

We obtained a satisfactory fit for the delta function type model with the assumed constant level of birefringenoe &nQ, connected probably with transi­ tions at energy greater than EQ (Ta­ ble).

Characteristic energy gap EQ agreed sufficiently with the value of the di­ rect energy gaps 1.51 eV at 300 K, 1.645 eV at 80 K, and 1.685 eV at 5 K

Fig. 4. Birefringence of ZnjP2 samples, n„ > nx . Curves describe delta function type theoretical models

[8]. Investigations of the absorption edge in unpolarized light and wide temperature and absorption coefficient ranges have been perform­ ed in [8]. T a b l e Temperature [K 3 300 80 and 10 E0

l.V]

1.60 1.64 A [ cm**' x eV 1

6no

a 445 0.0144 1 x 10“4 573 0.0096 3 x 10'5

O - square standard deviation experimental points from theoretical curve.

P

A dichroism in the range of 3-5 * 10 om was presented in [2]. In this work we concentrate only on small values of absorption coeffi­ cients, performing transmission measurements with high spectral resolu­ tion. Two edges: for E II o (at lower energy) and for £ 1 o (at higher energy) are observed. At 300 K for photon energy lower than 1.315 eV curves for both polarizations coincidence (within the range of error). A similar situation occurs at 80 K and 10 K for photon energy lower than 1.335 eV. These energy marks remain in very good agreement with energies interpreted as indirect optical transitions in [83.

(7)

425 1 4 1 1. 43 Fi 5 a , b # c . P i c t u r e s of di chroism f o r t h i c k ( 2 2 2 0 ) j m ) ff co (e V) ---► B< un P

l8

o f 21 13 P 2

(8)

426 Z. GUMIENNY, M. KIWUS, J. MISIEWICZ

References

C11 PAWLIKOWSKI J.M., Infrared Phys. 21 (1981), 181.

[2] MISIEWICZ J., GAJ J.A., Phys. Stat. Sol.(b) J05 (1981), К 23. ГЗЗ GAJ J.A„, Proo. 3-rd Nat. Symp. II-VI Semioond.

[4]

WARDZYtfSKI W., Proo. Roy. Soo. A260 (1961), 370. [51 K R Ó L I C O F . , private communication.

16] GUMIENNY Z., MISIEWICZ J., Optloa Applicata 12 (1982), 3*5-[7J MISIEWICZ J., Doctor's Thesis. Technical University of Wrooław,

1979 (unpublished).

[8] PAWLIKOWSKI J.M., MISIEWICZ J., MIROWSKA N., J. Phys. Chem. Solids 40 (1979), 1027. Received April 14, 1962

ДВУ

ПРЕЛОМЛЕНИЕ И ДИХРОИЗМ В Zn3P2

Представлены результаты исследований двупреломления и дихроизма вгп 5Р2 .

Для интерпретации полученных результатов применена соответствующая те­

оретическая модель.

Cytaty

Powiązane dokumenty

This research will focus on the design of the skin of the dwelling as the filter between the inside and the outside and as the face to the public.. This text should clarify the

dr Mojca Doupona Topič (Słowenia), prof. Wszyscy wymienieni naukowcy współpracują z IRK-MC lub także z SIP. Przewidziano trzy główne zagadnienia, do których wstępem

Biorąc pod uwagę fakt, że na miejscu popełnienia przestępstwa poza śladami pozwalającymi na ustalenie uczestników zdarzenia występują również takie, które

tlenków barwiących (zwłaszcza Fe 2 O 3 ), zaczął być na coraz większą skalę stosowany jako pełnowartościowy komponent mas do wytwarzania płytek ceramicznych w technologii

The circle of candidate states is followed by potential candidates (Zielonka 2007), then partner states associated with the EU (and exposed to external Europeanization efforts)

ścianę szczeliny, będąca średnią arytmetyczną uzy- skanych wartości dla poszczególnych wytypowanych obszarów [mm]... Określenie średniej głębokości wgnieceń ziaren

Internauci na ogół nie różnią się pod tym względem od osób, które z Internetu nie korzystają, a jeśli już, to jest to różnica na korzyść tych pierwszych. W tym

W Polsce w okresie przedwojennym obowiązywał generalnie zakaz stosowa­ nia jakiejkolwiek reklamy przez adwo­.. Zakaz ten wyrażony był w licz­ nych